
Thinking
in

Java
Bruce Eckel



Comments from readers:
Much better than any other Java book I’ve seen. Make that “by an order of magnitude”...
very complete, with excellent right-to-the-point examples and intelligent, not dumbed-
down, explanations ... In contrast to many other Java books I found it to be unusually
mature, consistent, intellectually honest, well-written and precise. IMHO, an ideal book for
studying Java. Anatoly Vorobey, Technion University, Haifa, Israel

One of the absolutely best programming tutorials I’ve seen for any language. Joakim
Ziegler, FIX sysop

Thank you for your wonderful, wonderful book on Java. Dr. Gavin Pillay, Registrar, King
Edward VIII Hospital, South Africa

Thank you again for your awesome book. I was really floundering (being a non-C
programmer), but your book has brought me up to speed as fast as I could read it. It’s really
cool to be able to understand the underlying principles and concepts from the start, rather
than having to try to build that conceptual model through trial and error. Hopefully I will be
able to attend your seminar in the not-too-distant future. Randall R. Hawley, Automation
Technician, Eli Lilly & Co.

The best computer book writing I have seen. Tom Holland

This is one of the best books I’ve read about a programming language… Chapter 16 on
design patterns is one of the most interesting things I’ve read in a long time. Ilan Finci,
graduate student and teaching assistant, Institute of Computer Science, The Hebrew
University of Jerusalem, Israel

The best book ever written on Java. Ravindra Pai, Oracle Corporation, SUNOS product
line

This is the best book on Java that I have ever found! You have done a great job. Your depth is
amazing. I will be purchasing the book when it is published. I have been learning Java since
October 96. I have read a few books, and consider yours a “MUST READ.” These past few
months we have been focused on a product written entirely in Java. Your book has helped
solidify topics I was shaky on and has expanded my knowledge base. I have even used some
of your explanations as information in interviewing contractors to help our team. I have
found how much Java knowledge they have by asking them about things I have learned
from reading your book (e.g. the difference between arrays and Vectors). Your book is great!
Steve Wilkinson, Senior Staff Specialist, MCI Telecommunications

Great book. Best book on Java I have seen so far. Jeff Sinclair, Software Engineer, Kestral
Computing

Thank you for Thinking in Java. It’s time someone went beyond mere language description
to a thoughtful, penetrating analytic tutorial that doesn’t kowtow to The Manufacturers.
I’ve read almost all the others–only yours and Patrick Winston’s have found a place in my
heart. I’m already recommending it to customers. Thanks again. Richard Brooks, Java
Consultant, Sun Professional Services, Dallas

Other books cover the WHAT of Java (describing the syntax and the libraries) or the HOW of
Java (practical programming examples). Thinking in Java is the only book I know that
explains the WHY of Java; why it was designed the way it was, why it works the way it
does, why it sometimes doesn’t work, why it’s better than C++, why it’s not. Although it
also does a good job of teaching the what and how of the language, Thinking in Java is
definitely the thinking person’s choice in a Java book. Robert S. Stephenson



Thanks for writing a great book. The more I read it the better I like it. My students like it,
too. Chuck Iverson

I just want to commend you for your work on Thinking in Java. It is people like you that
dignify the future of the Internet and I just want to thank you for your effort. It is very
much appreciated. Patrick Barrell, Network Officer Mamco-QAF Mfg. Inc.

Most of the Java books out there are fine for a start, and most just have beginning stuff and
a lot of the same examples. Yours is by far the best advanced thinking book I’ve seen. Please
publish it soon! ... I also bought Thinking in C++ just because I was so impressed with
Thinking in Java. George Laframboise, LightWorx Technology Consulting, Inc.

I wrote to you earlier about my favorable impressions regarding your Thinking in C++ (a
book that stands prominently on my shelf here at work). And today I’ve been able to delve
into Java with your e-book in my virtual hand, and I must say (in my best Chevy Chase
from “Modern Problems”) “I like it!” Very informative and explanatory, without reading like
a dry textbook. You cover the most important yet the least covered concepts of Java
development: the whys. Sean Brady

Your examples are clear and easy to understand. You took care of many important details of
Java that can’t be found easily in the weak Java documentation. And you don’t waste the
reader’s time with the basic facts a programmer already knows. Kai Engert, Innovative
Software, Germany

I’m a great fan of your Thinking in C++ and have recommended it to associates. As I go
through the electronic version of your Java book, I’m finding that you’ve retained the same
high level of writing. Thank you! Peter R. Neuwald

VERY well-written Java book ... I think you’ve done a GREAT job on it. As the leader of a
Chicago-area Java special interest group, I’ve favorably mentioned your book and website
several times at our recent meetings. I would like to use Thinking in Java as the basis for a
part of each monthly SIG meeting, in which we review and discuss each chapter in
succession. Mark Ertes

I really appreciate your work and your book is good. I recommend it here to our users and
Ph.D. students. Hugues Leroy // Irisa-Inria Rennes France, Head of Scientific
Computing and Industrial Tranfert

OK, I’ve only read about 40 pages of Thinking in Java, but I’ve already found it to be the
most clearly-written and presented programming book I’ve come across ... and I’m a writer,
myself, so I am probably a little critical. I have Thinking in C++ on order and can’t wait to
crack it – I’m fairly new to programming and am hitting learning curves head-on
everywhere. So this is just a quick note to say thanks for your excellent work. I had begun
to burn a little low on enthusiasm from slogging through the mucky, murky prose of most
computer books – even ones that came with glowing recommendations. I feel a whole lot
better now. Glenn Becker, Educational Theatre Association

Thank you for making your wonderful book available. I have found it immensely useful in
finally understanding what I experienced as confusing in Java and C++. Reading your book
has been very satisfying. Felix Bizaoui, Twin Oaks Industries, Louisa, Va.

I must congratulate you on an excellent book. I decided to have a look at Thinking in Java
based on my experience with Thinking in C++, and I was not disappointed. Jaco van der
Merwe, Software Specialist, DataFusion Systems Ltd, Stellenbosch, South Africa



This has to be one of the best Java books I’ve seen. E.F. Pritchard, Senior Software
Engineer, Cambridge Animation Systems Ltd., United Kingdom

Your book makes all the other Java books I’ve read or flipped through seem doubly useless
and insulting. Brett g Porter, Senior Programmer, Art & Logic

I have been reading your book for a week or two and compared to the books I have read
earlier on Java, your book seems to have given me a great start. I have recommended this
book to lot of my friends and they have rated it excellent. Please accept my congratulations
for coming out with an excellent book. Rama Krishna Bhupathi, Software Engineer, TCSI
Corporation, San Jose

Just wanted to say what a “brilliant” piece of work your book is. I’ve been using it as a
major reference for in-house Java work. I find that the table of contents is just right for
quickly locating the section that is required. It’s also nice to see a book that is not just a
rehash of the API nor treats the programmer like a dummy. Grant Sayer, Java
Components Group Leader, Ceedata Systems Pty Ltd, Australia

Wow! A readable, in-depth Java book. There are a lot of poor (and admittedly a couple of
good) Java books out there, but from what I’ve seen yours is definitely one of the best. John
Root, Web Developer, Department of Social Security, London

I’ve *just* started Thinking in Java. I expect it to be very good because I really liked Thinking
in C++ (which I read as an experienced C++ programmer, trying to stay ahead of the
curve). I’m somewhat less experienced in Java, but expect to be very satisfied. You are a
wonderful author. Kevin K. Lewis, Technologist, ObjectSpace, Inc.

I think it’s a great book. I learned all I know about Java from this book. Thank you for
making it available for free over the Internet. If you wouldn’t have I’d know nothing about
Java at all. But the best thing is that your book isn’t a commercial brochure for Java. It also
shows the bad sides of Java. YOU have done a great job here. Frederik Fix, Belgium

I have been hooked to your books all the time. A couple of years ago, when I wanted to start
with C++, it was C++ Inside & Out which took me around the fascinating world of C++. It
helped me in getting better opportunities in life. Now, in pursuit of more knowledge and
when I wanted to learn Java, I bumped into Thinking in Java – No doubts in my mind as to
whether I need some other book. Just fantastic. It is more like rediscovering myself as I get
along with the book. It is just a month since I started with Java, and heartfelt thanks to you,
I am understanding it better now. Anand Kumar S. - Software Engineer –
Computervision, India

Your book stands out as an excellent general introduction. Peter Robinson, University of
Cambridge Computer Laboratory

It’s by far the best material I have come across to help me learn Java and I just want you to
know how lucky I feel to have found it. THANKS! Chuck Peterson, Product Leader,
Internet Product Line, IVIS International

The book is great. It’s the third book on Java I’ve started and I’m about two-thirds of the
way through it now. I plan to finish this one. I found out about it because it is used in some
internal classes at Lucent Technologies and a friend told me the book was on the Net. Good
work. Jerry Nowlin, MTS, Lucent Technologies

Of the six or so Java books I’ve accumulated to date, your Thinking in Java is by far the best
and clearest. Michael Van Waas, Ph.D., President, TMR Associates



I just want to say thanks for Thinking in Java. What a wonderful book you’ve made here!
Not to mention downloadable for free! As a student I find your books invaluable (I have a
copy of C++ Inside Out, another great book about C++), because they not only teach me the
how-to, but also the whys, which are of course very important in building a strong
foundation in languages such as C++ or Java. I have quite a lot of friends here who love
programming just as I do, and I’ve told them about your books. They think it’s great!
Thanks again! By the way, I’m Indonesian and I live in Java. Ray Frederick Djajadinata,
Student at Trisakti University, Jakarta

The mere fact that you have made this work free over the Net puts me into shock. I thought
I’d let you know how much I appreciate and respect what you’re doing. Shane
LeBouthillier, Computer Engineering student, University of Alberta, Canada

I have to tell you how much I look forward to reading your monthly column. As a newbie
to the world of object oriented programming, I appreciate the time and thoughtfulness that
you give to even the most elementary topic. I have downloaded your book, but you can bet
that I will purchase the hard copy when it is published. Thanks for all of your help. Dan
Cashmer, B. C. Ziegler & Co.

Just want to congratulate you on a job well done. First I stumbled upon the PDF version of
Thinking in Java. Even before I finished reading it, I ran to the store and found Thinking in
C++. Now, I have been in the computer business for over eight years, as a consultant,
software engineer, teacher/trainer, and recently as self-employed, so I’d like to think that I
have seen enough (not “have seen it all,” mind you, but enough). However, these books
cause my girlfriend to call me a ”geek.” Not that I have anything against the concept - it is
just that I thought this phase was well beyond me. But I find myself truly enjoying both
books, like no other computer book I have touched or bought so far. Excellent writing style,
very nice introduction of every new topic, and lots of wisdom in the books. Well done.
Simon Goland, simonsez@smartt.com, Simon Says Consulting, Inc.

I must say that your Thinking in Java is great! That is exactly the kind of documentation I
was looking for. Especially the sections about good and poor software design using Java 1.1.
Dirk Duehr, Lexikon Verlag, Bertelsmann AG, Germany

Thank you for writing two great books (Thinking in C++, Thinking in Java). You have helped
me immensely in my progression to object oriented programming. Donald Lawson, DCL
Enterprises

Thank you for taking the time to write a really helpful book on Java. If teaching makes you
understand something, by now you must be pretty pleased with yourself. Dominic Turner,
GEAC Support

It’s the best Java book I have ever read - and I read some. Jean-Yves MENGANT, Chief
Software Architect NAT-SYSTEM, Paris, France

Thinking in Java gives the best coverage and explanation. Very easy to read, and I mean the
code fragments as well. Ron Chan, Ph.D., Expert Choice, Inc., Pittsburgh PA

Your book is great. I have read lots of programming books and your book still adds insights
to programming in my mind. Ningjian Wang, Information System Engineer, The
Vanguard Group

Thinking in Java is an excellent and readable book. I recommend it to all my students. Dr.
Paul Gorman, Department of Computer Science, University of Otago, Dunedin, New
Zealand



You make it possible for the proverbial free lunch to exist, not just a soup kitchen type of
lunch but a gourmet delight for those who appreciate good software and books about it.
Jose Suriol, Scylax Corporation

Thanks for the opportunity of watching this book grow into a masterpiece! IT IS THE BEST
book on the subject that I’ve read or browsed. Jeff Lapchinsky, Programmer, Net Results
Technologies

Your book is concise, accessible and a joy to read. Keith Ritchie, Java Research &
Development Team, KL Group Inc.

It truly is the best book I’ve read on Java! Daniel Eng

The best book I have seen on Java! Rich Hoffarth, Senior Architect, West Group

Thank you for a wonderful book. I’m having a lot of fun going through the chapters. Fred
Trimble, Actium Corporation

You have mastered the art of slowly and successfully making us grasp the details. You make
learning VERY easy and satisfying. Thank you for a truly wonderful tutorial. Rajesh Rau,
Software Consultant

Thinking in Java rocks the free world! Miko O’Sullivan, President, Idocs Inc.



About Thinking in C++:

Best Book! Winner of the
1995 Software Development Magazine Jolt Award!

“This book is a tremendous achievement. You owe it to yourself to have a copy
on your shelf. The chapter on iostreams is the most comprehensive and
understandable treatment of that subject I’ve seen to date.”

Al Stevens
Contributing Editor, Doctor Dobbs Journal

“Eckel’s book is the only one to so clearly explain how to rethink program
construction for object orientation. That the book is also an excellent tutorial on
the ins and outs of C++ is an added bonus.”

Andrew Binstock
Editor, Unix Review

“Bruce continues to amaze me with his insight into C++, and Thinking in C++
is his best collection of ideas yet. If you want clear answers to difficult questions
about C++, buy this outstanding book.”

Gary Entsminger
Author, The Tao of Objects

“Thinking in C++ patiently and methodically explores the issues of when and
how to use inlines, references, operator overloading, inheritance, and dynamic
objects, as well as advanced topics such as the proper use of templates,
exceptions and multiple inheritance. The entire effort is woven in a fabric that
includes Eckel’s own philosophy of object and program design. A must for every
C++ developer’s bookshelf, Thinking in C++ is the one C++ book you must
have if you’re doing serious development with C++.”

Richard Hale Shaw
Contributing Editor, PC Magazine



Thinking
in

Java
Bruce Eckel

President, MindView Inc.

Prentice Hall PTR
Upper Saddle River, New Jersey 07458
http://www.phptr.com



Library of Congress Cataloging-in-Publication Data

Eckel, Bruce.
  Thinking in Java / Bruce Eckel.
     p.   cm.
  Includes index.
  ISBN 0-13-659723-8
  1. Java (Computer program language) I. Title.
 QA76.73.J38E25 1998
 005.13'3--dc21                      97-52713
                                         CIP

Editorial/Production Supervision: Craig Little
Acquisitions Editor: Jeffrey Pepper
Manufacturing Manager: Alexis R. Heydt
Marketing Manager: Miles Williams
Cover Design Director: Jerry Votta
Cover Design: Daniel Will-Harris
Interior Design: Daniel Will-Harris, www.will-harris.com

© 1998 by Prentice Hall PTR
Prentice-Hall Inc.
A Simon & Schuster Company
Upper Saddle River, NJ 07458

The information in this book is distributed on an “as is” basis, without warranty. While every precaution has been taken in the preparation of
this book, neither the author nor the publisher shall have any liability to any person or entitle with respect to any liability, loss or damage
caused or alleged to be caused directly or indirectly by instructions contained in this book or by the computer software or hardware products
described herein.

All rights reserved. No part of this book may be
reproduced, in any form or by any means, without
permission in writing from the publisher.

Prentice Hall books are widely used by corporations and government agencies for training, marketing, and resale. The publisher offers discounts
on this book when ordered in bulk quantities. For more information, contact the Corporate Sales Department at 800-382-3419, fax: 201-236-
7141, email: corpsales@prenhall.com or write: Corporate Sales Department, Prentice Hall PTR, One Lake Street, Upper Saddle River, New Jersey
07458.

Java is a registered trademark of Sun Microsystems, Inc. Windows 95 and Windows NT are trademarks of Microsoft Corporation. All other
product names and company names mentioned herein are the property of their respective owners.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN 0-13-659723-8

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro



Check www.BruceEckel.com for
in-depth details and

the date and location of the next
Hands-On Java Seminar

� Based on this book
� Taught by Bruce Eckel
� Personal attention from Bruce Eckel

and his seminar assistants
� Includes in-class programming exercises
� Intermediate/Advanced seminars also offered
� Hundreds have already enjoyed this seminar –

see the Web site for their testimonials



Bruce Eckel’s Hands-On Java Seminar Multimedia CD
It’s like coming to the seminar!

Available at http://www.BruceEckel.com
� Overhead slides and synchronized audio for all the

lectures. Just play it to see and hear the lectures!
� Entire set of lectures are indexed so you can rapidly

locate the discussion of the subject you’re interested in.
� Special screen-formatted electronic version of Thinking

in Java with hyperlinked index and table of contents.



Dedication
To the person who, even now,

is creating the next great computer language



Overview
Foreword 23

Introduction 27

1: Introduction  to objects 41

2: Everything is an object 71

3: Controlling program flow 93

4: Initialization  and cleanup 133

5: Hiding the implementation 165

6: Reusing classes 185

7: Polymorphism 211

8: Holding your objects 267

9: Error handling  with exceptions 329

10: The Java  IO system 357

11: Run-time type identification 415

12: Passing and returning objects 435

13: Creating windows  and applets 471

14: Multiple threads 599

15: Network programming 655

16: Design patterns 717

17: Projects 755

A: Using non-Java code 787

B: Comparing C++ and Java 817

C: Java programming guidelines 825

D: Performance 829

E: A bit about garbage collection 837

F: Recommended reading 841



Index 843



@
What’s Inside
Foreword 23

Introduction 27
Prerequisites .......................27
Learning Java .....................28
Goals ..................................28
Online documentation ........29
Chapters .............................29
Exercises .............................34
Multimedia CD ROM...........34
Source code.........................34

Coding standards ..................... 36
Java versions ......................36
Seminars and mentoring.....37
Errors .................................37
Note on the cover design.....37
Acknowledgements .............38

1: Introduction
    to objects 41

The progress
of abstraction .....................42
An object has an interface ...43
The hidden
implementation ..................44
Reusing
the implementation.............45
Inheritance:
reusing the interface ...........46

Overriding base-class functionality47

Is-a vs. is-like-a relationships... 47
Interchangeable objects
with polymorphism ........... 48

Dynamic binding ..................... 49

Abstract base classes

and interfaces .......................... 50
Object landscapes
and lifetimes ...................... 50

Collections and iterators .......... 51

The singly-rooted hierarchy..... 52

Collection libraries and support for easy

collection use ........................... 53

The housekeeping dilemma:

who should clean up? .............. 54
Exception handling:
dealing with errors............. 55
Multithreading................... 56
Persistence.......................... 57
Java and the Internet ......... 57

What is the Web?..................... 57

Client-side programming ......... 59

Server-side programming ........ 63

A separate arena: applications.. 64
Analysis and Design ........... 64

Staying on course .................... 64

Phase 0: Let’s make a plan ....... 65

Phase 1:

What are we making?.............. 65

Phase 2:

How will we build it?............... 66

Phase 3: Let’s build it! .............. 67



Phase 4: Iteration..................... 67

Plans pay off............................ 68
Java vs. C++? ....................69

2: Everything is
    an object 71

You manipulate objects
with handles .......................72
You must create
all the objects......................72

Where storage lives.................. 73

Special case: primitive types..... 73

Arrays in Java ......................... 75
You never need to
destroy an object.................75

Scoping.................................... 75

Scope of objects........................ 76
Creating new
data types: class..................77

Fields and methods .................. 77
Methods, arguments
and return values ...............78

The argument list .................... 79
Building a Java program.....80

Name visibility......................... 80

Using other components .......... 81

The static keyword.................. 81
Your first Java program......83
Comments and embedded
documentation....................85

Comment documentation ........ 86

Syntax ..................................... 86

Embedded HTML...................... 87

@see: referring

to other classes ........................ 87

Class documentation tags ........ 88

Variable documentation tags ... 88

Method documentation tags .... 88

Documentation example .......... 89
Coding style........................90
Summary ...........................90
Exercises .............................90

3: Controlling
    program flow 93

Using Java operators ..........93
Precedence................................ 94

Assignment.............................. 94

Mathematical operators ........... 96

Auto increment

and decrement ......................... 98

Relational operators ................. 99

Logical operators ................... 100

Bitwise operators ................... 103

Shift operators ....................... 103

Ternary if-else operator ......... 106

The comma operator.............. 107

String operator +.................. 107

Common pitfalls when

using operators...................... 108

Casting operators................... 108

Java has no “sizeof”............... 111

Precedence revisited................ 111

A compendium of operators... 111
Execution control ............. 120

true and false......................... 120

if-else..................................... 120

Iteration................................. 121

do-while ................................ 122

for ......................................... 122

break and continue ................ 123

switch.................................... 129
Summary......................... 132
Exercises........................... 132

4: Initialization
    and cleanup 133

Guaranteed initialization
with the constructor ........ 133
Method overloading ......... 135

Distinguishing

overloaded methods ............... 137

Overloading with primitives .. 138

Overloading on

return values ......................... 141

Default constructors .............. 141

The this keyword .................. 142
Cleanup: finalization
and garbage collection...... 145

What is finalize( ) for? .......... 146

You must perform cleanup .... 146
Member initialization ....... 149

Specifying initialization ......... 151

Constructor initialization....... 152
Array initialization........... 157

Multidimensional arrays........ 161
Summary......................... 164
Exercises........................... 164

5: Hiding the
    implementation 165

package:
the library unit ................ 166

Creating unique

package names....................... 168

A custom tool library............. 170



Using imports to

change behavior..................... 172

Package caveat....................... 174
Java access specifiers.........174

“Friendly” .............................. 175

public: interface access .......... 175

private: you can’t

touch that!............................. 177

protected:

“sort of friendly”.................... 178
Interface and
implementation ................179
Class access.......................180
Summary .........................182
Exercises ...........................183

6: Reusing classes 185
Composition syntax..........185
Inheritance syntax ............188

Initializing the base class........ 190
Combining composition
and inheritance .................192

Guaranteeing

proper cleanup....................... 193

Name hiding .......................... 196
Choosing composition
vs. inheritance ..................197
protected .........................198
Incremental
development .....................199
Upcasting .........................199

Why “upcasting”?.................. 200
The final keyword ............201

Final data............................... 201

Final methods ........................ 204

Final classes ........................... 205

Final caution.......................... 206
Initialization and
class loading .....................206

Initialization

with inheritance..................... 207
Summary .........................208
Exercises ...........................209

7: Polymorphism 211
Upcasting .........................211

Why upcast?.......................... 212
The twist ..........................214

Method call binding ............... 214

Producing the

right behavior........................ 215

Extensibility........................... 217
Overriding vs.
overloading.......................220

Abstract classes
and methods .................... 221
Interfaces ......................... 224

“Multiple inheritance”

in Java................................... 227

Extending an interface

with inheritance..................... 229

Grouping constants ............... 230

Initializing fields

in interfaces ........................... 231
Inner classes ..................... 232

Inner classes and upcasting.... 234

Inner classes in

methods and scopes ............... 235

The link to the outer class...... 240

static inner classes................. 242

Referring to the

outer class object ................... 243

Inheriting from

inner classes........................... 244

Can inner classes

be overridden?........................ 245

Inner class identifiers ............. 247

Why inner classes:

control frameworks ............... 247
Constructors and polymorphism
........................................ 253

Order of constructor calls ...... 253

Inheritance and finalize( ) ..... 255

Behavior of polymorphic

methods inside constructors... 258
Designing with
inheritance ....................... 260

Pure inheritance

vs. extension .......................... 261

Downcasting and run-time

type identification.................. 263
Summary......................... 265
Exercises........................... 265

8: Holding
    your objects 267

Arrays.............................. 267
Arrays are first-class objects .. 268

Returning an array ................ 271
Collections........................ 273

Disadvantage:

unknown type ....................... 273
Enumerators (iterators) .... 277
Types of collections........... 280

Vector ................................... 280

BitSet .................................... 281

Stack ..................................... 283



Hashtable ............................. 284

Enumerators revisited ............ 290
Sorting..............................291
The generic
collection library...............295
The new collections...........295

Using Collections .................. 299

Using Lists............................. 302

Using Sets ............................. 305

Using Maps ........................... 308

Choosing an

implementation ..................... 310

Unsupported operations ........ 317

Sorting and searching ............ 319

Utilities .................................. 323
Summary .........................326
Exercises ...........................327

9: Error handling
    with exceptions 329

Basic exceptions ................330
Exception arguments ............. 331

Catching an exception .......331
The try block ......................... 332

Exception handlers................. 332

The exception specification..... 333

Catching any exception.......... 334

Rethrowing an exception ....... 335
Standard Java
exceptions .........................338

The special case of RuntimeException
.............................................. 338

Creating your
own exceptions .................340
Exception restrictions........343
Performing cleanup
with finally.......................345

What’s finally for? ................ 347

Pitfall: the lost exception........ 349
Constructors.....................350
Exception matching ..........353

Exception guidelines............... 354
Summary .........................354
Exercises ...........................355

10: The Java
      IO system 357

Input and output ..............358
Types of InputStream........... 358

Types of OutputStream ........ 359
Adding attributes
and useful interfaces.........360

Reading from an InputStream with

FilterInputStream ................ 361

Writing to an OutputStream with

FilterOutputStream ............. 362
Off by itself: RandomAccessFile363
The File class.................... 364

A directory lister .................... 364

Checking for and

creating directories................. 368
Typical uses
of IO streams ................... 370

Input streams ........................ 373

Output streams...................... 374

Shorthand for

file manipulation ................... 375

Reading from

standard input ....................... 377

Piped streams......................... 378
StreamTokenizer............. 378

StringTokenizer ................... 381
Java 1.1 IO streams.......... 383

Sources and sinks of data....... 383

Modifying stream behavior.... 384

Unchanged Classes................. 385

An example............................ 385

Redirecting standard IO.......... 389
Compression .................... 390

Simple compression

with GZIP .............................. 390

Multi-file storage with Zip..... 391

The Java archive (jar) utility .. 393
Object serialization........... 395

Finding the class .................... 398

Controlling serialization......... 399

Using persistence ................... 407
Summary......................... 413
Exercises........................... 414

11: Run-time type
      identification 415

The need for RTTI ............. 415
The Class object ..................... 418

Checking before a cast............ 420
RTTI syntax...................... 425
Reflection: run-time
class information ............. 427

A class method extractor........ 428
Summary......................... 432
Exercises........................... 433

12: Passing and
      returning objects 435

Passing handles around .... 436



Aliasing.................................. 436
Making local copies...........438

Pass by value ......................... 438

Cloning objects....................... 439

Adding cloneability

to a class................................ 440

Successful cloning.................. 442

The effect of Object.clone( ) .. 443

Cloning a composed object ..... 445

A deep copy with Vector ....... 447

Deep copy via serialization..... 448

Adding cloneability

further down a hierarchy ...... 450

Why this strange design?....... 451
Controlling cloneability ....452

The copy-constructor............. 456
Read-only classes ..............459

Creating read-only classes...... 460

The drawback

to immutability ..................... 461

Immutable Strings ................ 463

The String and

StringBuffer classes .............. 465

Strings are special ................. 468
Summary .........................468
Exercises ...........................469

13: Creating windows
      and applets 471

Why use the AWT? ...........472
The basic applet ................473

Testing applets....................... 475

A more graphical example ..... 476

Demonstrating

the framework methods......... 476
Making a button...............477
Capturing an event ...........478
Text fields..........................480
Text areas..........................481
Labels ...............................482
Check boxes ......................484
Radio buttons ...................485
Drop-down lists................486
List boxes ..........................487

handleEvent( )...................... 488
Controlling layout ............490

FlowLayout .......................... 491

BorderLayout ....................... 491

GridLayout ........................... 492

CardLayout .......................... 492

GridBagLayout..................... 494
Alternatives to action .......495
Applet restrictions.............499

Applet advantages.................. 500
Windowed applications .... 501

Menus.................................... 501

Dialog boxes .......................... 504
The new AWT .................. 509

The new event model ............. 510

Event and listener types ......... 512

Making windows and applets with the Java

1.1 AWT ................................ 516

Revisiting the

earlier examples ..................... 519

Binding events dynamically ... 535

Separating business logic

from UI logic ......................... 536

Recommended

coding approaches ................. 538
Java 1.1 UI APIs............... 552

Desktop colors ....................... 553

Printing ................................. 553

The clipboard ......................... 559
Visual programming
and Beans......................... 561

What is a Bean? ..................... 562

Extracting BeanInfo with

the Introspector.................... 564

A more sophisticated Bean ..... 569

Packaging a Bean ................... 572

More complex Bean support .. 573

More to Beans........................ 574
Introduction to Swing ...... 574

Benefits of Swing ................... 575

Easy conversion ..................... 575

A display framework ............. 576

Tool tips ................................ 577

Borders .................................. 577

Buttons.................................. 578

Button groups ....................... 580

Icons ...................................... 581

Menus.................................... 583

Popup menus......................... 587

List boxes and combo boxes ... 588

Sliders and progress bars........ 588

Trees...................................... 589

Tables .................................... 591

Tabbed Panes ......................... 593

The Swing message box ......... 595

More to Swing ....................... 595
Summary......................... 596
Exercises........................... 596

14: Multiple threads 599
Responsive
user interfaces.................. 600

Inheriting from Thread ......... 602



Threading for a

responsive interface ............... 603

Combining the thread

with the main class................ 607

Making many threads............ 609

Daemon threads..................... 612
Sharing
limited resources...............613

Improperly accessing

resources................................ 613

How Java shares resources .... 617

Java Beans revisited ............... 621
Blocking............................625

Becoming blocked .................. 626

Deadlock................................ 634
Priorities ...........................638

Thread groups ....................... 642
Runnable revisited ...........648

Too many threads.................. 650
Summary .........................653
Exercises ...........................654

15: Network
      programming 655

Identifying a machine .......656
Servers and clients ................. 657

Port: a unique place

within the machine................ 658
Sockets..............................658

A simple server and client ...... 659
Serving multiple clients.....664
Datagrams........................668
A Web application .............673

The server application............ 674

The NameSender applet........ 679

Problems with

this approach......................... 683
Connecting Java to CGI.....684

Encoding data for CGI............ 684

The applet.............................. 686

The CGI program in C++ ...... 690

What about POST?................. 698
Connecting to
databases with JDBC ........701

Getting the example to work.. 704

A GUI version of

the lookup program............... 706

Why the JDBC API

seems so complex................... 709
Remote methods ...............709

Remote interfaces................... 709

Implementing the

remote interface..................... 710

Creating stubs and skeletons.. 713

Using the remote object ......... 713

Alternatives to RMI................ 714
Summary......................... 714
Exercises........................... 715

16: Design patterns 717
The pattern concept.......... 717

The singleton ......................... 718

Classifying patterns ............... 719
The observer pattern ........ 720
Simulating the
trash recycler ................... 723
Improving the design ....... 726

“Make more objects” .............. 726

A pattern for

prototyping creation.............. 728
Abstracting usage............. 736
Multiple dispatching......... 739

Implementing the

double dispatch...................... 739
The “visitor” pattern ........ 745
RTTI considered
harmful? .......................... 751
Summary......................... 753
Exercises........................... 754

17: Projects 755
Text processing ................. 755

Extracting code listings .......... 755

Checking

capitalization style................. 768
A method lookup tool ...... 775
Complexity theory ........... 779
Summary......................... 785
Exercises........................... 785

A: Using
     non-Java code 787

The Java
Native Interface................ 788

Calling a native method ......... 788

Accessing JNI functions:

The JNIEnv argument ........... 791

Passing and using

Java objects ........................... 792

JNI and Java exceptions......... 793

JNI and threading .................. 794

Using a pre-existing

code base................................ 794
The Microsoft way ........... 794
J/Direct............................ 795

The @dll.import directive ..... 796



The com.ms.win32

package.................................. 797

Marshaling ............................ 798

Writing callback functions..... 799

Other J/Direct features .......... 800
Raw Native
Interface (RNI) ..................800

RNI Summary........................ 802
Java/COM integration ......802

COM Fundamentals ............... 803

MS Java/COM Integration ..... 805

Developing COM

servers in Java ....................... 806

Developing COM

clients in Java ........................ 807

ActiveX/Beans integration ..... 808

A note about native

methods and applets .............. 809
CORBA..............................809

CORBA Fundamentals ............ 809

An example............................ 811

Java Applets and CORBA........ 815

CORBA vs. RMI ...................... 815
Summary .........................815

B: Comparing C++
    and Java 817

C: Java programming
    guidelines 825

D: Performance 829
Basic approach..................829

Locating the bottleneck .... 830
1. Install your own instrumentation

.............................................. 830

2. JDK profiling [2] ................ 830

3. Special tools ....................... 830

Tips for measuring

performance .......................... 831
Speedup techniques .......... 831

Generic approaches ................ 831

Language dependent

approaches............................. 831

Specific situations .................. 832
References ........................ 834

Performance tools .................. 834

Web sites ............................... 834

Articles .................................. 834

Java specific books................. 835

General books ........................ 835

E: A bit about
    garbage collection 837

F: Recommended
    reading 841

Index 843



23

d

Foreword
I suggested to my brother Todd, who is making the leap from hardware
into programming, that the next big revolution will be in genetic
engineering.
We’ll have microbes designed to make food, fuel and plastic; they’ll clean up pollution and in
general allow us to master the manipulation of the physical world for a fraction of what it
costs now. I claimed that it would make the computer revolution look small in comparison.

Then I realized I was making a mistake common to science fiction writers: getting lost in the
technology (which is of course easy to do in science fiction). An experienced writer knows
that the story is never about the things; it’s about the people. Genetics will have a very large
impact on our lives, but I’m not so sure it will dwarf the computer revolution – or at least
the information revolution. Information is about talking to each other: yes, cars and shoes
and especially genetic cures are important, but in the end those are just trappings. What
truly matters is how we relate to the world. And so much of that is about communication.

This book is a case in point. A majority of folks thought I was very bold or a little crazy to
put the entire thing up on the Web. “Why would anyone buy it?” they asked. If I had been of
a more conservative nature I wouldn’t have done it, but I really didn’t want to write another
computer book in the same old way. I didn’t know what would happen but it turned out to
be the smartest thing I’ve ever done with a book.

For one thing, people started sending in corrections. This has been an amazing process,
because folks have looked into every nook and cranny and caught both technical and
grammatical errors, and I’ve been able to eliminate bugs of all sorts that I know would have
otherwise slipped through. People have been simply terrific about this, very often saying
“Now, I don’t mean this in a critical way” and then giving me a collection of errors I’m sure I
never would have found. I feel like this has been a kind of group process and it has really
made the book into something special.



24 Thinking in Java www.BruceEckel.com

But then I started hearing “OK, fine, it’s nice you’ve put up an electronic version, but I want
a printed and bound copy from a real publisher.” I tried very hard to make it easy for
everyone to print it out in a nice looking format but it didn’t stem the demand for the
published book. Most people don’t want to read the entire book on screen, and hauling
around a sheaf of papers, no matter how nicely printed, didn’t appeal to them either (plus I
think it’s not so cheap in terms of laser printer toner). It seems that the computer revolution
won’t put publishers out of business, after all. However, one student suggested this may
become a model for future publishing: books will be published on the Web first, and only if
sufficient interest warrants it will the book be put on paper. Currently, the great majority of
books of all kinds are financial failures, and perhaps this new approach could make the
publishing industry more profitable.

This book became an enlightening experience for me in another way. I originally approached
Java as “just another programming language,” which in many senses it is. But as time
passed and I studied it more deeply, I began to see that the fundamental intention of the
language is different than in all the other languages I have seen.

Programming is about managing complexity: the complexity of the problem you want to
solve laid upon the complexity of the machine in which it is solved. Because of this
complexity, most of our programming projects fail. And yet of all the programming
languages that I am aware, none of them have gone all out and decided that their main
design goal would be to conquer the complexity of developing and maintaining programs. Of
course, many language design decisions were made with complexity in mind, but at some
point there were always some other issues that were considered essential to be added into the
mix. Inevitably, those other issues are what causes programmers to eventually “hit the wall”
with that language. For example, C++ had to be backwards-compatible with C (to allow
easy migration for C programmers), as well as efficient. Those are both very useful goals
and account for much of the success of C++, but they also expose extra complexity that
prevents some projects from being finished (certainly, you can blame programmers and
management, but if a language can help by catching your mistakes, why shouldn’t it?). As
another example, Visual Basic (VB) was tied to BASIC, which wasn’t really designed to be an
extensible language, so all the extensions piled upon VB have produced some truly horrible
and un-maintainable syntax. On the other hand, C++, VB and other languages like
Smalltalk had some of their design efforts focused on the issue of complexity and as a result
are remarkably successful in solving certain types of problems.

What has impressed me most as I have come to understand Java is what seems like an
unflinching goal of reducing complexity for the programmer. As if to say “we don’t care
about anything except reducing the time and difficulty of producing robust code.” In the
early days, this goal has resulted in code that doesn’t run very fast (although there have
been many promises made about how quickly Java will someday run) but it has indeed
produced amazing reductions in development time; half or less of the time that it takes to
create an equivalent C++ program. This result alone can save incredible amounts of time
and money, but Java doesn’t stop there. It goes on to wrap all the complex tasks that have
become important, such as multithreading and network programming, in language features
or libraries that can at times make those tasks trivial. And finally, it tackles some really big
complexity problems: cross-platform programs, dynamic code changes, and even security,
each of which can fit on your complexity spectrum anywhere from “impediment” to “show-
stopper.” So despite the performance problems we’ve seen, the promise of Java is
tremendous: it can make us significantly more productive programmers.

One of the places I see the greatest impact for this is on the Web. Network programming has
always been hard, and Java makes it easy (and they’re working on making it easier all the
time). Network programming is how we talk to each other more effectively and cheaply



Foreword 25

than we ever have with telephones (email alone has revolutionized many businesses). As we
talk to each other more, amazing things begin to happen, possibly more amazing even than
the promise of genetic engineering.

In all ways: creating the programs, working in teams to create the programs, building user
interfaces so the programs can communicate with the user, running the programs on
different types of machines, and easily writing programs that communicate across the
Internet – Java increases the communication bandwidth between people. And I think that
perhaps the results of the communication revolution will not be seen from the effects of
moving large quantities of bits around. We shall see the true revolution because we will all
be able to talk to each other more easily – one-on-one, but also in groups and as a planet.
I've heard it suggested that the next revolution is the formation of a kind of global mind
which results from enough people and enough interconnectedness. Java may or may not be
the tool that foments that revolution, but at least the possibility has made me feel like I'm
doing something meaningful here by attempting to teach the language.



27

(

Introduction
Like any human language, Java provides a way to express concepts. If
successful, this medium of expression will be significantly easier and more
flexible than the alternatives as problems grow larger and more complex.
You can’t look at Java as just a collection of features; some of the features make no sense in
isolation. You can use the sum of the parts only if you are thinking about design, not simply
coding. And to understand Java in this way, you must understand the problems with it and
with programming in general. This book discusses programming problems, why they are
problems, and the approach Java has taken to solve them. Thus, the set of features I explain
in each chapter are based on the way I see a particular type of problem being solved with the
language. In this way I hope to move you, a little at a time, to the point where the Java
mindset becomes your native tongue.

Throughout, I’ll be taking the attitude that you want to build a model in your head that
allows you to develop a deep understanding of the language; if you encounter a puzzle
you’ll be able to feed it to your model and deduce the answer.

Prerequisites
This book assumes that you have some programming familiarity; you understand that a
program is a collection of statements, the idea of a subroutine/function/macro, control
statements such as “if” and looping constructs such as “while,” etc. However, you might
have learned this in many places, such as programming with a macro language or working
with a tool like Perl. As long as you’ve programmed to the point where you feel comfortable
with the basic ideas of programming, you’ll be able to work through this book. Of course,
the book will be easier for the C programmers and more so for the C++ programmers, but



28 Thinking in Java www.BruceEckel.com

don’t count yourself out if you’re not experienced with those languages (but come willing to
work hard). I’ll be introducing the concepts of object-oriented programming and Java’s basic
control mechanisms, so you’ll be exposed to those, and the first exercises will involve the
basic control-flow statements.

Although references will often be made to C and C++ language features, these are not
intended to be insider comments, but instead to help all programmers put Java in perspective
with those languages, from which, after all, Java is descended. I will attempt to make these
references simple and to explain anything that I think a non- C/C++ programmer would
not be familiar with.

Learning Java
At about the same time that my first book Using C++ (Osborne/McGraw-Hill 1989) came
out, I began teaching that language. Teaching programming languages has become my
profession; I’ve seen nodding heads, blank faces, and puzzled expressions in audiences all
over the world since 1989. As I began giving in-house training with smaller groups of
people, I discovered something during the exercises. Even those people who were smiling and
nodding were confused about many issues. I found out, by chairing the C++ track at the
Software Development Conference for the past few years (and now also the Java track), that
I and other speakers tended to give the typical audience too many topics too fast. So
eventually, through both variety in the audience level and the way that I presented the
material, I would end up losing some portion of the audience. Maybe it’s asking too much,
but because I am one of those people resistant to traditional lecturing (and for most people, I
believe, such resistance results from boredom), I wanted to try to keep everyone up to speed.

For a time, I was creating a number of different presentations in fairly short order. Thus, I
ended up learning by experiment and iteration (a technique that also works well in Java
program design). Eventually I developed a course using everything I had learned from my
teaching experience – one that I would be happy giving for a long time. It tackles the
learning problem in discrete, easy-to-digest steps and in a hands-on seminar (the ideal
learning situation), there are exercises following each of the short lessons. I now give this
course in public Java seminars, which you can find out about at http://www.BruceEckel.com.
(The introductory seminar is also available as a CD ROM. Information is available at the
same Web site.)

The feedback that I get from each seminar helps me change and refocus the material until I
think it works well as a teaching medium. But this book isn’t just a seminar handout – I
tried to pack as much information as I could within these pages and structured it to draw
you through onto the next subject. More than anything, the book is designed to serve the
solitary reader who is struggling with a new programming language.

Goals
Like my previous book Thinking in C++, this book has come to be structured around the
process of teaching the language. In particular, my motivation is to create something that
provides me with a way to teach the language in my own seminars. When I think of a
chapter in the book, I think in terms of what makes a good lesson during a seminar. My goal
is to get bite-sized pieces that can be taught in a reasonable amount of time, followed by
exercises that are feasible to accomplish in a classroom situation.

My goals in this book are to:



Introduction 29

 1.  Present the material one simple step at a time so that you can easily digest each
concept before moving on.

 2.  Use examples that are as simple and short as possible. This sometimes prevents me
from tackling “real world” problems, but I’ve found that beginners are usually
happier when they can understand every detail of an example rather than being
impressed by the scope of the problem it solves. Also, there’s a severe limit to the
amount of code that can be absorbed in a classroom situation. For this I will no doubt
receive criticism for using “toy examples,” but I’m willing to accept that in favor of
producing something pedagogically useful.

 3.  Carefully sequence the presentation of features so that you aren’t seeing something
that you haven’t been exposed to. Of course, this isn’t always possible; in those
situations, a brief introductory description is given.

 4.  Give you what I think is important for you to understand about the language, rather
than everything I know. I believe there is an information importance hierarchy, and
that there are some facts that 95 percent of programmers will never need to know
and just confuses people and adds to their perception of the complexity of the
language. To take an example from C, if you memorize the operator precedence table
(I never did), you can write clever code. But if you need to think about it, it will also
confuse the reader/maintainer of that code. So forget about precedence, and use
parentheses when things aren’t clear.

 5.  Keep each section focused enough so that the lecture time – and the time between
exercise periods – is small. Not only does this keep the audience’s minds more active
and involved during a hands-on seminar, but it gives the reader a greater sense of
accomplishment.

 6.  Provide you with a solid foundation so that you can understand the issues well
enough to move on to more difficult coursework and books.

Online documentation
The Java language and libraries from Sun Microsystems (a free download) come with
documentation in electronic form, readable using a Web browser, and virtually every third
party implementation of Java has this or an equivalent documentation system. Almost all
the books published on Java have duplicated this documentation. So you either already have
it or you can download it, and unless necessary, this book will not repeat that
documentation because it’s usually much faster if you find the class descriptions with your
Web browser than if you look them up in a book. (Plus it will be up-to-date.) This book will
provide extra descriptions of the classes only when it’s necessary to supplement the
documentation so you can understand a particular example.

Chapters
This book was designed with one thing in mind: the way people learn the Java language.
Seminar audience feedback helped me understand which parts were difficult and needed



30 Thinking in Java www.BruceEckel.com

illumination. In the areas where I got ambitious and included too many features all at once,
I came to know – through the process of presenting the material – that if you include a lot of
new features, you need to explain them all, and this easily compounds the student’s
confusion. As a result, I’ve taken a great deal of trouble to introduce the features as few at a
time as possible.

The goal, then, is for each chapter to teach a single feature, or a small group of associated
features, in such a way that no additional features are relied upon. That way you can digest
each piece in the context of your current knowledge before moving on.

Here is a brief description of the chapters contained in the book, which correspond to
lectures and exercise periods in my hands-on seminars.

Chapter 1: Introduction to objects
This chapter is an overview of what object-oriented programming is all about,
including the answer to the basic question “What’s an object?”, interface vs.
implementation, abstraction and encapsulation, messages and functions, inheritance
and composition, and the all-important polymorphism. You’ll also be introduced to
issues of object creation such as constructors, where the objects live, where to put
them once they’re created, and the magical garbage collector that cleans up the
objects that are no longer needed. Other issues will be introduced, including error
handling with exceptions, multithreading for responsive user interfaces, and
networking and the Internet. You’ll also learn about what makes Java special, why
it’s been so successful, and about object-oriented analysis and design.

Chapter 2: Everything is an object
This chapter moves you to the point where you can write your first Java program,
so it must give an overview of the essentials, including the concept of a “handle” to
an object; how to create an object; an introduction to primitive types and arrays;
scoping and the way objects are destroyed by the garbage collector; how everything
in Java is a new data type (class) and how to create your own classes; functions,
arguments, and return values; name visibility and using components from other
libraries; the static keyword; comments and embedded documentation.

Chapter 3: Controlling program flow
This chapter begins with all of the operators that come to Java from C and C++. In
addition, you’ll discover common operator pitfalls, casting, promotion, and
precedence. This is followed by the basic control-flow and selection operations that
you get with virtually any programming language: choice with if-else; looping with
for and while; quitting a loop with break and continue as well as Java’s labeled
break and labeled continue (which account for the “missing goto” in Java); and
selection using switch. Although much of this material has common threads with C
and C++ code, there are some differences. In addition, all the examples will be full
Java examples so you’ll get more comfortable with what Java looks like.

Chapter 4: Initialization and cleanup
This chapter begins by introducing the constructor, which guarantees proper
initialization. The definition of the constructor leads into the concept of function
overloading (since you might want several constructors). This is followed by a
discussion of the process of cleanup, which is not always as simple as it seems.
Normally, you just drop an object when you’re done with it and the garbage
collector eventually comes along and releases the memory. This portion explores the
garbage collector and some of its idiosyncrasies. The chapter concludes with a closer
look at how things are initialized: automatic member initialization, specifying



Introduction 31

member initialization, the order of initialization, static initialization and array
initialization.

Chapter 5: Hiding the implementation
This chapter covers the way that code is packaged together, and why some parts of
a library are exposed while other parts are hidden. It begins by looking at the
package and import keywords, which perform file-level packaging and allow you
to build libraries of classes. The subject of directory paths and file names is also
examined. The remainder of the chapter looks at the public, private, and protected
keywords, the concept of “friendly” access, and what the different levels of access
control mean when used in various contexts.

Chapter 6: Reusing classes
The concept of inheritance is standard in virtually all OOP languages. It’s a way to
take an existing class and add to its functionality (as well as change it, the subject of
Chapter 7). Inheritance is often a way to reuse code by leaving the “base class” the
same, and just patching things here and there to produce what you want. However,
inheritance isn’t the only way to make new classes from existing ones. You can also
embed an object inside your new class with composition. In this chapter you’ll learn
about these two ways to reuse code in Java, and how to apply them.

Chapter 7: Polymorphism
On your own, you might take nine months to discover and understand
polymorphism, a cornerstone of OOP. Through small, simple examples you’ll see
how to create a family of types with inheritance and manipulate objects in that
family through their common base class. Java’s polymorphism allows you to treat
all objects in this family generically, which means the bulk of your code doesn’t rely
on specific type information. This makes your programs extensible, so building
programs and code maintenance is easier and cheaper. In addition, Java provides a
third way to set up a reuse relationship through the interface, which is a pure
abstraction of the interface of an object. Once you’ve seen polymorphism, the
interface can be clearly understood. This chapter also introduces Java 1.1 inner
classes.

Chapter 8: Holding your objects
It’s a fairly simple program that has only a fixed quantity of objects with known
lifetimes. In general, your programs will always be creating new objects at a variety
of times that will be known only while the program is running. In addition, you
won’t know until run-time the quantity or even the exact type of the objects you
need. To solve the general programming problem, you need to create any number of
objects, anytime, anywhere. This chapter explores in depth the tools that Java
supplies to hold objects while you’re working with them: the simple arrays and
more sophisticated collections (data structures) such as Vector and Hashtable.
Finally, the new and improved Java 1.2 collections library is explored in depth.

Chapter 9: Error handling with exceptions
The basic philosophy of Java is that badly-formed code will not be run. As much as
possible, the compiler catches problems, but sometimes the problems – either
programmer error or a natural error condition that occurs as part of the normal
execution of the program – can be detected and dealt with only at run-time. Java
has exception handling to deal with any problems that arise while the program is
running. This chapter examines how the keywords try, catch, throw, throws, and
finally work in Java; when you should throw exceptions and what to do when you
catch them. In addition, you’ll see Java’s standard exceptions, how to create your



32 Thinking in Java www.BruceEckel.com

own, what happens with exceptions in constructors, and how exception handlers
are located.

Chapter 10: The Java IO system
Theoretically, you can divide any program into three parts: input, process, and
output. This implies that IO (input/output) is a pretty important part of the
equation. In this chapter you’ll learn about the different classes that Java provides
for reading and writing files, blocks of memory, and the console. The distinction
between “old” IO and “new” Java 1.1 IO will be shown. In addition, this section
examines the process of taking an object, “streaming” it (so that it can be placed on
disk or sent across a network) and reconstructing it, which is handled for you in
Java version 1.1. Also, Java 1.1’s compression libraries, which are used in the Java
ARchive file format (JAR), are examined.

Chapter 11: Run-time type identification
Java run-time type identification (RTTI) lets you find the exact type of an object
when you have a handle to only the base type. Normally, you’ll want to
intentionally ignore the exact type of an object and let Java’s dynamic binding
mechanism (polymorphism) implement the correct behavior for that type. But
occasionally it is very helpful to know the exact type of an object for which you
have only a base handle. Often this information allows you to perform a special-
case operation more efficiently. This chapter explains what RTTI is for, how to use it
and how to get rid of it when it doesn’t belong there. In addition, the Java 1.1
reflection feature is introduced.

Chapter 12: Passing and returning objects
Since the only way you talk to objects in Java is through “handles,” the concepts of
passing an object into a function and returning an object from a function have
some interesting consequences. This chapter explains what you need to know to
manage objects when you’re moving in and out of functions, and also shows the
String class, which uses a different approach to the problem.

Chapter 13: Creating windows and applets
Java comes with the Abstract Window Toolkit (AWT), which is a set of classes that
handle windowing in a portable fashion; these windowing programs can either be
applets or stand-alone applications. This chapter is an introduction to the AWT and
the creation of World Wide Web applets. We’ll also look at pros and cons of the AWT
and the GUI improvements introduced in Java 1.1. The important “Java Beans”
technology is introduced. This is fundamental for the creation of Rapid-Application
Development (RAD) program-building tools. Finally, the new Java 1.2 “Swing”
library is introduced – this provides a dramatic improvement in UI components for
Java.

Chapter 14: Multiple threads
Java provides a built-in facility to support multiple concurrent subtasks, called
threads, running within a single program. (Unless you have multiple processors on
your machine, this is only the appearance of multiple subtasks.) Although these can
be used anywhere, threads are most powerful when trying to create a responsive
user interface so, for example, a user isn’t prevented from pressing a button or
entering data while some processing is going on. This chapter looks at the syntax
and semantics of multithreading in Java.

Chapter 15: Network programming



Introduction 33

All the Java features and libraries seem to really come together when you start
writing programs to work across networks. This chapter explores communication
across the Internet, and the classes that Java provides to make this easier. It also
shows you how to create a Java applet that talks to a common gateway interface
(CGI) program, shows you how to write CGI programs in C++ and covers Java
1.1’s Java DataBase Connectivity (JDBC) and Remote Method Invocation (RMI).

Chapter 16: Design patterns
This chapter introduces the very important and yet non-traditional “patterns”
approach to program design. An example of the design evolution process is studied,
starting with an initial solution and moving through the logic and process of
evolving the solution to more appropriate designs. You’ll see one way that a design
can materialize over time.

Chapter 17: Projects
This chapter includes a set of projects that build on the material presented in this
book, or otherwise didn’t fit in earlier chapters. These projects are significantly
more complex than the examples in the rest of the book, and they often
demonstrate new techniques and uses of class libraries.

There are subjects that didn’t seem to fit within the core of the book, and yet I find
that I discuss them during seminars. These are placed in the appendices.

Appendix A: Using non-Java code
A totally portable Java program has serious drawbacks: speed and the inability to
access platform-specific services. When you know the platform that you’re running
on, it’s possible to dramatically speed up certain operations by making them native
methods, which are functions that are written in another programming language
(currently, only C/C++ is supported). There are other ways that Java supports
non-Java code, including CORBA. This appendix gives you enough of an
introduction to these features that you should be able to create simple examples
that interface with non-Java code.

Appendix B: Comparing C++ and Java
If you’re a C++ programmer, you already have the basic idea of object-oriented
programming, and the syntax of Java no doubt looks very familiar to you. This
makes sense because Java was derived from C++. However, there are a surprising
number of differences between C++ and Java. These differences are intended to be
significant improvements, and if you understand the differences you’ll see why Java
is such a beneficial programming language. This appendix takes you through the
important features that make Java distinct from C++.

Appendix C: Java programming guidelines
This appendix contains suggestions to help guide you while performing low-level
program design and writing code.

Appendix D: Performance
This will allow you to find bottlenecks and improve speed in your Java program.

Appendix E: A bit about garbage collection
This appendix describes the operation and approaches that are used to implement
garbage collection.

Appendix F: Recommended reading



34 Thinking in Java www.BruceEckel.com

A list of some of the Java books I’ve found particularly useful.

Exercises
I’ve discovered that simple exercises are exceptionally useful during a seminar to complete a
student’s understanding, so you’ll find a set at the end of each chapter.

Most exercises are designed to be easy enough that they can be finished in a reasonable
amount of time in a classroom situation while the instructor observes, making sure that all
the students are absorbing the material. Some exercises are more advanced to prevent
boredom for experienced students. The majority are designed to be solved in a short time and
test and polish your knowledge. Some are more challenging, but none present major
challenges. (Presumably, you’ll find those on your own – or more likely they’ll find you).

Multimedia CD ROM
To accompany this book a Multimedia CD ROM is available separately, but this is not like the
CDs that you’ll usually find packaged with books. Those often only contain the source code
for the book. (The code for this book is freely downloadable from the Web site
www.BruceEckel.com.) This CD ROM is a separate product and contains the entire contents
of the week-long “Hands-On Java” training seminar. This is more than 15 hours of lectures
given by Bruce Eckel, synchronized with 500 slides of information. The seminar is based on
this book so it is an ideal accompaniment.

The CD ROM contains two versions of this book:

1. A printable version identical to the one available for download.

2. For easy on-screen viewing and reference, a screen-formatted and hyperlinked version
which is available exclusively on the CD-ROM. These hyperlinks include:

� 230 chapter, section, and sub-heading links

� 3600 index links

The CD ROM contains over 600MB of content. We believe that it sets a new standard for
value.

The CD ROM contains everything in the printable version of the book and everything (with
the important exception of personalized attention!) from the five-day full-immersion
training seminars. We believe that it sets a new standard for quality.

The CD ROM is available only by ordering directly from the Web site www.BruceEckel.com.

Source code
All the source code for this book is available as copyrighted freeware, distributed as a single
package, by visiting the Web site http://www.BruceEckel.com. To make sure that you get the
most current version, this is the official site for distribution of the code and the electronic
version of the book. You can find mirrored versions of the electronic book and the code on
other sites (some of these sites are found at http://www.BruceEckel.com), but you should



Introduction 35

check the official site to ensure that the mirrored version is actually the most recent edition.
You may distribute the code in classroom and other educational situations.

The primary goal of the copyright is to ensure that the source of the code is properly cited,
and to prevent you from republishing the code in print media without permission. (As long
as the source is cited, using examples from the book in most media is generally not a
problem.)

In each source code file you will find the following copyright notice:

//////////////////////////////////////////////////

// Copyright (c) Bruce Eckel, 1998

// Source code file from the book "Thinking in Java"

// All rights reserved EXCEPT as allowed by the

// following statements: You can freely use this file

// for your own work (personal or commercial),

// including modifications and distribution in

// executable form only. Permission is granted to use

// this file in classroom situations, including its

// use in presentation materials, as long as the book

// "Thinking in Java" is cited as the source.

// Except in classroom situations, you cannot copy

// and distribute this code; instead, the sole

// distribution point is http://www.BruceEckel.com

// (and official mirror sites) where it is

// freely available. You cannot remove this

// copyright and notice. You cannot distribute

// modified versions of the source code in this

// package. You cannot use this file in printed

// media without the express permission of the

// author. Bruce Eckel makes no representation about

// the suitability of this software for any purpose.

// It is provided "as is" without express or implied

// warranty of any kind, including any implied

// warranty of merchantability, fitness for a

// particular purpose or non-infringement. The entire

// risk as to the quality and performance of the

// software is with you. Bruce Eckel and the

// publisher shall not be liable for any damages

// suffered by you or any third party as a result of

// using or distributing software. In no event will

// Bruce Eckel or the publisher be liable for any

// lost revenue, profit, or data, or for direct,

// indirect, special, consequential, incidental, or

// punitive damages, however caused and regardless of

// the theory of liability, arising out of the use of

// or inability to use software, even if Bruce Eckel

// and the publisher have been advised of the

// possibility of such damages. Should the software

// prove defective, you assume the cost of all

// necessary servicing, repair, or correction. If you

// think you've found an error, please email all

// modified files with clearly commented changes to:

// Bruce@EckelObjects.com. (Please use the same



36 Thinking in Java www.BruceEckel.com

// address for non-code errors found in the book.)
/////////////////////////////////////////////////

You may use the code in your projects and in the classroom (including your presentation
materials) as long as the copyright notice that appears in each source file is retained.

Coding standards
In the text of this book, identifiers (function, variable and class names) will be set in bold.
Most keywords will also be set in bold, except for those keywords that are used so much that
the bolding can become tedious, such as “class.”

I use a particular coding style for the examples in this book. This style seems to be supported
by most Java development environments. It was developed over a number of years, and was
inspired by Bjarne Stroustrup’s style in his original The C++ Programming Language
(Addison-Wesley, 1991; 2nd ed.). The subject of formatting style is good for hours of hot
debate, so I’ll just say I’m not trying to dictate correct style via my examples; I have my
own motivation for using the style that I do. Because Java is a free-form programming
language, you can continue to use whatever style you’re comfortable with.

The programs in this book are files that are included by the word processor in the text,
directly from compiled files. Thus, the code files printed in the book should all work without
compiler errors. The errors that should cause compile-time error messages are commented
out with the comment //! so they can be easily discovered and tested using automatic
means. Errors discovered and reported to the author will appear first in the distributed
source code and later in updates of the book (which will also appear on the Web site
http://www.BruceEckel.com).

Java versions
Although I test the code in this book with several different vendor implementations of Java, I
generally rely on the Sun implementation as a reference when determining whether behavior
is correct.

By the time you read this, Sun will have released three major versions of Java: 1.0, 1.1 and
1.2 (Sun says it will make a major release about every nine months!). Version 1.1 represents
a significant change to the language and should probably have been labeled 2.0. (And if 1.1
is such a big change from 1.0, I shudder to think what will justify the number 2.0.)
However, it’s version 1.2 that seems to finally bring Java into the prime time, in particular
where user interface tools are concerned.

This book covers versions 1.0, 1.1 and selected parts of 1.2, although in situations where a
new approach is clearly superior to the old, I definitely favor the new approach, often
choosing to teach the better approach and completely ignore the old approach. However,
there are some cases where it’s unavoidable to teach the old approach before the new, in
particular with the AWT, since not only is there a lot of old Java 1.0 code out there, but
some platforms still support only Java 1.0. I will try to be scrupulous about pointing out
which features belong to which version.

One thing you’ll notice is that I don’t use the sub-revision numbers. At this writing, the
released version of 1.0 from Sun was 1.02 and the released version of 1.1 was 1.1.5 (Java
1.2 was in beta). In this book I will refer to Java 1.0, Java 1.1 and Java 1.2 only, to guard
against typographical errors produced by further sub-revisioning of these products.



Introduction 37

Seminars and mentoring
My company provides five-day, hands-on, public and in-house training seminars based on
the material in this book. Selected material from each chapter represents a lesson, which is
followed by a monitored exercise period so each student receives personal attention. The
lectures and slides for the introductory seminar are also captured on CD-ROM to provide at
least some of the experience of the seminar without the travel and expense. For more
information, go to:

http://www.BruceEckel.com
or email:
Bruce@EckelObjects.com

My company also provides consulting services to help guide your project through its
development cycle – especially your company’s first Java project.

Errors
No matter how many tricks a writer uses to detect errors, some always creep in and these
often leap off the page for a fresh reader. If you discover anything you believe to be an error,
please send the original source file (which you can find at http://www.BruceEckel.com)
with a clearly commented error (following the form shown on the Web page) and suggested
correction via electronic mail to Bruce@EckelObjects.com so that it might be fixed in the
electronic version on the Web site and in the next printing of the book. When you submit a
correction, please use the following format:

1. Put “TIJ Correction” (and nothing else) as the subject line – this way my email program
can route it to the right directory.

2. In the body of your email, please use the form:

find: one-line string to search for
comment:
multi-line comment, best starting with "here's how I think it
should read"
###

 

Where the ‘###’ is to indicate the end of comment. This way, my correction tools can do a
“find” using the original text, and your suggested correction will pop up in a window next
to it.

Suggestions for additional exercises or requests to cover specific topics in the next edition are
welcome. Your help is appreciated.

Note on the cover design
The cover of Thinking in Java is inspired by the American Arts & Crafts Movement, which
began near the turn of the century and reached its zenith between 1900 and 1920. It began
in England as a reaction to both the machine production of the Industrial Revolution and the
highly ornamental style of the Victorian era. Arts & Crafts emphasized spare design, the
forms of nature as seen in the art nouveau movement, hand-crafting, and the importance of



38 Thinking in Java www.BruceEckel.com

the individual craftsperson, and yet it did not eschew the use of modern tools. There are
many echoes with the situation we have today: the impending turn of the century, the
evolution from the raw beginnings of the computer revolution to something more refined
and meaningful to individual persons, and the emphasis on software craftsmanship rather
than just manufacturing code.

I see Java in this same way: as an attempt to elevate the programmer away from an
operating-system mechanic and towards being a “software craftsman.”

Both the author and the book/cover designer (who have been friends since childhood) find
inspiration in this movement, and both own furniture, lamps and other pieces that are either
original or inspired by this period.

The other theme in this cover suggests a collection box that a naturalist might use to display
the insect specimens that he or she has preserved. These insects are objects, placed within the
box objects which are themselves placed within the “cover object,” which illustrates the
fundamental concept of aggregation in object-oriented programming. Of course, a
programmer cannot help but make the association with “bugs,” and here the bugs have been
captured and presumably killed in a specimen jar, and finally confined within a small display
box, as if to imply Java’s ability to find, display and subdue bugs (which is truly one of its
most powerful attributes).

Acknowledgements
First of all, thanks to the Doyle Street Cohousing Community for putting up with me for the
two years that it took me to write this book (and for putting up with me at all). Thanks
very much to Kevin and Sonda Donovan for subletting their great place in gorgeous Crested
Butte, Colorado for the summer while I worked on the book. Also thanks to the friendly
residents of Crested Butte and the Rocky Mountain Biological Laboratory who made me feel
so welcome. The World Gym in Emeryville and its enthusiastic staff helped keep me sane
during the final months of the book.

This is my first experience using an agent, and I’m not looking back. Thanks to Claudette
Moore at Moore Literary Agency for her tremendous patience and perseverance in getting me
exactly what I wanted.

My first two books were published with Jeff Pepper as editor at Osborne/McGraw-Hill. Jeff
appeared at the right place and the right time at Prentice-Hall and has cleared the path and
made all the right things happen to make this the most pleasant publishing experience I’ve
ever had. Thanks, Jeff – it means a lot to me.

I’m especially indebted to Gen Kiyooka and his company Digigami, who have graciously
provided my Web server, and to Scott Callaway who has maintained it. This has been an
invaluable aid while I was learning about the Web.

Thanks to Cay Horstmann (co-author of Core Java, Prentice Hall 1997), D’Arcy Smith
(Symantec), and Paul Tyma (co-author of Java Primer Plus, The Waite Group 1996), for
helping me clarify concepts in the language.

Thanks to people who have spoken in my Java track at the Software Development
Conference, and students in my seminars, who ask the questions I need to hear in order to
make the material more clear.



Introduction 39

Special thanks to Larry and Tina O’Brien, who turned this book and my seminar into a
teaching CD ROM. (You can find out more at http://www.BruceEckel.com.)

Lots of people sent in corrections and I am indebted to them all, but particular thanks go to:
Kevin Raulerson (found tons of great bugs), Bob Resendes (simply incredible), John Pinto, Joe
Dante, Joe Sharp (all three were fabulous), David Combs (many grammar and clarification
corrections), Dr. Robert Stephenson, Franklin Chen, Zev Griner, David Karr, Leander A.
Stroschein, Steve Clark, Charles A. Lee, Austin Maher, Dennis P. Roth, Roque Oliveira,
Douglas Dunn, Dejan Ristic, Neil Galarneau, David B. Malkovsky, Steve Wilkinson, and a
host of others.

Prof. Ir. Marc Meurrens put in a great deal of effort to publicize and make the book available
in Europe.

There have been a spate of smart technical people in my life who have become friends and
have also been both influential and unusual in that they’re vegetarians, do yoga and practice
other forms of spiritual enhancement, which I find quite inspirational and instructional.
They are Kraig Brockschmidt, Gen Kiyooka and Andrea Provaglio, who helps in the
understanding of Java and programming in general in Italy.

It’s not that much of a surprise to me that understanding Delphi helped me understand
Java, since there are many concepts and language design decisions in common. My Delphi
friends provided assistance by helping me gain insight into that marvelous programming
environment. They are Marco Cantu (another Italian – perhaps being steeped in Latin gives
one aptitude for programming languages?), Neil Rubenking (who used to do the
yoga/vegetarian/Zen thing but discovered computers) and of course Zack Urlocker, a long-
time pal whom I’ve traveled the world with.

My friend Richard Hale Shaw’s insights and support have been very helpful (and Kim’s, too).
Richard and I spent many months giving seminars together and trying to work out the
perfect learning experience for the attendees. Thanks also to KoAnn Vikoren, Eric Faurot,
Deborah Sommers, Julie Shaw, Nicole Freeman, Cindy Blair, Barbara Hanscome, Regina
Ridley, Alex Dunne, and the rest of the cast and crew at MFI.

The book design, cover design, and cover photo were created by my friend Daniel Will-
Harris, noted author and designer (http://www.Will-Harris.com), who used to play with rub-
on letters in junior high school while he awaited the invention of computers and desktop
publishing, and complained of me mumbling over my algebra problems. However, I
produced the camera-ready pages myself, so the typesetting errors are mine. Microsoft®

Word 97 for Windows was used to write the book and to create camera-ready pages. The
body typeface is Bitstream Carmina and the headlines are in Bitstream Calligraph 421
(www.bitstream.com). The symbols at the start of each chapter are Leonardo Extras from P22
(http://www.p22.com). The cover typeface is ITC Rennie Mackintosh.

Thanks to the vendors who supplied me with compilers: Borland, Microsoft, Symantec,
Sybase/Powersoft/Watcom, and of course, Sun.

A special thanks to all my teachers and all my students (who are my teachers as well). The
most fun writing teacher was Gabrielle Rico (author of Writing the Natural Way, Putnam
1983). I’ll always treasure the terrific week at Esalen.

The supporting cast of friends includes, but is not limited to: Andrew Binstock, Steve
Sinofsky, JD Hildebrandt, Tom Keffer, Brian McElhinney, Brinkley Barr, Bill Gates at Midnight
Engineering Magazine, Larry Constantine and Lucy Lockwood, Greg Perry, Dan Putterman,
Christi Westphal, Gene Wang, Dave Mayer, David Intersimone, Andrea Rosenfield, Claire
Sawyers, more Italians (Laura Fallai, Corrado, Ilsa, and Cristina Giustozzi), Chris and Laura



40 Thinking in Java www.BruceEckel.com

Strand, the Almquists, Brad Jerbic, Marilyn Cvitanic, the Mabrys, the Haflingers, the
Pollocks, Peter Vinci, the Robbins Families, the Moelter Families (and the McMillans), Michael
Wilk, Dave Stoner, Laurie Adams, the Cranstons, Larry Fogg, Mike and Karen Sequeira, Gary
Entsminger and Allison Brody, Kevin Donovan and Sonda Eastlack, Chester and Shannon
Andersen, Joe Lordi, Dave and Brenda Bartlett, David Lee, the Rentschlers, the Sudeks, Dick,
Patty, and Lee Eckel, Lynn and Todd, and their families. And of course, Mom and Dad.



41

ABC

1: Introduction
to objects

Why has object-oriented programming had such a sweeping impact on the
software development community?
Object-oriented programming appeals at multiple levels. For managers, it promises faster
and cheaper development and maintenance. For analysts and designers, the modeling process
becomes simpler and produces a clear, manageable design. For programmers, the elegance
and clarity of the object model and the power of object-oriented tools and libraries makes
programming a much more pleasant task, and programmers experience an increase in
productivity. Everybody wins, it would seem.

If there’s a downside, it is the expense of the learning curve. Thinking in objects is a dramatic
departure from thinking procedurally, and the process of designing objects is much more
challenging than procedural design, especially if you’re trying to create reusable objects. In
the past, a novice practitioner of object-oriented programming was faced with a choice
between two daunting tasks:

1. Choose a language such as Smalltalk in which you had to learn a large library before
becoming productive.

2. Choose C++ with virtually no libraries at all,1 and struggle through the depths of the
language in order to write your own libraries of objects.

                                                

1 Fortunately, this has change significantly with the advent of third-party libraries and the Standard
C++ library.



42 Thinking in Java  www.BruceEckel.com

It is, in fact, difficult to design objects well – for that matter, it’s hard to design anything
well. But the intent is that a relatively few experts design the best objects for others to
consume. Successful OOP languages incorporate not just language syntax and a compiler,
but an entire development environment including a significant library of well-designed, easy
to use objects. Thus, the primary job of most programmers is to use existing objects to solve
their application problems. The goal of this chapter is to show you what object-oriented
programming is and how simple it can be.

This chapter will introduce many of the ideas of Java and object-oriented programming on a
conceptual level, but keep in mind that you’re not expected to be able to write full-fledged
Java programs after reading this chapter. All the detailed descriptions and examples will
follow throughout the course of this book.

The progress of abstraction
All programming languages provide abstractions. It can be argued that the complexity of the
problems you can solve is directly related to the kind and quality of abstraction. By “kind” I
mean: what is it that you are abstracting? Assembly language is a small abstraction of the
underlying machine. Many so-called “imperative” languages that followed (such as
FORTRAN, BASIC, and C) were abstractions of assembly language. These languages are big
improvements over assembly language, but their primary abstraction still requires you to
think in terms of the structure of the computer rather than the structure of the problem you
are trying to solve. The programmer must establish the association between the machine
model (in the “solution space”) and the model of the problem that is actually being solved (in
the “problem space”). The effort required to perform this mapping, and the fact that it is
extrinsic to the programming language, produces programs that are difficult to write and
expensive to maintain, and as a side effect created the entire “programming methods”
industry.

The alternative to modeling the machine is to model the problem you’re trying to solve.
Early languages such as LISP and APL chose particular views of the world (“all problems are
ultimately lists” or “all problems are algorithmic”). PROLOG casts all problems into chains of
decisions. Languages have been created for constraint-based programming and for
programming exclusively by manipulating graphical symbols. (The latter proved to be too
restrictive.) Each of these approaches is a good solution to the particular class of problem
they’re designed to solve, but when you step outside of that domain they become awkward.

The object-oriented approach takes a step farther by providing tools for the programmer to
represent elements in the problem space. This representation is general enough that the
programmer is not constrained to any particular type of problem. We refer to the elements
in the problem space and their representations in the solution space as “objects.” (Of course,
you will also need other objects that don’t have problem-space analogs.) The idea is that the
program is allowed to adapt itself to the lingo of the problem by adding new types of
objects, so when you read the code describing the solution, you’re reading words that also
express the problem. This is a more flexible and powerful language abstraction than what
we’ve had before. Thus OOP allows you to describe the problem in terms of the problem,
rather than in the terms of the solution. There’s still a connection back to the computer,
though. Each object looks quite a bit like a little computer; it has a state, and it has
operations you can ask it to perform. However, this doesn’t seem like such a bad analogy to
objects in the real world; they all have characteristics and behaviors.



Chapter 1: Introduction to Objects 43

Alan Kay summarized five basic characteristics of Smalltalk, the first successful object-
oriented language and one of the languages upon which Java is based. These characteristics
represent a pure approach to object-oriented programming:

1. Everything is an object. Think of an object as a fancy variable; it stores data, but you can
also ask it to perform operations on itself by making requests. In theory, you can take any
conceptual component in the problem you’re trying to solve (dogs, buildings, services, etc.)
and represent it as an object in your program.

2. A program is a bunch of objects telling each other what to do by sending messages. To
make a request of an object, you “send a message” to that object. More concretely, you can
think of a message as a request to call a function that belongs to a particular object.

3. Each object has its own memory made up of other objects. Or, you make a new kind of
object by making a package containing existing objects. Thus, you can build up complexity in
a program while hiding it behind the simplicity of objects.

4. Every object has a type. Using the parlance, each object is an instance of a class, where
“class” is synonymous with “type.” The most important distinguishing characteristic of a
class is “what messages can you send to it?”

5. All objects of a particular type can receive the same messages. This is actually a very
loaded statement, as you will see later. Because an object of type circle is also an object of
type shape, a circle is guaranteed to receive shape messages. This means you can write code
that talks to shapes and automatically handle anything that fits the description of a shape.
This substitutability is one of the most powerful concepts in OOP.

Some language designers have decided that object-oriented programming itself is not
adequate to easily solve all programming problems, and advocate the combination of various
approaches into multiparadigm programming languages.2

An object has an interface
Aristotle was probably the first to begin a careful study of the concept of type. He was
known to speak of “the class of fishes and the class of birds.” The concept that all objects,
while being unique, are also part of a set of objects that have characteristics and behaviors in
common was directly used in the first object-oriented language, Simula-67, with its
fundamental keyword class that introduces a new type into a program (thus class and type
are often used synonymously3).

Simula, as its name implies, was created for developing simulations such as the classic “bank
teller problem.” In this, you have a bunch of tellers, customers, accounts, transactions, etc.
The members (elements) of each class share some commonality: every account has a balance,
every teller can accept a deposit, etc. At the same time, each member has its own state; each
account has a different balance, each teller has a name. Thus the tellers, customers,
accounts, transactions, etc. can each be represented with a unique entity in the computer
program. This entity is the object, and each object belongs to a particular class that defines
its characteristics and behaviors.

So, although what we really do in object-oriented programming is create new data types,
virtually all object-oriented programming languages use the “class” keyword. When you see
the word “type” think “class” and vice versa.

                                                

2 See Multiparadigm Programming in Leda by Timothy Budd (Addison-Wesley 1995).

3 Some people make a distinction, stating that type determines the interface while class is a particular
implementation of that interface.



44 Thinking in Java  www.BruceEckel.com

Once a type is established, you can make as many objects of that type as you like, and then
manipulate those objects as the elements that exist in the problem you are trying to solve.
Indeed, one of the challenges of object-oriented programming is to create a one-to-one
mapping between the elements in the problem space (the place where the problem actually
exists) and the solution space (the place where you’re modeling that problem, such as a
computer).

But how do you get an object to do useful work for you? There must be a way to make a
request of that object so it will do something, such as complete a transaction, draw
something on the screen or turn on a switch. And each object can satisfy only certain
requests. The requests you can make of an object are defined by its interface, and the type is
what determines the interface. The idea of type being equivalent to interface is fundamental
in object-oriented programming.

A simple example might be a representation of a light bulb:

Light lt = new Light();
lt.on();

The name of the type/class is Light, and the requests that you can make of a Light object
are to turn it on, turn it off, make it brighter or make it dimmer. You create a “handle” for a
Light simply by declaring a name (lt) for that identifier, and you make an object of type
Light with the new keyword, assigning it to the handle with the = sign. To send a message
to the object, you state the handle name and connect it to the message name with a period
(dot). From the standpoint of the user of a pre-defined class, that’s pretty much all there is to
programming with objects.

The hidden implementation
It is helpful to break up the playing field into class creators (those who create new data
types) and client programmers4 (the class consumers who use the data types in their
applications). The goal of the client programmer is to collect a toolbox full of classes to use
for rapid application development. The goal of the class creator is to build a class that
exposes only what’s necessary to the client programmer and keeps everything else hidden.
Why? If it’s hidden, the client programmer can’t use it, which means that the class creator
can change the hidden portion at will without worrying about the impact to anyone else.

                                                

4 I’m indebted to my friend Scott Meyers for this term.

Light
on( )
off( )
brighten( )
dim( )

Type Name

Interface



Chapter 1: Introduction to Objects 45

The interface establishes what requests you can make for a particular object. However, there
must be code somewhere to satisfy that request. This, along with the hidden data, comprises
the implementation. From a procedural programming standpoint, it’s not that complicated. A
type has a function associated with each possible request, and when you make a particular
request to an object, that function is called. This process is often summarized by saying that
you “send a message” (make a request) to an object, and the object figures out what to do
with that message (it executes code).

In any relationship it’s important to have boundaries that are respected by all parties
involved. When you create a library, you establish a relationship with the client
programmer, who is another programmer, but one who is putting together an application or
using your library to build a bigger library.

If all the members of a class are available to everyone, then the client programmer can do
anything with that class and there’s no way to force any particular behaviors. Even though
you might really prefer that the client programmer not directly manipulate some of the
members of your class, without access control there’s no way to prevent it. Everything’s
naked to the world.

There are two reasons for controlling access to members. The first is to keep client
programmers’ hands off portions they shouldn’t touch – parts that are necessary for the
internal machinations of the data type but not part of the interface that users need to solve
their particular problems. This is actually a service to users because they can easily see
what’s important to them and what they can ignore.

The second reason for access control is to allow the library designer to change the internal
workings of the structure without worrying about how it will affect the client programmer.
For example, you might implement a particular class in a simple fashion to ease
development, and then later decide you need to rewrite it to make it run faster. If the
interface and implementation are clearly separated and protected, you can accomplish this
and require only a relink by the user.

Java uses three explicit keywords and one implied keyword to set the boundaries in a class:
public, private, protected and the implied “friendly,” which is what you get if you don’t
specify one of the other keywords. Their use and meaning are remarkably straightforward.
These access specifiers determine who can use the definition that follows. public means the
following definition is available to everyone. The private keyword, on the other hand,
means that no one can access that definition except you, the creator of the type, inside
function members of that type. private is a brick wall between you and the client
programmer. If someone tries to access a private member, they’ll get a compile-time error.
“Friendly” has to do with something called a “package,” which is Java’s way of making
libraries. If something is “friendly” it’s available only within the package. (Thus this access
level is sometimes referred to as “package access.”) protected acts just like private, with the
exception that an inheriting class has access to protected members, but not private
members. Inheritance will be covered shortly.

Reusing
the implementation
Once a class has been created and tested, it should (ideally) represent a useful unit of code. It
turns out that this reusability is not nearly so easy to achieve as many would hope; it takes
experience and insight to achieve a good design. But once you have such a design, it begs to



46 Thinking in Java  www.BruceEckel.com

be reused. Code reuse is arguably the greatest leverage that object-oriented programming
languages provide.

The simplest way to reuse a class is to just use an object of that class directly, but you can
also place an object of that class inside a new class. We call this “creating a member object.”
Your new class can be made up of any number and type of other objects, whatever is
necessary to achieve the functionality desired in your new class. This concept is called
composition, since you are composing a new class from existing classes. Sometimes
composition is referred to as a “has-a” relationship, as in “a car has a trunk.”

Composition comes with a great deal of flexibility. The member objects of your new class are
usually private, making them inaccessible to client programmers using the class. This allows
you to change those members without disturbing existing client code. You can also change
the member objects at run time, which provides great flexibility. Inheritance, which is
described next, does not have this flexibility since the compiler must place restrictions on
classes created with inheritance.

Because inheritance is so important in object-oriented programming it is often highly
emphasized, and the new programmer can get the idea that inheritance should be used
everywhere. This can result in awkward and overcomplicated designs. Instead, you should
first look to composition when creating new classes, since it is simpler and more flexible. If
you take this approach, your designs will stay cleaner. It will be reasonably obvious when
you need inheritance.

Inheritance:
reusing the interface
By itself, the concept of an object is a convenient tool. It allows you to package data and
functionality together by concept, so you can represent an appropriate problem-space idea
rather than being forced to use the idioms of the underlying machine. These concepts are
expressed in the primary idea of the programming language as a data type (using the class
keyword).

It seems a pity, however, to go to all the trouble to create a data type and then be forced to
create a brand new one that might have similar functionality. It’s nicer if we can take the
existing data type, clone it and make additions and modifications to the clone. This is
effectively what you get with inheritance, with the exception that if the original class (called
the base or super or parent class) is changed, the modified “clone” (called the derived or
inherited or sub or child class) also reflects the appropriate changes. Inheritance is
implemented in Java with the extends keyword. You make a new class and you say that it
extends an existing class.

When you inherit you create a new type, and the new type contains not only all the
members of the existing type (although the private ones are hidden away and inaccessible),
but more importantly it duplicates the interface of the base class. That is, all the messages
you can send to objects of the base class you can also send to objects of the derived class.
Since we know the type of a class by the messages we can send to it, this means that the
derived class is the same type as the base class. This type equivalence via inheritance is one of
the fundamental gateways in understanding the meaning of object-oriented programming.

Since both the base class and derived class have the same interface, there must be some
implementation to go along with that interface. That is, there must be a method to execute



Chapter 1: Introduction to Objects 47

when an object receives a particular message. If you simply inherit a class and don’t do
anything else, the methods from the base-class interface come right along into the derived
class. That means objects of the derived class have not only the same type, they also have the
same behavior, which doesn’t seem particularly interesting.

You have two ways to differentiate your new derived class from the original base class it
inherits from. The first is quite straightforward: you simply add brand new functions to the
derived class. These new functions are not part of the base class interface. This means that
the base class simply didn’t do as much as you wanted it to, so you add more functions. This
simple and primitive use for inheritance is, at times, the perfect solution to your problem.
However, you should look closely for the possibility that your base class might need these
additional functions.

Overriding base-class functionality
Although the extends keyword implies that you are going to add new functions to the
interface, that’s not necessarily true. The second way to differentiate your new class is to
change the behavior of an existing base-class function. This is referred to as overriding that
function.

To override a function, you simply create a new definition for the function in the derived
class. You’re saying “I’m using the same interface function here, but I want it to do
something different for my new type.”

Is-a vs. is-like-a relationships
There’s a certain debate that can occur about inheritance: Should inheritance override only
base-class functions? This means that the derived type is exactly the same type as the base
class since it has exactly the same interface. As a result, you can exactly substitute an object
of the derived class for an object of the base class. This can be thought of as pure substitution.
In a sense, this is the ideal way to treat inheritance. We often refer to the relationship
between the base class and derived classes in this case as an is-a relationship, because you
can say “a circle is a shape.” A test for inheritance is whether you can state the is-a
relationship about the classes and have it make sense.

There are times when you must add new interface elements to a derived type, thus extending
the interface and creating a new type. The new type can still be substituted for the base type,
but the substitution isn’t perfect in a sense because your new functions are not accessible
from the base type. This can be described as an is-like-a relationship; the new type has the
interface of the old type but it also contains other functions, so you can’t really say it’s
exactly the same. For example, consider an air conditioner. Suppose your house is wired with
all the controls for cooling; that is, it has an interface that allows you to control cooling.
Imagine that the air conditioner breaks down and you replace it with a heat pump, which
can both heat and cool. The heat pump is-like-an air conditioner, but it can do more. Because
your house is wired only to control cooling, it is restricted to communication with the
cooling part of the new object. The interface of the new object has been extended, and the
existing system doesn’t know about anything except the original interface.

When you see the substitution principle it’s easy to feel like that’s the only way to do things,
and in fact it is nice if your design works out that way. But you’ll find that there are times
when it’s equally clear that you must add new functions to the interface of a derived class.
With inspection both cases should be reasonably obvious.



48 Thinking in Java  www.BruceEckel.com

Interchangeable objects
with polymorphism
Inheritance usually ends up creating a family of classes, all based on the same uniform
interface. We express this with an inverted tree diagram:5

One of the most important things you do with such a family of classes is to treat an object
of a derived class as an object of the base class. This is important because it means you can
write a single piece of code that ignores the specific details of type and talks just to the base
class. That code is then decoupled from type-specific information, and thus is simpler to
write and easier to understand. And, if a new type – a Triangle, for example – is added
through inheritance, the code you write will work just as well for the new type of Shape as
it did on the existing types. Thus the program is extensible.

Consider the above example. If you write a function in Java:

void doStuff(Shape s) {
  s.erase();
  // ...
  s.draw();
}

This function speaks to any Shape, so it is independent of the specific type of object it’s
drawing and erasing. If in some other program we use the doStuff( ) function:

Circle c = new Circle();
Triangle t = new Triangle();
Line l = new Line();
doStuff(c);
doStuff(t);
doStuff(l);

                                                

5 This uses the Unified Notation, which will primarily be used in this book.

Shape

draw()
erase()

Circle

draw()
erase(

Square

draw()
erase()

Line

draw()
erase()



Chapter 1: Introduction to Objects 49

The calls to doStuff( ) automatically work right, regardless of the exact type of the object.

This is actually a pretty amazing trick. Consider the line:

doStuff(c);

What’s happening here is that a Circle handle is being passed into a function that’s
expecting a Shape handle. Since a Circle is a Shape it can be treated as one by doStuff( ).
That is, any message that doStuff( ) can send to a Shape, a Circle can accept. So it is a
completely safe and logical thing to do.

We call this process of treating a derived type as though it were its base type upcasting. The
name cast is used in the sense of casting into a mold and the up comes from the way the
inheritance diagram is typically arranged, with the base type at the top and the derived
classes fanning out downward. Thus, casting to a base type is moving up the inheritance
diagram: upcasting.

An object-oriented program contains some upcasting somewhere, because that’s how you
decouple yourself from knowing about the exact type you’re working with. Look at the code
in doStuff( ):

  s.erase();
  // ...
  s.draw();

Notice that it doesn’t say “If you’re a Circle, do this, if you’re a Square, do that, etc.” If you
write that kind of code, which checks for all the possible types a Shape can actually be, it’s
messy and you need to change it every time you add a new kind of Shape. Here, you just
say “You’re a shape, I know you can erase( ) yourself, do it and take care of the details
correctly.”

Dynamic binding
What’s amazing about the code in doStuff( ) is that somehow the right thing happens.
Calling draw( ) for Circle causes different code to be executed than when calling draw( ) for
a Square or a Line, but when the draw( ) message is sent to an anonymous Shape, the
correct behavior occurs based on the actual type that the Shape handle happens to be
connected to. This is amazing because when the Java compiler is compiling the code for
doStuff( ), it cannot know exactly what types it is dealing with. So ordinarily, you’d expect
it to end up calling the version of erase( ) for Shape, and draw( ) for Shape and not for the
specific Circle, Square, or Line. And yet the right thing happens. Here’s how it works.

When you send a message to an object even though you don’t know what specific type it is,
and the right thing happens, that’s called polymorphism. The process used by object-oriented
programming languages to implement polymorphism is called dynamic binding. The
compiler and run-time system handle the details; all you need to know is that it happens
and more importantly how to design with it.

Some languages require you to use a special keyword to enable dynamic binding. In C++
this keyword is virtual. In Java, you never need to remember to add a keyword because
functions are automatically dynamically bound. So you can always expect that when you
send a message to an object, the object will do the right thing, even when upcasting is
involved.



50 Thinking in Java  www.BruceEckel.com

Abstract base classes and interfaces
Often in a design, you want the base class to present only an interface for its derived classes.
That is, you don’t want anyone to actually create an object of the base class, only to upcast
to it so that its interface can be used. This is accomplished by making that class abstract
using the abstract keyword. If anyone tries to make an object of an abstract class, the
compiler prevents them. This is a tool to enforce a particular design.

You can also use the abstract keyword to describe a method that hasn’t been implemented
yet – as a stub indicating “here is an interface function for all types inherited from this class,
but at this point I don’t have any implementation for it.” An abstract method may be
created only inside an abstract class. When the class is inherited, that method must be
implemented, or the inherited class becomes abstract as well. Creating an abstract method
allows you to put a method in an interface without being forced to provide a possibly
meaningless body of code for that method.

The interface keyword takes the concept of an abstract class one step further by preventing
any function definitions at all. The interface is a very useful and commonly-used tool, as it
provides the perfect separation of interface and implementation. In addition, you can
combine many interfaces together, if you wish. (You cannot inherit from more than one
regular class or abstract class.)

Object landscapes
and lifetimes
Technically, OOP is just about abstract data typing, inheritance and polymorphism, but other
issues can be at least as important. The remainder of this section will cover these issues.

One of the most important factors is the way objects are created and destroyed. Where is the
data for an object and how is the lifetime of the object controlled? There are different
philosophies at work here. C++ takes the approach that control of efficiency is the most
important issue, so it gives the programmer a choice. For maximum run-time speed, the
storage and lifetime can be determined while the program is being written, by placing the
objects on the stack (these are sometimes called automatic or scoped variables) or in the static
storage area. This places a priority on the speed of storage allocation and release, and control
of these can be very valuable in some situations. However, you sacrifice flexibility because
you must know the exact quantity, lifetime and type of objects while you’re writing the
program. If you are trying to solve a more general problem such as computer-aided design,
warehouse management or air-traffic control, this is too restrictive.

The second approach is to create objects dynamically in a pool of memory called the heap. In
this approach you don’t know until run time how many objects you need, what their
lifetime is or what their exact type is. Those are determined at the spur of the moment while
the program is running. If you need a new object, you simply make it on the heap at the
point that you need it. Because the storage is managed dynamically, at run time, the amount
of time required to allocate storage on the heap is significantly longer than the time to create
storage on the stack. (Creating storage on the stack is often a single assembly instruction to
move the stack pointer down, and another to move it back up.) The dynamic approach
makes the generally logical assumption that objects tend to be complicated, so the extra
overhead of finding storage and releasing that storage will not have an important impact on



Chapter 1: Introduction to Objects 51

the creation of an object. In addition, the greater flexibility is essential to solve the general
programming problem.

C++ allows you to determine whether the objects are created while you write the program
or at run time to allow the control of efficiency. You might think that since it’s more flexible,
you’d always want to create objects on the heap rather than the stack. There’s another issue,
however, and that’s the lifetime of an object. If you create an object on the stack or in static
storage, the compiler determines how long the object lasts and can automatically destroy it.
However, if you create it on the heap the compiler has no knowledge of its lifetime. A
programmer has two options for destroying objects: you can determine programmatically
when to destroy the object, or the environment can provide a feature called a garbage
collector that automatically discovers when an object is no longer in use and destroys it. Of
course, a garbage collector is much more convenient, but it requires that all applications
must be able to tolerate the existence of the garbage collector and the other overhead for
garbage collection. This does not meet the design requirements of the C++ language and so
it was not included, but Java does have a garbage collector (as does Smalltalk; Delphi does
not but one could be added. Third-party garbage collectors exist for C++).

The rest of this section looks at additional factors concerning object lifetimes and landscapes.

Collections and iterators
If you don’t know how many objects you’re going to need to solve a particular problem, or
how long they will last, you also don’t know how to store those objects. How can you know
how much space to create for those objects? You can’t, since that information isn’t known
until run time.

The solution to most problems in object-oriented design seems flippant: you create another
type of object. The new type of object that solves this particular problem holds handles to
other objects. Of course, you can do the same thing with an array, which is available in most
languages. But there’s more. This new object, generally called a collection (also called a
container, but the AWT uses that term in a different sense so this book will use “collection”),
will expand itself whenever necessary to accommodate everything you place inside it. So you
don’t need to know how many objects you’re going to hold in a collection. Just create a
collection object and let it take care of the details.

Fortunately, a good OOP language comes with a set of collections as part of the package. In
C++, it’s the Standard Template Library (STL). Object Pascal has collections in its Visual
Component Library (VCL). Smalltalk has a very complete set of collections. Java also has
collections in its standard library. In some libraries, a generic collection is considered good
enough for all needs, and in others (C++ in particular) the library has different types of
collections for different needs: a vector for consistent access to all elements, and a linked list
for consistent insertion at all elements, for example, so you can choose the particular type
that fits your needs. These may include sets, queues, hash tables, trees, stacks, etc.

All collections have some way to put things in and get things out. The way that you place
something into a collection is fairly obvious. There’s a function called “push” or “add” or a
similar name. Fetching things out of a collection is not always as apparent; if it’s an array-
like entity such as a vector, you might be able to use an indexing operator or function. But in
many situations this doesn’t make sense. Also, a single-selection function is restrictive. What
if you want to manipulate or compare a set of elements in the collection instead of just one?

The solution is an iterator, which is an object whose job is to select the elements within a
collection and present them to the user of the iterator. As a class, it also provides a level of



52 Thinking in Java  www.BruceEckel.com

abstraction. This abstraction can be used to separate the details of the collection from the
code that’s accessing that collection. The collection, via the iterator, is abstracted to be simply
a sequence. The iterator allows you to traverse that sequence without worrying about the
underlying structure – that is, whether it’s a vector, a linked list, a stack or something else.
This gives you the flexibility to easily change the underlying data structure without
disturbing the code in your program. Java began (in version 1.0 and 1.1) with a standard
iterator, called Enumeration, for all of its collection classes. Java 1.2 has added a much
more complete collection library which contains an iterator called Iterator that does more
than the older Enumeration.

From the design standpoint, all you really want is a sequence that can be manipulated to
solve your problem. If a single type of sequence satisfied all of your needs, there’d be no
reason to have different kinds. There are two reasons that you need a choice of collections.
First, collections provide different types of interfaces and external behavior. A stack has a
different interface and behavior than that of a queue, which is different than that of a set or
a list. One of these might provide a more flexible solution to your problem than the other.
Second, different collections have different efficiencies for certain operations. The best
example is a vector and a list. Both are simple sequences that can have identical interfaces
and external behaviors. But certain operations can have radically different costs. Randomly
accessing elements in a vector is a constant-time operation; it takes the same amount of time
regardless of the element you select. However, in a linked list it is expensive to move through
the list to randomly select an element, and it takes longer to find an element if it is further
down the list. On the other hand, if you want to insert an element in the middle of a
sequence, it’s much cheaper in a list than in a vector. These and other operations have
different efficiencies depending upon the underlying structure of the sequence. In the design
phase, you might start with a list and, when tuning for performance, change to a vector.
Because of the abstraction via iterators, you can change from one to the other with minimal
impact on your code.

In the end, remember that a collection is only a storage cabinet to put objects in. If that
cabinet solves all of your needs, it doesn’t really matter how it is implemented (a basic
concept with most types of objects). If you’re working in a programming environment that
has built-in overhead due to other factors (running under Windows, for example, or the cost
of a garbage collector), then the cost difference between a vector and a linked list might not
matter. You might need only one type of sequence. You can even imagine the “perfect”
collection abstraction, which can automatically change its underlying implementation
according to the way it is used.

The singly-rooted hierarchy
One of the issues in OOP that has become especially prominent since the introduction of
C++ is whether all classes should ultimately be inherited from a single base class. In Java (as
with virtually all other OOP languages) the answer is “yes” and the name of this ultimate
base class is simply Object. It turns out that the benefits of the singly-rooted hierarchy are
many.

All objects in a singly-rooted hierarchy have an interface in common, so they are all
ultimately the same type. The alternative (provided by C++) is that you don’t know that
everything is the same fundamental type. From a backwards-compatibility standpoint this
fits the model of C better and can be thought of as less restrictive, but when you want to do
full-on object-oriented programming you must then build your own hierarchy to provide
the same convenience that’s built into other OOP languages. And in any new class library
you acquire, some other incompatible interface will be used. It requires effort (and possibly
multiple inheritance) to work the new interface into your design. Is the extra “flexibility” of



Chapter 1: Introduction to Objects 53

C++ worth it? If you need it – if you have a large investment in C – it’s quite valuable. If
you’re starting from scratch, other alternatives such as Java can often be more productive.

All objects in a singly-rooted hierarchy (such as Java provides) can be guaranteed to have
certain functionality. You know you can perform certain basic operations on every object in
your system. A singly-rooted hierarchy, along with creating all objects on the heap, greatly
simplifies argument passing (one of the more complex topics in C++).

A singly-rooted hierarchy makes it much easier to implement a garbage collector. The
necessary support can be installed in the base class, and the garbage collector can thus send
the appropriate messages to every object in the system. Without a singly-rooted hierarchy
and a system to manipulate an object via a handle, it is difficult to implement a garbage
collector.

Since run-time type information is guaranteed to be in all objects, you’ll never end up with
an object whose type you cannot determine. This is especially important with system level
operations, such as exception handling, and to allow greater flexibility in programming.

You may wonder why, if it’s so beneficial, a singly-rooted hierarchy isn’t it in C++. It’s the
old bugaboo of efficiency and control. A singly-rooted hierarchy puts constraints on your
program designs, and in particular it was perceived to put constraints on the use of existing
C code. These constraints cause problems only in certain situations, but for maximum
flexibility there is no requirement for a singly-rooted hierarchy in C++. In Java, which
started from scratch and has no backward-compatibility issues with any existing language,
it was a logical choice to use the singly-rooted hierarchy in common with most other object-
oriented programming languages.

Collection libraries and support
for easy collection use

Because a collection is a tool that you’ll use frequently, it makes sense to have a library of
collections that are built in a reusable fashion, so you can take one off the shelf and plug it
into your program. Java provides such a library, although it is fairly limited in Java 1.0 and
1.1 (the Java 1.2 collections library, however, satisfies most needs).

Downcasting vs. templates/generics
To make these collections reusable, they contain the one universal type in Java that was
previously mentioned: Object. The singly-rooted hierarchy means that everything is an
Object, so a collection that holds Objects can hold anything. This makes it easy to reuse.

To use such a collection, you simply add object handles to it, and later ask for them back.
But, since the collection holds only Objects, when you add your object handle into the
collection it is upcast to Object, thus losing its identity. When you fetch it back, you get an
Object handle, and not a handle to the type that you put in. So how do you turn it back into
something that has the useful interface of the object that you put into the collection?

Here, the cast is used again, but this time you’re not casting up the inheritance hierarchy to
a more general type, you cast down the hierarchy to a more specific type. This manner of
casting is called downcasting. With upcasting, you know, for example, that a Circle is a type
of Shape so it’s safe to upcast, but you don’t know that an Object is necessarily a Circle or
a Shape so it’s hardly safe to downcast unless you know that’s what you’re dealing with.



54 Thinking in Java  www.BruceEckel.com

It’s not completely dangerous, however, because if you downcast to the wrong thing you’ll
get a run-time error called an exception, which will be described shortly. When you fetch
object handles from a collection, though, you must have some way to remember exactly
what they are so you can perform a proper downcast.

Downcasting and the run-time checks require extra time for the running program, and extra
effort from the programmer. Wouldn’t it make sense to somehow create the collection so
that it knows the types that it holds, eliminating the need for the downcast and possible
mistake? The solution is parameterized types, which are classes that the compiler can
automatically customize to work with particular types. For example, with a parameterized
collection, the compiler could customize that collection so that it would accept only Shapes
and fetch only Shapes.

Parameterized types are an important part of C++, partly because C++ has no singly-
rooted hierarchy. In C++, the keyword that implements parameterized types is template.
Java currently has no parameterized types since it is possible for it to get by – however
awkwardly – using the singly-rooted hierarchy. At one point the word generic (the keyword
used by Ada for its templates) was on a list of keywords that were “reserved for future
implementation.” Some of these seemed to have mysteriously slipped into a kind of
“keyword Bermuda Triangle” and it’s difficult to know what might eventually happen.

The housekeeping dilemma:
who should clean up?

Each object requires resources in order to exist, most notably memory. When an object is no
longer needed it must be cleaned up so that these resources are released for reuse. In simple
programming situations the question of how an object is cleaned up doesn’t seem too
challenging: you create the object, use it for as long as it’s needed, and then it should be
destroyed. It’s not too hard, however, to encounter situations in which the situation is more
complex.

Suppose, for example, you are designing a system to manage air traffic for an airport. (The
same model might also work for managing crates in a warehouse, or a video rental system,
or a kennel for boarding pets.) At first it seems simple: make a collection to hold airplanes,
then create a new airplane and place it in the collection for each airplane that enters the air-
traffic-control zone. For cleanup, simply delete the appropriate airplane object when a plane
leaves the zone.

But perhaps you have some other system to record data about the planes; perhaps data that
doesn’t require such immediate attention as the main controller function. Maybe it’s a
record of the flight plans of all the small planes that leave the airport. So you have a second
collection of small planes, and whenever you create a plane object you also put it in this
collection if it’s a small plane. Then some background process performs operations on the
objects in this collection during idle moments.

Now the problem is more difficult: how can you possibly know when to destroy the objects?
When you’re done with the object, some other part of the system might not be. This same
problem can arise in a number of other situations, and in programming systems (such as



Chapter 1: Introduction to Objects 55

C++) in which you must explicitly delete an object when you’re done with it this can
become quite complex.6

With Java, the garbage collector is designed to take care of the problem of releasing the
memory (although this doesn’t include other aspects of cleaning up an object). The garbage
collector “knows” when an object is no longer in use, and it then automatically releases the
memory for that object. This, combined with the fact that all objects are inherited from the
single root class Object and that you can create objects only one way, on the heap, makes
the process of programming in Java much simpler than programming in C++. You have far
fewer decisions to make and hurdles to overcome.

Garbage collectors
vs. efficiency and flexibility
If all this is such a good idea, why didn’t they do the same thing in C++? Well of course
there’s a price you pay for all this programming convenience, and that price is run-time
overhead. As mentioned before, in C++ you can create objects on the stack, and in this case
they’re automatically cleaned up (but you don’t have the flexibility of creating as many as
you want at run-time). Creating objects on the stack is the most efficient way to allocate
storage for objects and to free that storage. Creating objects on the heap can be much more
expensive. Always inheriting from a base class and making all function calls polymorphic
also exacts a small toll. But the garbage collector is a particular problem because you never
quite know when it’s going to start up or how long it will take. This means that there’s an
inconsistency in the rate of execution of a Java program, so you can’t use it in certain
situations, such as when the rate of execution of a program is uniformly critical. (These are
generally called real time programs, although not all real-time programming problems are
this stringent.)7

The designers of the C++ language, trying to woo C programmers (and most successfully, at
that), did not want to add any features to the language that would impact the speed or the
use of C++ in any situation where C might be used. This goal was realized, but at the price
of greater complexity when programming in C++. Java is simpler than C++, but the
tradeoff is in efficiency and sometimes applicability. For a significant portion of
programming problems, however, Java is often the superior choice.

Exception handling:
dealing with errors
Ever since the beginning of programming languages, error handling has been one of the
most difficult issues. Because it’s so hard to design a good error-handling scheme, many
languages simply ignore the issue, passing the problem on to library designers who come up
with halfway measures that can work in many situations but can easily be circumvented,
generally by just ignoring them. A major problem with most error-handling schemes is that

                                                

6 Note that this is true only for objects that are created on the heap, with new. However, the problem
described, and indeed any general programming problem, requires objects to be created on the heap.

7 According to a technical reader for this book, one existing real-time Java implementation
(www.newmonics.com) has guarantees on garbage collector performance.



56 Thinking in Java  www.BruceEckel.com

they rely on programmer vigilance in following an agreed-upon convention that is not
enforced by the language. If the programmer is not vigilant, which is often if they are in a
hurry, these schemes can easily be forgotten.

Exception handling wires error handling directly into the programming language and
sometimes even the operating system. An exception is an object that is “thrown” from the
site of the error and can be “caught” by an appropriate exception handler designed to handle
that particular type of error. It’s as if exception handling is a different, parallel path of
execution that can be taken when things go wrong. And because it uses a separate execution
path, it doesn’t need to interfere with your normally-executing code. This makes that code
simpler to write since you aren’t constantly forced to check for errors. In addition, a thrown
exception is unlike an error value that’s returned from a function or a flag that’s set by a
function in order to indicate an error condition, These can be ignored. An exception cannot
be ignored so it’s guaranteed to be dealt with at some point. Finally, exceptions provide a
way to reliably recover from a bad situation. Instead of just exiting you are often able to set
things right and restore the execution of a program, which produces much more robust
programs.

Java’s exception handling stands out among programming languages, because in Java,
exception-handling was wired in from the beginning and you’re forced to use it. If you don’t
write your code to properly handle exceptions, you’ll get a compile-time error message. This
guaranteed consistency makes error-handling much easier.

It’s worth noting that exception handling isn’t an object-oriented feature, although in object-
oriented languages the exception is normally represented with an object. Exception handling
existed before object-oriented languages.

Multithreading
A fundamental concept in computer programming is the idea of handling more than one
task at a time. Many programming problems require that the program be able to stop what
it’s doing, deal with some other problem and return to the main process. The solution has
been approached in many ways. Initially, programmers with low-level knowledge of the
machine wrote interrupt service routines and the suspension of the main process was initiated
through a hardware interrupt. Although this worked well, it was difficult and non-portable,
so it made moving a program to a new type of machine slow and expensive.

Sometimes interrupts are necessary for handling time-critical tasks, but there’s a large class
of problems in which you’re simply trying to partition the problem into separately-running
pieces so that the whole program can be more responsive. Within a program, these
separately-running pieces are called threads and the general concept is called multithreading.
A common example of multithreading is the user interface. By using threads, a user can
press a button and get a quick response rather than being forced to wait until the program
finishes its current task.

Ordinarily, threads are just a way to allocate the time of a single processor. But if the
operating system supports multiple processors, each thread can be assigned to a different
processor and they can truly run in parallel. One of the convenient features of
multithreading at the language level is that the programmer doesn’t need to worry about
whether there are many processors or just one. The program is logically divided into threads
and if the machine has more than one processor then the program runs faster, without any
special adjustments.



Chapter 1: Introduction to Objects 57

All this makes threading sound pretty simple. There is a catch: shared resources. If you have
more than one thread running that’s expecting to access the same resource you have a
problem. For example, two processes can’t simultaneously send information to a printer. To
solve the problem, resources that can be shared, such as the printer, must be locked while
they are being used. So a thread locks a resource, completes its task and then releases the
lock so that someone else can use the resource.

Java’s threading is built into the language, which makes a complicated subject much simpler.
The threading is supported on an object level, so one thread of execution is represented by
one object. Java also provides limited resource locking. It can lock the memory of any object
(which is, after all, one kind of shared resource) so that only one thread can use it at a time.
This is accomplished with the synchronized keyword. Other types of resources must be
locked explicitly by the programmer, typically by creating an object to represent the lock
that all threads must check before accessing that resource.

Persistence
When you create an object, it exists for as long as you need it, but under no circumstances
does it exist when the program terminates. While this makes sense at first, there are
situations in which it would be incredibly useful if an object could exist and hold its
information even while the program wasn’t running. Then the next time you started the
program, the object would be there and it would have the same information it had the
previous time the program was running. Of course you can get a similar effect now by
writing the information to a file or to a database, but in the spirit of making everything an
object it would be quite convenient to be able to declare an object persistent and have all the
details taken care of for you.

Java 1.1 provides support for “lightweight persistence,” which means that you can easily
store objects on disk and later retrieve them. The reason it’s “lightweight” is that you’re still
forced to make explicit calls to do the storage and retrieval. In some future release more
complete support for persistence might appear.

Java and the Internet
If Java is, in fact, yet another computer programming language, you may question why it is
so important and why it is being promoted as a revolutionary step in computer
programming. The answer isn’t immediately obvious if you’re coming from a traditional
programming perspective. Although Java will solve traditional stand-alone programming
problems, the reason it is important is that it will also solve programming problems on the
World Wide Web.

What is the Web?
The Web can seem a bit of a mystery at first, with all this talk of “surfing,” “presence” and
“home pages.” There has even been a growing reaction against “Internet-mania,”
questioning the economic value and outcome of such a sweeping movement. It’s helpful to
step back and see what it really is, but to do this you must understand client/server systems,
another aspect of computing that’s full of confusing issues.



58 Thinking in Java  www.BruceEckel.com

Client/Server computing
The primary idea of a client/server system is that you have a central repository of
information – some kind of data, typically in a database – that you want to distribute on
demand to some set of people or machines. A key to the client/server concept is that the
repository of information is centrally located so that it can be changed and so that those
changes will propagate out to the information consumers. Taken together, the information
repository, the software that distributes the information and the machine(s) where the
information and software reside is called the server. The software that resides on the remote
machine, and that communicates with the server, fetches the information, processes it, and
displays it on the remote machine is called the client.

The basic concept of client/server computing, then, is not so complicated. The problems arise
because you have a single server trying to serve many clients at once. Generally a database
management system is involved so the designer “balances” the layout of data into tables for
optimal use. In addition, systems often allow a client to insert new information into a server.
This means you must ensure that one client’s new data doesn’t walk over another client’s
new data, or that data isn’t lost in the process of adding it to the database. (This is called
transaction processing.) As client software changes, it must be built, debugged and installed
on the client machines, which turns out to be more complicated and expensive than you
might think. It’s especially problematic to support multiple types of computers and
operating systems. Finally, there’s the all-important performance issue: you might have
hundreds of clients making requests of your server at any one time, and so any small delay
is crucial. To minimize latency, programmers work hard to offload processing tasks, often to
the client machine but sometimes to other machines at the server site using so-called
middleware. (Middleware is also used to improve maintainability.)

So the simple idea of distributing information to people has so many layers of complexity in
implementing it that the whole problem can seem hopelessly enigmatic. And yet it’s crucial:
client/server computing accounts for roughly half of all programming activities. It’s
responsible for everything from taking orders and credit-card transactions to the
distribution of any kind of data – stock market, scientific, government – you name it. What
we’ve come up with in the past is individual solutions to individual problems, inventing a
new solution each time. These were hard to create and hard to use and the user had to learn
a new interface for each one. The entire client/server problem needs to be solved in a big
way.

The Web as a giant server
The Web is actually one giant client-server system. It’s a bit worse than that, since you have
all the servers and clients coexisting on a single network at once. You don’t need to know
that, since all you care about is connecting to and interacting with one server at a time (even
though you might be hopping around the world in your search for the correct server).

Initially it was a simple one-way process. You made a request of a server and it handed you
a file, which your machine’s browser software (i.e. the client) would interpret by formatting
onto your local machine. But in short order people began wanting to do more than just
deliver pages from a server. They wanted full client/server capability so that the client could
feed information back to the server, for example, to do database lookups on the server, to
add new information to the server or to place an order (which required more security than
the original systems offered). These are the changes we’ve been seeing in the development of
the Web.



Chapter 1: Introduction to Objects 59

The Web browser was a big step forward: the concept that one piece of information could be
displayed on any type of computer without change. However, browsers were still rather
primitive and rapidly bogged down by the demands placed on them. They weren’t
particularly interactive and tended to clog up both the server and the Internet because any
time you needed to do something that required programming you had to send information
back to the server to be processed. It could take many seconds or minutes to find out you
had misspelled something in your request. Since the browser was just a viewer it couldn’t
perform even the simplest computing tasks. (On the other hand, it was safe, since it couldn’t
execute any programs on your local machine that contained bugs or viruses.)

To solve this problem, different approaches have been taken. To begin with, graphics
standards have been enhanced to allow better animation and video within browsers. The
remainder of the problem can be solved only by incorporating the ability to run programs
on the client end, under the browser. This is called client-side programming.

Client-side programming8

The Web’s initial server-browser design provided for interactive content, but the interactivity
was completely provided by the server. The server produced static pages for the client
browser, which would simply interpret and display them. Basic HTML contains simple
mechanisms for data gathering: text-entry boxes, check boxes, radio boxes, lists and drop-
down lists, as well as a button that can only be programmed to reset the data on the form or
“submit” the data on the form back to the server. This submission passes through the
Common Gateway Interface (CGI) provided on all Web servers. The text within the submission
tells CGI what to do with it. The most common action is to run a program located on the
server in a directory that’s typically called “cgi-bin.” (If you watch the address window at
the top of your browser when you push a button on a Web page, you can sometimes see
“cgi-bin” within all the gobbledygook there.) These programs can be written in most
languages. Perl is a common choice because it is designed for text manipulation and is
interpreted, so it can be installed on any server regardless of processor or operating system.

Many powerful Web sites today are built strictly on CGI, and you can in fact do nearly
anything with it. The problem is response time. The response of a CGI program depends on
how much data must be sent as well as the load on both the server and the Internet. (On top
of this, starting a CGI program tends to be slow.) The initial designers of the Web did not
foresee how rapidly this bandwidth would be exhausted for the kinds of applications people
developed. For example, any sort of dynamic graphing is nearly impossible to perform with
consistency because a GIF file must be created and moved from the server to the client for
each version of the graph. And you’ve no doubt had direct experience with something as
simple as validating the data on an input form. You press the submit button on a page; the
data is shipped back to the server; the server starts a CGI program that discovers an error,
formats an HTML page informing you of the error and sends the page back to you; you
must then back up a page and try again. Not only is this slow, it’s not elegant.

The solution is client-side programming. Most machines that run Web browsers are
powerful engines capable of doing vast work, and with the original static HTML approach
they are sitting there, just idly waiting for the server to dish up the next page. Client-side
programming means that the Web browser is harnessed to do whatever work it can, and the
result for the user is a much speedier and more interactive experience at your Web site.

                                                

8 The material in this section is adapted from an article by the author that originally appeared on
Mainspring, at www.mainspring.com. Used with permission.



60 Thinking in Java  www.BruceEckel.com

The problem with discussions of client-side programming is that they aren’t very different
from discussions of programming in general. The parameters are almost the same, but the
platform is different: a Web browser is like a limited operating system. In the end, it’s still
programming and this accounts for the dizzying array of problems and solutions produced
by client-side programming. The rest of this section provides an overview of the issues and
approaches in client-side programming.

Plug-ins
One of the most significant steps forward in client-side programming is the development of
the plug-in. This is a way for a programmer to add new functionality to the browser by
downloading a piece of code that plugs itself into the appropriate spot in the browser. It tells
the browser “from now on you can perform this new activity.” (You need to download the
plug-in only once.) Some fast and powerful behavior is added to browsers via plug-ins, but
writing a plug-in is not a trivial task and isn’t something you’d want to do as part of the
process of building a particular site. The value of the plug-in for client-side programming is
that it allows an expert programmer to develop a new language and add that language to a
browser without the permission of the browser manufacturer. Thus, plug-ins provide the back
door that allows the creation of new client-side programming languages (although not all
languages are implemented as plug-ins).

Scripting languages
Plug-ins resulted in an explosion of scripting languages. With a scripting language you
embed the source code for your client-side program directly into the HTML page and the
plug-in that interprets that language is automatically activated while the HTML page is
being displayed. Scripting languages tend to be reasonably simple to understand, and
because they are simply text that is part of an HTML page they load very quickly as part of
the single server hit required to procure that page. The trade-off is that your code is exposed
for everyone to see (and steal) but generally you aren’t doing amazingly sophisticated things
with scripting languages so it’s not too much of a hardship.

This points out that scripting languages are really intended to solve specific types of
problems, primarily the creation of richer and more interactive graphical user interfaces
(GUIs). However, a scripting language might solve 80 percent of the problems encountered in
client-side programming. Your problems might very well fit completely within that 80
percent, and since scripting languages tend to be easier and faster to develop, you should
probably consider a scripting language before looking at a more involved solution such as
Java or ActiveX programming.

The most commonly-discussed scripting languages are JavaScript (which has nothing to do
with Java; it’s named that way just to grab some of Java’s marketing momentum), VBScript
(which looks like Visual Basic) and Tcl/Tk, which comes from the popular cross-platform
GUI-building language. There are others out there and no doubt more in development.

JavaScript is probably the most commonly supported. It comes built into both Netscape
Navigator and the Microsoft Internet Explorer (IE). In addition, there are probably more
JavaScript books out than for the other languages, and some tools automatically create
pages using JavaScript. However, if you’re already fluent in Visual Basic or Tcl/Tk, you’ll be
more productive using those scripting languages rather than learning a new one. (You’ll
have your hands full dealing with the Web issues already.)



Chapter 1: Introduction to Objects 61

Java
If a scripting language can solve 80 percent of the client-side programming problems, what
about the other 20 percent – the “really hard stuff?” The most popular solution today is
Java. Not only is it a powerful programming language built to be secure, cross-platform and
international, but Java is being continuously extended to provide language features and
libraries that elegantly handle problems that are difficult in traditional programming
languages, such as multithreading, database access, network programming and distributed
computing. Java allows client-side programming via the applet.

An applet is a mini-program that will run only under a Web browser. The applet is
downloaded automatically as part of a Web page (just as, for example, a graphic is
automatically downloaded). When the applet is activated it executes a program. This is part
of its beauty – it provides you with a way to automatically distribute the client software
from the server at the time the user needs the client software, and no sooner. They get the
latest version of the client software without fail and without difficult re-installation. Because
of the way Java is designed, the programmer needs to create only a single program, and that
program automatically works with all computers that have browsers with built-in Java
interpreters. (This safely includes the vast majority of machines.) Since Java is a full-fledged
programming language, you can do as much work as possible on the client before and after
making requests of the server. For example, you won’t need to send a request form across
the Internet to discover that you’ve gotten a date or some other parameter wrong, and your
client computer can quickly do the work of plotting data instead of waiting for the server to
make a plot and ship a graphic image back to you. Not only do you get the immediate win
of speed and responsiveness, but the general network traffic and load upon servers can be
reduced, preventing the entire Internet from slowing down.

One advantage a Java applet has over a scripted program is that it’s in compiled form, so the
source code isn’t available to the client. On the other hand, a Java applet can be decompiled
without too much trouble, and hiding your code is often not an important issue anyway.
Two other factors can be important. As you will see later in the book, a compiled Java applet
can comprise many modules and take multiple server “hits” (accesses) to download. (In Java
1.1 this is minimized by Java archives, called JAR files, that allow all the required modules
to be packaged together for a single download.) A scripted program will just be integrated
into the Web page as part of its text (and will generally be smaller and reduce server hits).
This could be important to the responsiveness of your Web site. Another factor is the all-
important learning curve. Regardless of what you’ve heard, Java is not a trivial language to
learn. If you’re a Visual Basic programmer, moving to VBScript will be your fastest solution
and since it will probably solve most typical client/server problems you might be hard
pressed to justify learning Java. If you’re experienced with a scripting language you will
certainly benefit from looking at JavaScript or VBScript before committing to Java, since
they might fit your needs handily and you’ll be more productive sooner.

ActiveX
To some degree, the competitor to Java is Microsoft’s ActiveX, although it takes a completely
different approach. ActiveX is originally a Windows-only solution, although it is now being
developed via an independent consortium to become cross-platform. Effectively, ActiveX says
“if your program connects to its environment just so, it can be dropped into a Web page and
run under a browser that supports ActiveX.” (IE directly supports ActiveX and Netscape does
so using a plug-in.) Thus, ActiveX does not constrain you to a particular language. If, for
example, you’re already an experienced Windows programmer using a language such as
C++, Visual Basic, or Borland’s Delphi, you can create ActiveX components with almost no



62 Thinking in Java  www.BruceEckel.com

changes to your programming knowledge. ActiveX also provides a path for the use of legacy
code in your Web pages.

Security
Automatically downloading and running programs across the Internet can sound like a
virus-builder’s dream. ActiveX especially brings up the thorny issue of security in client-side
programming. If you click on a Web site, you might automatically download any number of
things along with the HTML page: GIF files, script code, compiled Java code, and ActiveX
components. Some of these are benign; GIF files can’t do any harm, and scripting languages
are generally limited in what they can do. Java was also designed to run its applets within a
“sandbox” of safety, which prevents it from writing to disk or accessing memory outside the
sandbox.

ActiveX is at the opposite end of the spectrum. Programming with ActiveX is like
programming Windows – you can do anything you want. So if you click on a page that
downloads an ActiveX component, that component might cause damage to the files on your
disk. Of course, programs that you load onto your computer that are not restricted to
running inside a Web browser can do the same thing. Viruses downloaded from Bulletin-
Board Systems (BBSs) have long been a problem, but the speed of the Internet amplifies the
difficulty.

The solution seems to be “digital signatures,” whereby code is verified to show who the
author is. This is based on the idea that a virus works because its creator can be anonymous,
so if you remove the anonymity individuals will be forced to be responsible for their actions.
This seems like a good plan because it allows programs to be much more functional, and I
suspect it will eliminate malicious mischief. If, however, a program has an unintentional bug
that’s destructive it will still cause problems.

The Java approach is to prevent these problems from occurring, via the sandbox. The Java
interpreter that lives on your local Web browser examines the applet for any untoward
instructions as the applet is being loaded. In particular, the applet cannot write files to disk
or erase files (one of the mainstays of the virus). Applets are generally considered to be safe,
and since this is essential for reliable client-server systems, any bugs that allow viruses are
rapidly repaired. (It’s worth noting that the browser software actually enforces these
security restrictions, and some browsers allow you to select different security levels to
provide varying degrees of access to your system.)

You might be skeptical of this rather draconian restriction against writing files to your local
disk. For example, you may want to build a local database or save data for later use offline.
The initial vision seemed to be that eventually everyone would be online to do anything
important, but that was soon seen to be impractical (although low-cost “Internet appliances”
might someday satisfy the needs of a significant segment of users). The solution is the
“signed applet” that uses public-key encryption to verify that an applet does indeed come
from where it claims it does. A signed applet can then go ahead and trash your disk, but the
theory is that since you can now hold the applet creator accountable they won’t do vicious
things. Java 1.1 provides a framework for digital signatures so that you will eventually be
able to allow an applet to step outside the sandbox if necessary.

Digital signatures have missed an important issue, which is the speed that people move
around on the Internet. If you download a buggy program and it does something untoward,
how long will it be before you discover the damage? It could be days or even weeks. And by
then, how will you track down the program that’s done it (and what good will it do at that
point?).



Chapter 1: Introduction to Objects 63

Internet vs. Intranet
The Web is the most general solution to the client/server problem, so it makes sense that you
can use the same technology to solve a subset of the problem, in particular the classic
client/server problem within a company. With traditional client/server approaches you have
the problem of multiple different types of client computers, as well as the difficulty of
installing new client software, both of which are handily solved with Web browsers and
client-side programming. When Web technology is used for an information network that is
restricted to a particular company, it is referred to as an Intranet. Intranets provide much
greater security than the Internet, since you can physically control access to the servers
within your company. In terms of training, it seems that once people understand the general
concept of a browser it’s much easier for them to deal with differences in the way pages and
applets look, so the learning curve for new kinds of systems seems to be reduced.

The security problem brings us to one of the divisions that seems to be automatically
forming in the world of client-side programming. If your program is running on the
Internet, you don’t know what platform it will be working under and you want to be extra
careful that you don’t disseminate buggy code. You need something cross-platform and
secure, like a scripting language or Java.

If you’re running on an Intranet, you might have a different set of constraints. It’s not
uncommon that your machines could all be Intel/Windows platforms. On an Intranet,
you’re responsible for the quality of your own code and can repair bugs when they’re
discovered. In addition, you might already have a body of legacy code that you’ve been using
in a more traditional client/server approach, whereby you must physically install client
programs every time you do an upgrade. The time wasted in installing upgrades is the most
compelling reason to move to browsers because upgrades are invisible and automatic. If you
are involved in such an Intranet, the most sensible approach to take is ActiveX rather than
trying to recode your programs in a new language.

When faced with this bewildering array of solutions to the client-side programming
problem, the best plan of attack is a cost-benefit analysis. Consider the constraints of your
problem and what would be the fastest way to get to your solution. Since client-side
programming is still programming, it’s always a good idea to take the fastest development
approach for your particular situation. This is an aggressive stance to prepare for inevitable
encounters with the problems of program development.

Server-side programming
This whole discussion has ignored the issue of server-side programming. What happens
when you make a request of a server? Most of the time the request is simply “send me this
file.” Your browser then interprets the file in some appropriate fashion: as an HTML page, a
graphic image, a Java applet, a script program, etc. A more complicated request to a server
generally involves a database transaction. A common scenario involves a request for a
complex database search, which the server then formats into an HTML page and sends to
you as the result. (Of course, if the client has more intelligence via Java or a scripting
language, the raw data can be sent and formatted at the client end, which will be faster and
less load on the server.) Or you might want to register your name in a database when you
join a group or place an order, which will involve changes to that database. These database
requests must be processed via some code on the server side, which is generally referred to as
server-side programming. Traditionally, server-side programming has been performed using
Perl and CGI scripts, but more sophisticated systems have been appearing. These include
Java-based Web servers that allow you to perform all your server-side programming in Java
by writing what are called servlets.   



64 Thinking in Java  www.BruceEckel.com

A separate arena: applications
Most of the brouhaha over Java has been about applets. Java is actually a general-purpose
programming language that can solve any type of problem, at least in theory. And as
pointed out previously, there might be more effective ways to solve most client/server
problems. When you move out of the applet arena (and simultaneously release the
restrictions, such as the one against writing to disk) you enter the world of general-purpose
applications that run standalone, without a Web browser, just like any ordinary program
does. Here, Java’s strength is not only in its portability, but also its programmability. As
you’ll see throughout this book, Java has many features that allow you to create robust
programs in a shorter period than with previous programming languages.

Be aware that this is a mixed blessing. You pay for the improvements through slower
execution speed (although there is significant work going on in this area). Like any language,
Java has built-in limitations that might make it inappropriate to solve certain types of
programming problems. Java is a rapidly-evolving language, however, and as each new
release comes out it becomes more and more attractive for solving larger sets of problems.

Analysis and Design
The object-oriented paradigm is a new and different way of thinking about programming
and many folks have trouble at first knowing how to approach a project. Now that you
know that everything is supposed to be an object, you can create a “good” design, one that
will take advantage of all the benefits that OOP has to offer.

Books on OOP analysis and design are coming out of the woodwork. Most of these books are
filled with lots of long words, awkward prose and important-sounding pronouncements.9 I
come away thinking the book would be better as a chapter or at the most a very short book
and feeling annoyed that this process couldn’t be described simply and directly. (It disturbs
me that people who purport to specialize in managing complexity have such trouble writing
clear and simple books.) After all, the whole point of OOP is to make the process of software
development easier, and although it would seem to threaten the livelihood of those of us who
consult because things are complex, why not make it simple? So, hoping I’ve built a healthy
skepticism within you, I shall endeavor to give you my own perspective on analysis and
design in as few paragraphs as possible.

Staying on course
While you’re going through the development process, the most important issue is this: don’t
get lost. It’s easy to do. Most of these methodologies are designed to solve the largest of
problems. (This makes sense; these are the especially difficult projects that justify calling in
that author as consultant, and justify the author’s large fees.) Remember that most projects
don’t fit into that category, so you can usually have a successful analysis and design with a
relatively small subset of what a methodology recommends. But some sort of process, no
matter how limited, will generally get you on your way in a much better fashion than
simply beginning to code.

                                                

9 The best introduction is still Grady Booch’s Object-Oriented Design with Applications, 2nd edition, Wiley
& Sons 1996. His insights are clear and his prose is straightforward, although his notations are
needlessly complex for most designs. (You can easily get by with a subset.)



Chapter 1: Introduction to Objects 65

That said, if you’re looking at a methodology that contains tremendous detail and suggests
many steps and documents, it’s still difficult to know when to stop. Keep in mind what
you’re trying to discover:

1. What are the objects? (How do you partition your project into its component parts?)

2. What are their interfaces? (What messages do you need to be able to send to each
object?)

If you come up with nothing more than the objects and their interfaces then you can write a
program. For various reasons you might need more descriptions and documents than this,
but you can’t really get away with any less.

The process can be undertaken in four phases, and a phase 0 which is just the initial
commitment to using some kind of structure.

Phase 0: Let’s make a plan
The first step is to decide what steps you’re going to have in your process. It sounds simple
(in fact, all of this sounds simple) and yet, often, people don’t even get around to phase one
before they start coding. If your plan is “let’s jump in and start coding,” fine. (Sometimes
that’s appropriate when you have a well-understood problem.) At least agree that this is the
plan.

You might also decide at this phase that some additional process structure is necessary but
not the whole nine yards. Understandably enough, some programmers like to work in
“vacation mode” in which no structure is imposed on the process of developing their work:
“It will be done when it’s done.” This can be appealing for awhile, but I’ve found that having
a few milestones along the way helps to focus and galvanize your efforts around those
milestones instead of being stuck with the single goal of “finish the project.” In addition, it
divides the project into more bite-sized pieces and make it seem less threatening.

When I began to study story structure (so that I will someday write a novel) I was initially
resistant to the idea, feeling that when I wrote I simply let it flow onto the page. What I
found was that when I wrote about computers the structure was simple enough so I didn’t
need to think much about it, but I was still structuring my work, albeit only semi-
consciously in my head. So even if you think that your plan is to just start coding, you still
go through the following phases while asking and answering certain questions.

Phase 1: What are we making?
In the previous generation of program design (procedural design), this would be called
“creating the requirements analysis and system specification.” These, of course, were places to
get lost: intimidatingly-named documents that could become big projects in their own right.
Their intention was good, however. The requirements analysis says “Make a list of the
guidelines we will use to know when the job is done and the customer is satisfied.” The
system specification says “Here’s a description of what the program will do (not how) to
satisfy the requirements.” The requirements analysis is really a contract between you and
the customer (even if the customer works within your company or is some other object or
system). The system specification is a top-level exploration into the problem and in some
sense a discovery of whether it can be done and how long it will take. Since both of these
will require consensus among people, I think it’s best to keep them as bare as possible –
ideally, to lists and basic diagrams – to save time. You might have other constraints that
require you to expand them into bigger documents.



66 Thinking in Java  www.BruceEckel.com

It’s necessary to stay focused on the heart of what you’re trying to accomplish in this phase:
determine what the system is supposed to do. The most valuable tool for this is a collection
of what are called “use-cases.” These are essentially descriptive answers to questions that
start with “What does the system do if …” For example, “What does the auto-teller do if a
customer has just deposited a check within 24 hours and there’s not enough in the account
without the check to provide the desired withdrawal?” The use-case then describes what the
auto-teller does in that case.

You try to discover a full set of use-cases for your system, and once you’ve done that you’ve
got the core of what the system is supposed to do. The nice thing about focusing on use-
cases is that they always bring you back to the essentials and keep you from drifting off into
issues that aren’t critical for getting the job done. That is, if you have a full set of use-cases
you can describe your system and move onto the next phase. You probably won’t get it all
figured out perfectly at this phase, but that’s OK. Everything will reveal itself in the fullness
of time, and if you demand a perfect system specification at this point you’ll get stuck.

It helps to kick-start this phase by describing the system in a few paragraphs and then
looking for nouns and verbs. The nouns become the objects and the verbs become the
methods in the object interfaces. You’ll be surprised at how useful a tool this can be;
sometimes it will accomplish the lion’s share of the work for you.

Although it’s a black art, at this point some kind of scheduling can be quite useful. You now
have an overview of what you’re building so you’ll probably be able to get some idea of how
long it will take. A lot of factors come into play here: if you estimate a long schedule then
the company might not decide to build it, or a manager might have already decided how
long the project should take and will try to influence your estimate. But it’s best to have an
honest schedule from the beginning and deal with the tough decisions early. There have been
a lot of attempts to come up with accurate scheduling techniques (like techniques to predict
the stock market), but probably the best approach is to rely on your experience and
intuition. Get a gut feeling for how long it will really take, then double that and add 10
percent. Your gut feeling is probably correct; you can get something working in that time.
The “doubling” will turn that into something decent, and the 10 percent will deal with final
polishing and details. However you want to explain it, and regardless of the moans and
manipulations that happen when you reveal such a schedule, it just seems to work out that
way.

Phase 2: How will we build it?
In this phase you must come up with a design that describes what the classes look like and
how they will interact. A useful diagramming tool that has evolved over time is the Unified
Modeling Language (UML). You can get the specification for UML at www.rational.com. UML
can also be helpful as a descriptive tool during phase 1, and some of the diagrams you create
there will probably show up unmodified in phase 2. You don’t need to use UML, but it can
be helpful, especially if you want to put a diagram up on the wall for everyone to ponder,
which is a good idea. An alternative to UML is a textual description of the objects and their
interfaces (as I described in Thinking in C++), but this can be limiting.

The most successful consulting experiences I’ve had when coming up with an initial design
involves standing in front of a team, who hadn’t built an OOP project before, and drawing
objects on a whiteboard. We talked about how the objects should communicate with each
other, and erased some of them and replaced them with other objects. The team (who knew
what the project was supposed to do) actually created the design; they “owned” the design
rather than having it given to them. All I was doing was guiding the process by asking the
right questions, trying out the assumptions and taking the feedback from the team to



Chapter 1: Introduction to Objects 67

modify those assumptions. The true beauty of the process was that the team learned how to
do object-oriented design not by reviewing abstract examples, but by working on the one
design that was most interesting to them at that moment: theirs.

You’ll know you’re done with phase 2 when you have described the objects and their
interfaces. Well, most of them – there are usually a few that slip through the cracks and
don’t make themselves known until phase 3. But that’s OK. All you are concerned with is
that you eventually discover all of your objects. It’s nice to discover them early in the
process but OOP provides enough structure so that it’s not so bad if you discover them later.

Phase 3: Let’s build it!
If you’re reading this book you’re probably a programmer, so now we’re at the part you’ve
been trying to get to. By following a plan – no matter how simple and brief – and coming up
with design structure before coding, you’ll discover that things fall together far more easily
than if you dive in and start hacking, and this provides a great deal of satisfaction. Getting
code to run and do what you want is fulfilling, even like some kind of drug if you look at
the obsessive behavior of some programmers. But it’s my experience that coming up with an
elegant solution is deeply satisfying at an entirely different level; it feels closer to art than
technology. And elegance always pays off; it’s not a frivolous pursuit. Not only does it give
you a program that’s easier to build and debug, but it’s also easier to understand and
maintain, and that’s where the financial value lies.

After you build the system and get it running, it’s important to do a reality check, and here’s
where the requirements analysis and system specification comes in. Go through your
program and make sure that all the requirements are checked off, and that all the use-cases
work the way they’re described. Now you’re done. Or are you?

Phase 4: Iteration
This is the point in the development cycle that has traditionally been called “maintenance,” a
catch-all term that can mean everything from “getting it to work the way it was really
supposed to in the first place” to “adding features that the customer forgot to mention
before” to the more traditional “fixing the bugs that show up” and “adding new features as
the need arises.” So many misconceptions have been applied to the term “maintenance” that
it has taken on a slightly deceiving quality, partly because it suggests that you’ve actually
built a pristine program and that all you need to do is change parts, oil it and keep it from
rusting. Perhaps there’s a better term to describe what’s going on.

The term is iteration. That is, “You won’t get it right the first time, so give yourself the
latitude to learn and to go back and make changes.” You might need to make a lot of
changes as you learn and understand the problem more deeply. The elegance you’ll produce
if you iterate until you’ve got it right will pay off, both in the short and the long run.

What it means to “get it right” isn’t just that the program works according to the
requirements and the use-cases. It also means that the internal structure of the code makes
sense to you, and feels like it fits together well, with no awkward syntax, oversized objects
or ungainly exposed bits of code. In addition, you must have some sense that the program
structure will survive the changes that it will inevitably go through during its lifetime, and
that those changes can be made easily and cleanly. This is no small feat. You must not only
understand what you’re building, but also how the program will evolve (what I call the
vector of change). Fortunately, object-oriented programming languages are particularly adept
at supporting this kind of continuing modification – the boundaries created by the objects



68 Thinking in Java  www.BruceEckel.com

are what tend to keep the structure from breaking down. They are also what allow you to
make changes that would seem drastic in a procedural program without causing
earthquakes throughout your code. In fact, support for iteration might be the most
important benefit of OOP.

With iteration, you create something that at least approximates what you think you’re
building, and then you kick the tires, compare it to your requirements and see where it falls
short. Then you can go back and fix it by redesigning and re-implementing the portions of
the program that didn’t work right.10 You might actually need to solve the problem, or an
aspect of the problem, several times before you hit on the right solution. (A study of Design
Patterns, described in Chapter 16, is usually helpful here.)

Iteration also occurs when you build a system, see that it matches your requirements and
then discover it wasn’t actually what you wanted. When you see the system, you realize
you want to solve a different problem. If you think this kind of iteration is going to happen,
then you owe it to yourself to build your first version as quickly as possible so you can find
out if it’s what you want.

Iteration is closely tied to incremental development. Incremental development means that you
start with the core of your system and implement it as a framework upon which to build
the rest of the system piece by piece. Then you start adding features one at a time. The trick
to this is in designing a framework that will accommodate all the features you plan to add
to it. (See Chapter 16 for more insight into this issue.) The advantage is that once you get
the core framework working, each feature you add is like a small project in itself rather than
part of a big project. Also, new features that are incorporated later in the development or
maintenance phases can be added more easily. OOP supports incremental development
because if your program is designed well, your increments will turn out to be discreet
objects or groups of objects.

Plans pay off
Of course you wouldn’t build a house without a lot of carefully-drawn plans. If you build a
deck or a dog house, your plans won’t be so elaborate but you’ll still probably start with
some kind of sketches to guide you on your way. Software development has gone to
extremes. For a long time, people didn’t have much structure in their development, but then
big projects began failing. In reaction, we ended up with methodologies that had an
intimidating amount of structure and detail. These were too scary to use – it looked like
you’d spend all your time writing documents and no time programming. (This was often the
case.) I hope that what I’ve shown you here suggests a middle path – a sliding scale. Use an
approach that fits your needs (and your personality). No matter how minimal you choose to
make it, some kind of plan will make a big improvement in your project as opposed to no
plan at all. Remember that, by some estimates, over 50 percent of projects fail.

                                                

10 This is something like “rapid prototyping,” where you were supposed to build a quick-and-dirty
version so that you could learn about the system, and then throw away your prototype and build it
right. The trouble with rapid prototyping is that people didn’t throw away the prototype, but instead
built upon it. Combined with the lack of structure in procedural programming, this often leads to
messy systems that are expensive to maintain.



Chapter 1: Introduction to Objects 69

Java vs. C++?
Java looks a lot like C++, and so naturally it would seem that C++ will be replaced by
Java. But I’m starting to question this logic. For one thing, C++ still has some features that
Java doesn’t, and although there have been a lot of promises about Java someday being as
fast or faster than C++ the breakthroughs haven’t happened yet (it’s getting steadily faster,
but still hasn’t touched C++). Also, there seems to be a perking interest in C++ in many
fields, so I don’t think that language is going away any time soon. (Languages seem to hang
around. Speaking at one of my “Intermediate/Advanced Java Seminars,” Allen Holub
asserted that the two most commonly-used languages are Rexx and COBOL, in that order.)

I’m beginning to think that the strength of Java lies in a slightly different arena than that of
C++. C++ is a language that doesn’t try to fit a mold. Certainly it has been adapted in a
number of ways to solve particular problems, especially with tools like Microsoft Visual
C++ and Borland C++ Builder (a particular favorite of mine). These combine libraries,
component models and code generation tools to solve the problem of developing windowed
end-user applications (for Microsoft Windows). And yet, what do the vast majority of
Windows developers use? Microsoft’s Visual Basic (VB). This despite the fact that VB
produces the kind of code that becomes unmanageable when the program is only a few
pages long (and syntax that can be positively mystifying). As successful and popular as VB
is, from a language design viewpoint it’s a mountain of hacks. It would be nice to have the
ease and power of VB without the resulting unmanageable code. And that’s where I think
Java will shine: as the “next VB.” You may or may not shudder to hear this, but think about
it: so much of Java is designed to make it easy for the programmer to solve application-level
problems like networking and cross-platform UI, and yet it has a language design intended
to allow the creation of very large and flexible bodies of code. Add to this the fact that Java
has the most robust type checking and error-handling systems I’ve ever seen in a language
and you have the makings of a significant leap forward in programming productivity.

Should you use Java instead of C++ for your project? Other than Web applets, there are two
issues to consider. First, if you want to use a lot of existing libraries (and you’ll certainly get
a lot of productivity gains there), or if you have an existing C or C++ code base, Java might
slow your development down rather than speeding it up. If you’re developing all your code
primarily from scratch, then the simplicity of Java over C++ will shorten your development
time.

The biggest issue is speed. Interpreted Java has been slow, even 20 to 50 times slower than C
in the original Java interpreters. This has improved quite a bit over time, but it will still
remain an important number. Computers are about speed; if it wasn’t significantly faster to
do something on a computer then you’d do it by hand. (I’ve even heard it suggested that you
start with Java, to gain the short development time, then use a tool and support libraries to
translate your code to C++, if you need faster execution speed.)

The key to making Java feasible for most non-Web development projects is the appearance of
speed improvements like so-called “just-in time” (JIT) compilers and possibly even native
code compilers (two of which exist at this writing). Of course, native-code compilers will
eliminate the touted cross-platform execution of the compiled programs, but they will also
bring the speed of the executable closer to that of C and C++. And cross compiling programs
in Java should be a lot easier than doing so in C or C++. (In theory, you just recompile, but
that promise has been made before for other languages.)

You can find comparisons of Java and C++, observations about Java realities and
practicality and coding guidelines in the appendices.



71

b

2: Everything
is an object

Although it is based on C++, Java is more of a “pure” object-oriented
language.
Both C++ and Java are hybrid languages, but in Java the designers felt that the
hybridization was not as important as it was in C++. A hybrid language allows multiple
programming styles; the reason C++ is hybrid is to support backward compatibility with
the C language. Because C++ is a superset of the C language, it includes many of that
language’s undesirable features which can make some aspects of C++ overly complicated.

The Java language assumes that you want to do only object-oriented programming. This
means that before you can begin you must shift your mindset into an object-oriented world
(unless it’s already there). The benefit of this initial effort is the ability to program in a
language that is simpler to learn and to use than many other OOP languages. In this chapter
we’ll see the basic components of a Java program and we’ll learn that everything in Java is
an object, even a Java program.



72 Thinking in Java  www.BruceEckel.com

You manipulate objects
with handles
Each programming language has its own means of manipulating data. Sometimes the
programmer must constantly be aware of what type of manipulation is going on. Are you
manipulating the object directly or are you dealing with some kind of indirect representation
(a pointer in C or C++) that must be treated with a special syntax?

All this is simplified in Java. You treat everything as an object, so there is a single consistent
syntax that you use everywhere. Although you treat everything as an object, the identifier
you manipulate is actually a “handle” to an object. (You might see this called a reference or
even a pointer in other discussions of Java.) You might imagine this scene as a television (the
object) with your remote control (the handle). As long as you’re holding this handle, you
have a connection to the television, but when someone says “change the channel” or “lower
the volume,” what you’re manipulating is the handle, which in turn modifies the object. If
you want to move around the room and still control the television, you take the
remote/handle with you, not the television.

Also, the remote control can stand on its own, with no television. That is, just because you
have a handle doesn’t mean there’s necessarily an object connected to it. So if you want to
hold a word or sentence, you create a String handle:

String s;

But here you’ve created only the handle, not an object. If you decided to send a message to s
at this point, you’ll get an error (at run-time) because s isn’t actually attached to anything
(there’s no television). A safer practice, then, is always to initialize a handle when you create
it:

String s = "asdf";

However, this uses a special case: strings can be initialized with quoted text. Normally, you
must use a more general type of initialization for objects.

You must create
all the objects
When you create a handle, you want to connect it with a new object. You do so, in general,
with the new keyword. new says, “Make me a new one of these objects.” So in the above
example, you can say:

String s = new String("asdf");

Not only does this mean “Make me a new String,” but it also gives information about how
to make the String by supplying an initial character string.

Of course, String is not the only type that exists. Java comes with a plethora of ready-made
types. What’s more important is that you can create your own types. In fact, that’s the
fundamental activity in Java programming, and it’s what you’ll be learning about in the
rest of this book.



Chapter 2: Everything is an Object 73

Where storage lives
It’s useful to visualize some aspects of how things are laid out while the program is running,
in particular how memory is arranged. There are six different places to store data:

1. Registers. This is the fastest storage because it exists in a place different than that of
other storage: inside the processor. However, the number of registers is severely limited,
so registers are allocated by the compiler according to its needs. You don’t have direct
control, nor do you see any evidence in your programs that registers even exist.

2. The stack. This lives in the general RAM (random-access memory) area, but has direct
support from the processor via its stack pointer. The stack pointer is moved down to
create new memory and moved up to release that memory. This is an extremely fast and
efficient way to allocate storage, second only to registers. The Java compiler must know,
while it is creating the program, the exact size and lifetime of all the data that is stored
on the stack, because it must generate the code to move the stack pointer up and down.
This constraint places limits on the flexibility of your programs, so while some Java
storage exists on the stack – in particular, object handles – Java objects are not placed on
the stack.

3. The heap. This is a general-purpose pool of memory (also in the RAM area) where all
Java objects live. The nice thing about the heap is that, unlike the stack, the compiler
doesn’t need to know how much storage it needs to allocate from the heap or how long
that storage must stay on the heap. Thus, there’s a great deal of flexibility in using
storage on the heap. Whenever you need to create an object, you simply write the code
to create it using new and the storage is allocated on the heap when that code is
executed. And of course there’s a price you pay for this flexibility: it takes more time to
allocate heap storage.

4. Static storage. “Static” is used here in the sense of “in a fixed location” (although it’s
also in RAM). Static storage contains data that is available for the entire time a program
is running. You can use the static keyword to specify that a particular element of an
object is static, but Java objects themselves are never placed in static storage.

5. Constant storage. Constant values are often placed directly in the program code, which
is safe since they can never change. Sometimes constants are cordoned off by themselves
so that they can be optionally placed in read-only memory (ROM).

6. Non-RAM storage. If data lives completely outside a program it can exist while the
program is not running, outside the control of the program. The two primary examples
of this are streamed objects, in which objects are turned into streams of bytes, generally
to be sent to another machine, and persistent objects, in which the objects are placed on
disk so they will hold their state even when the program is terminated. The trick with
these types of storage is turning the objects into something that can exist on the other
medium, and yet can be resurrected into a regular RAM-based object when necessary.
Java 1.1 provides support for lightweight persistence, and future versions of Java might
provide more complete solutions for persistence.

Special case: primitive types
There is a group of types that gets special treatment; you can think of these as “primitive”
types that you use quite often in your programming. The reason for the special treatment is
that to create an object with new, especially a small, simple variable, isn’t very efficient
because new places objects on the heap. For these types Java falls back on the approach



74 Thinking in Java  www.BruceEckel.com

taken by C and C++. That is, instead of creating the variable using new, an “automatic”
variable is created that is not a handle. The variable holds the value, and it’s placed on the
stack so it’s much more efficient.

Java determines the size of each primitive type. These sizes don’t change from one machine
architecture to another as they do in most languages. This size invariance is one reason Java
programs are so portable.

Primitive type Size Minimum Maximum Wrapper
type

boolean 1-bit – – Boolean
char 16-bit Unicode 0 Unicode 216- 1 Character
byte 8-bit -128 +127 Byte1

short 16-bit -215 +215 – 1 Short1

int 32-bit -231 +231 – 1 Integer
long 64-bit -263 +263 – 1 Long
float 32-bit IEEE754 IEEE754 Float
double 64-bit IEEE754 IEEE754 Double
void – – – Void1

All numeric types are signed, so don’t go looking for unsigned types.

The primitive data types also have “wrapper” classes for them. That means that if you want
to make a non-primitive object on the heap to represent that primitive type, you use the
associated wrapper. For example:

char c = 'x';
Character C = new Character(c);

or you could also use:

Character C = new Character('x');

The reasons for doing this will be shown in a later chapter.

High-precision numbers
Java 1.1 has added two classes for performing high-precision arithmetic: BigInteger and
BigDecimal. Although these approximately fit into the same category as the “wrapper”
classes, neither one has a primitive analogue.

Both classes have methods that provide analogues for the operations that you perform on
primitive types. That is, you can do anything with a BigInteger or BigDecimal that you
can with an int or float, it’s just that you must use method calls instead of operators. Also,
since there’s more involved, the operations will be slower. You’re exchanging speed for
accuracy.

BigInteger supports arbitrary-precision integers. This means that you can accurately
represent integral values of any size without losing any information during operations.

BigDecimal is for arbitrary-precision fixed-point numbers; you can use these for accurate
monetary calculations, for example.

                                                

1 In Java version 1.1 only, not in 1.0.



Chapter 2: Everything is an Object 75

Consult your online documentation for details about the constructors and methods you can
call for these two classes.

Arrays in Java
Virtually all programming languages support arrays. Using arrays in C and C++ is perilous
because those arrays are only blocks of memory. If a program accesses the array outside of
its memory block or uses the memory before initialization (common programming errors)
there will be unpredictable results.2

One of the primary goals of Java is safety, so many of the problems that plague
programmers in C and C++ are not repeated in Java. A Java array is guaranteed to be
initialized and cannot be accessed outside of its range. The range checking comes at the price
of having a small amount of memory overhead on each array as well as verifying the index
at run time, but the assumption is that the safety and increased productivity is worth the
expense.

When you create an array of objects, you are really creating an array of handles, and each
of those handles is automatically initialized to a special value with its own keyword: null.
When Java sees null, it recognizes that the handle in question isn’t pointing to an object.
You must assign an object to each handle before you use it, and if you try to use a handle
that’s still null, the problem will be reported at run-time. Thus, typical array errors are
prevented in Java.

You can also create an array of primitives. Again, the compiler guarantees initialization
because it zeroes the memory for that array.

Arrays will be covered in detail in later chapters.

You never need to
destroy an object
In most programming languages, the concept of the lifetime of a variable occupies a
significant portion of the programming effort. How long does the variable last? If you are
supposed to destroy it, when should you? Confusion over variable lifetimes can lead to a lot
of bugs, and this section shows how Java greatly simplifies the issue by doing all the
cleanup work for you.

Scoping
Most procedural languages have the concept of scope. This determines both the visibility and
lifetime of the names defined within that scope. In C, C++ and Java, scope is determined by
the placement of curly braces {}. So for example:

{
  int x = 12;

                                                

2 In C++ you should often use the safer containers in the Standard Template Library as an alternative
to arrays.



76 Thinking in Java  www.BruceEckel.com

  /* only x available */
  {
    int q = 96;
    /* both x & q available */
  }
  /* only x available */
  /* q “out of scope” */
}

A variable defined within a scope is available only to the end of that scope.

Indentation makes Java code easier to read. Since Java is a free form language, the extra
spaces, tabs and carriage returns do not affect the resulting program.

Note that you cannot do the following, even though it is legal in C and C++:

{
  int x = 12;
  {
    int x = 96; /* illegal */
  }
}

The compiler will announce that the variable x has already been defined. Thus the C and
C++ ability to “hide” a variable in a larger scope is not allowed because the Java designers
thought that it led to confusing programs.

Scope of objects
Java objects do not have the same lifetimes as primitives. When you create a Java object
using new, it hangs around past the end of the scope. Thus if you use:

{
  String s = new String("a string");
} /* end of scope */

the handle s vanishes at the end of the scope. However, the String object that s was pointing
to is still occupying memory. In this bit of code, there is no way to access the object because
the only handle to it is out of scope. In later chapters you’ll see how the handle to the object
can be passed around and duplicated during the course of a program.

It turns out that because objects created with new stay around for as long as you want
them, a whole slew of programming problems simply vanish in C++ and Java. The hardest
problems seem to occur in C++ because you don’t get any help from the language in
making sure that the objects are available when they’re needed. And more importantly, in
C++ you must make sure that you destroy the objects when you’re done with them.

That brings up an interesting question. If Java leaves the objects lying around, what keeps
them from filling up memory and halting your program? This is exactly the kind of problem
that would occur in C++. This is where a bit of magic happens. Java has a garbage collector,
which looks at all the objects that were created with new and figures out which ones are not
being referenced anymore. Then it releases the memory for those objects, so the memory can
be used for new objects. This means that you never need to worry about reclaiming memory
yourself. You simply create objects, and when you no longer need them they will go away



Chapter 2: Everything is an Object 77

by themselves. This eliminates a certain class of programming problem: the so-called
“memory leak,” in which a programmer forgets to release memory.

Creating new
data types: class
If everything is an object, what determines how a particular class of object looks and
behaves? Put another way, what establishes the type of an object? You might expect there to
be a keyword called “type” and that certainly would have made sense. Historically, however,
most object-oriented languages have used the keyword class to mean “I’m about to tell you
what a new type of object looks like.” The class keyword (which is so common that it will
not be emboldened throughout the book) is followed by the name of the new type. For
example:

class ATypeName { /* class body goes here */ }

This introduces a new type, so you can now create an object of this type using new:

ATypeName a = new ATypeName();

In ATypeName, the class body consists only of a comment (the stars and slashes and what is
inside, which will be discussed later in this chapter) so there is not too much that you can do
with it. In fact, you cannot tell it to do much of anything (that is, you cannot send it any
interesting messages) until you define some methods for it.

Fields and methods
When you define a class (and all you do in Java is define classes, make objects of those
classes and send messages to those objects), you can put two types of elements in your class:
data members (sometimes called fields) and member functions (typically called methods). A
data member is an object (that you communicate with via its handle) of any type. It can also
be one of the primitive types (which isn’t a handle). If it is a handle to an object, you must
initialize that handle to connect it to an actual object (using new, as seen earlier) in a special
function called a constructor (described fully in Chapter 4). If it is a primitive type you can
initialize it directly at the point of definition in the class. (As you’ll see later, handles can also
be initialized at the point of definition.)

Each object keeps its own storage for its data members; the data members are not shared
among objects. Here is an example of a class with some data members:

class DataOnly {
  int i;
  float f;
  boolean b;
}

This class doesn’t do anything, but you can create an object:

DataOnly d = new DataOnly();

You can assign values to the data members, but you must first know how to refer to a
member of an object. This is accomplished by stating the name of the object handle, followed



78 Thinking in Java  www.BruceEckel.com

by a period (dot), followed by the name of the member inside the object
(objectHandle.member). For example:

d.i = 47;
d.f = 1.1f;
d.b = false;

It is also possible that your object might contain other objects that contain data you’d like to
modify. For this, you just keep “connecting the dots.” For example:

myPlane.leftTank.capacity = 100;

The DataOnly class cannot do much of anything except hold data, because it has no member
functions (methods). To understand how those work, you must first understand arguments
and return values, which will be described shortly.

Default values for primitive members
When a primitive data type is a member of a class, it is guaranteed to get a default value if
you do not initialize it:

Primitive type Default
Boolean false
Char ‘\u0000’ (null)
byte (byte)0
short (short)0
int 0
long 0L
float 0.0f
double 0.0d

Note carefully that the default values are what Java guarantees when the variable is used as
a member of a class. This ensures that member variables of primitive types will always be
initialized (something C++ doesn’t do), reducing a source of bugs.

However, this guarantee doesn’t apply to “local” variables – those that are not fields of a
class. Thus, if within a function definition you have:

int x;

Then x will get some random value (as in C and C++); it will not automatically be initialized
to zero. You are responsible for assigning an appropriate value before you use x. If you
forget, Java definitely improves on C++: you get a compile-time error telling you the
variable might not have been initialized. (Many C++ compilers will warn you about
uninitialized variables, but in Java these are errors.)

Methods, arguments
and return values
Up until now, the term function has been used to describe a named subroutine. The term that
is more commonly used in Java is method, as in “a way to do something.” If you want, you



Chapter 2: Everything is an Object 79

can continue thinking in terms of functions. It’s really only a syntactic difference, but from
now on “method” will be used in this book rather than “function.”

Methods in Java determine the messages an object can receive. In this section you will learn
how simple it is to define a method.

The fundamental parts of a method are the name, the arguments, the return type, and the
body. Here is the basic form:

returnType methodName( /* argument list */ ) {
  /* Method body */
}

The return type is the type of the value that pops out of the method after you call it. The
method name, as you might imagine, identifies the method. The argument list gives the
types and names for the information you want to pass into the method.

Methods in Java can be created only as part of a class. A method can be called only for an
object,3 and that object must be able to perform that method call. If you try to call the
wrong method for an object, you’ll get an error message at compile time. You call a method
for an object by naming the object followed by a period (dot), followed by the name of the
method and its argument list, like this: objectName.methodName(arg1, arg2, arg3). For
example, suppose you have a method f( ) that takes no arguments and returns a value of
type int. Then, if you have an object called a for which f( ) can be called, you can say this:

int x = a.f();

The type of the return value must be compatible with the type of x.

This act of calling a method is commonly referred to as sending a message to an object. In the
above example, the message is f( ) and the object is a. Object-oriented programming is often
summarized as simply “sending messages to objects.”

The argument list
The method argument list specifies what information you pass into the method. As you
might guess, this information – like everything else in Java – takes the form of objects. So,
what you must specify in the argument list are the types of the objects to pass in and the
name to use for each one. As in any situation in Java where you seem to be handing objects
around, you are actually passing handles.4 The type of the handle must be correct, however.
If the argument is supposed to be a String, what you pass in must be a string.

Consider a method that takes a string as its argument. Here is the definition, which must be
placed within a class definition for it to compile:

int storage(String s) {
  return s.length() * 2;
}

                                                

3 static methods, which you’ll learn about soon, can be called for the class, without an object.

4 With the usual exception of the aforementioned “special” data types boolean, char, byte, short, int,
long, float, and double. In general, though, you pass objects, which really means you pass handles to
objects.



80 Thinking in Java  www.BruceEckel.com

This method tells you how many bytes are required to hold the information in a particular
String. (Each char in a String is 16 bits, or two bytes, long, to support Unicode characters.)
The argument is of type String and is called s. Once s is passed into the method, you can
treat it just like any other object. (You can send messages to it.) Here, the length( ) method is
called, which is one of the methods for Strings; it returns the number of characters in a
string.

You can also see the use of the return keyword, which does two things. First, it means “leave
the method, I’m done.” Second, if the method produces a value, that value is placed right
after the return statement. In this case, the return value is produced by evaluating the
expression s.length( ) * 2.

You can return any type you want, but if you don’t want to return anything at all, you do
so by indicating that the method returns void. Here are some examples:

boolean flag() { return true; }
float naturalLogBase() { return 2.718; }
void nothing() { return; }
void nothing2() {}

When the return type is void, then the return keyword is used only to exit the method, and
is therefore unnecessary when you reach the end of the method. You can return from a
method at any point, but if you’ve given a non-void return type then the compiler will
ensure that you return the appropriate type of value regardless of where you return.

At this point, it can look like a program is just a bunch of objects with methods that take
other objects as arguments and send messages to those other objects. That is indeed much of
what goes on, but in the following chapter you’ll learn how to do the detailed low-level
work by making decisions within a method. For this chapter, sending messages will suffice.

Building a Java program
There are several other issues you must understand before seeing your first Java program.

Name visibility
A problem in any programming language is the control of names. If you use a name in one
module of the program, and another programmer uses the same name in another module,
how do you distinguish one name from another and prevent the two names from
“clashing”? In C this is a particular problem because a program is often an unmanageable
sea of names. C++ classes (on which Java classes are based) nest functions within classes so
they cannot clash with function names nested within other classes. However, C++ still
allowed global data and global functions, so clashing was still possible. To solve this
problem, C++ introduced namespaces using additional keywords.

Java was able to avoid all of this by taking a fresh approach. To produce an unambiguous
name for a library, the specifier used is not unlike an Internet domain name. In fact, the Java
creators want you to use your Internet domain name in reverse since those are guaranteed
to be unique. Since my domain name is BruceEckel.com, my utility library of foibles would
be named com.bruceeckel.utility.foibles. After your reversed domain name, the dots are
intended to represent subdirectories.



Chapter 2: Everything is an Object 81

In Java 1.0 and Java 1.1 the domain extension com, edu, org, net, etc., was capitalized by
convention, so the library would appear: COM.bruceeckel.utility.foibles. Partway through
the development of Java 1.2, however, it was discovered that this caused problems and so
now the entire package name is lowercase.

This mechanism in Java means that all of your files automatically live in their own
namespaces, and each class within a file automatically has a unique identifier. (Class names
within a file must be unique, of course.) So you do not need to learn special language
features to solve this problem – the language takes care of it for you.

Using other components
Whenever you want to use a predefined class in your program, the compiler must know
how to locate it. Of course, the class might already exist in the same source code file that it’s
being called from. In that case, you simply use the class – even if the class doesn’t get defined
until later in the file. Java eliminates the “forward referencing” problem so you don’t need to
think about it.

What about a class that exists in some other file? You might think that the compiler should
be smart enough to simply go and find it, but there is a problem. Imagine that you want to
use a class of a particular name, but the definition for that class exists in more than one file.
Or worse, imagine that you’re writing a program, and as you’re building it you add a new
class to your library that conflicts with the name of an existing class.

To solve this problem, you must eliminate all potential ambiguities. This is accomplished by
telling the Java compiler exactly what classes you want using the import keyword. import
tells the compiler to bring in a package, which is a library of classes. (In other languages, a
library could consist of functions and data as well as classes, but remember that all code in
Java must be written inside a class.)

Most of the time you’ll be using components from the standard Java libraries that come
with your compiler. With these, you don’t need to worry about long, reversed domain
names; you just say, for example:

import java.util.Vector;

to tell the compiler that you want to use Java’s Vector class. However, util contains a
number of classes and you might want to use several of them without declaring them all
explicitly. This is easily accomplished by using ‘*’ to indicate a wildcard:

import java.util.*;

It is more common to import a collection of classes in this manner than to import classes
individually.

The sstatic keyword
Ordinarily, when you create a class you are describing how objects of that class look and
how they will behave. You don’t actually get anything until you create an object of that
class with new, and at that point data storage is created and methods become available.

But there are two situations in which this approach is not sufficient. One is if you want to
have only one piece of storage for a particular piece of data, regardless of how many objects
are created, or even if no objects are created. The other is if you need a method that isn’t
associated with any particular object of this class. That is, you need a method that you can



82 Thinking in Java  www.BruceEckel.com

call even if no objects are created. You can achieve both of these effects with the static
keyword. When you say something is static, it means that data or method is not tied to any
particular object instance of that class. So even if you’ve never created an object of that class
you can call a static method or access a piece of static data. With ordinary, non-static data
and methods you must create an object and use that object to access the data or method,
since non-static data and methods must know the particular object they are working with.
Of course, since static methods don’t need any objects to be created before they are used,
they cannot directly access non-static members or methods by simply calling those other
members without referring to a named object (since non-static members and methods must
be tied to a particular object).

Some object-oriented languages use the terms class data and class methods, meaning that the
data and methods exist only for the class as a whole, and not for any particular objects of
the class. Sometimes the Java literature uses these terms too.

To make a data member or method static, you simply place the keyword before the
definition. For example, this produces a static data member and initializes it:

class StaticTest {
    static int i = 47;
}

Now even if you make two StaticTest objects, there will still be only one piece of storage for
StaticTest.i. Both objects will share the same i. Consider:

StaticTest st1 = new StaticTest();
StaticTest st2 = new StaticTest();

At this point, both st1.i and st2.i have the same value of 47 since they refer to the same
piece of memory.

There are two ways to refer to a static variable. As indicated above, you can name it via an
object, by saying, for example, st2.i. You can also refer to it directly through its class name,
something you cannot do with a non-static member. (This is the preferred way to refer to a
static variable since it emphasizes that variable’s static nature.)

StaticTest.i++;

The ++ operator increments the variable. At this point, both st1.i and st2.i will have the
value 48.

Similar logic applies to static methods. You can refer to a static method either through an
object as you can with any method, or with the special additional syntax
classname.method( ). You define a static method in a similar way:

class StaticFun {
  static void incr() { StaticTest.i++; }
}

You can see that the StaticFun method incr( ) increments the static data i. You can call
incr( ) in the typical way, through an object:

StaticFun sf = new StaticFun();
sf.incr();

Or, because incr( ) is a static method, you can call it directly through its class:



Chapter 2: Everything is an Object 83

StaticFun.incr();

While static, when applied to a data member, definitely changes the way the data is created
(one for each class vs. the non-static one for each object), when applied to a method it’s not
so dramatic. An important use of static for methods is to allow you to call that method
without creating an object. This is essential, as we will see, in defining the main( ) method
that is the entry point for running an application.

Like any method, a static method can create or use named objects of its type, so a static
method is often used as a “shepherd” for a flock of instances of its own type.

Your first Java program
Finally, here’s the program.5 It prints out information about the system that it’s running on
using various methods of the System object from the Java standard library. Note that an
additional style of comment is introduced here: the ‘//’, which is a comment until the end of
the line:

// Property.java
import java.util.*;

public class Property {
  public static void main(String[] args) {
    System.out.println(new Date());
    Properties p = System.getProperties();
    p.list(System.out);
    System.out.println("--- Memory Usage:");
    Runtime rt = Runtime.getRuntime();
    System.out.println("Total Memory = "
                       + rt.totalMemory()
                       + " Free Memory = "
                       + rt.freeMemory());
  }
}

At the beginning of each program file, you must place the import statement to bring in any
extra classes you’ll need for the code in that file. Note that it is “extra.” That’s because
there’s a certain library of classes that are automatically brought into every Java file:
java.lang. Start up your Web browser and look at the documentation from Sun. (If you
haven’t downloaded it from java.sun.com or otherwise installed the Java documentation, do

                                                

5 Some programming environments will flash programs up on the screen and close them before you've
had a chance to see the results. You can put in the following bit of code at the end of main( ) to pause
the output:

  try {

      Thread.currentThread().sleep(5 * 1000);

    } catch(InterruptedException e) {}

  }

This will pause the output for five seconds. This code involves concepts that will not be introduced
until much later in the book, so you won’t understand it until then, but it will do the trick.



84 Thinking in Java  www.BruceEckel.com

so now). If you look at the packages.html file, you’ll see a list of all the different class
libraries that come with Java. Select java.lang. Under “Class Index” you’ll see a list of all the
classes that are part of that library. Since java.lang is implicitly included in every Java code
file, these classes are automatically available. In the list, you’ll see System and Runtime,
which are used in Property.java. There’s no Date class listed in java.lang, which means
you must import another library to use that. If you don’t know the library where a
particular class is, or if you want to see all of the classes, you can select “Class Hierarchy” in
the Java documentation. In a Web browser, this takes awhile to construct, but you can find
every single class that comes with Java. Then you can use the browser’s “find” function to
find Date. When you do you’ll see it listed as java.util.Date, which lets you know that it’s
in the util library and that you must import java.util.* in order to use Date.

If you look at the documentation starting from the packages.html file (which I’ve set in my
Web browser as the default starting page), select java.lang and then System. You’ll see that
the System class has several fields, and if you select out you’ll discover that it’s a static
PrintStream object. Since it’s static you don’t need to create anything. The out object is
always there and you can just use it. What you can do with this out object is determined by
the type it is: a PrintStream. Conveniently, PrintStream is shown in the description as a
hyperlink, so if you click on that you’ll see a list of all the methods you can call for
PrintStream. There are quite a few and these will be covered later in the book. For now all
we’re interested in is println( ), which in effect means “print out what I’m giving you to the
console and end with a new line.” Thus, in any Java program you write you can say
System.out.println(“things”) whenever you want to print something to the console.

The name of the class is the same as the name of the file. When you’re creating a stand-
alone program such as this one, one of the classes in the file must have the same name as the
file. (The compiler complains if you don’t do this.) That class must contain a method called
main( ) with the signature shown:

public static void main(String[] args) {

The public keyword means that the method is available to the outside world (described in
detail in Chapter 5). The argument to main( ) is an array of String objects. The args won’t
be used in this program, but they need to be there because they hold the arguments invoked
on the command line.

The first line of the program is quite interesting:

System.out.println(new Date());

Consider the argument: a Date object is being created just to send its value to println( ). As
soon as this statement is finished, that Date is unnecessary, and the garbage collector can
come along and get it anytime. We don’t need to worry about cleaning it up.

The second line calls System.getProperties( ). If you consult the online documentation
using your Web browser, you’ll see that getProperties( ) is a static method of class System.
Because it’s static, you don’t need to create any objects in order to call the method; a static
method is always available whether an object of its class exists or not. When you call
getProperties( ), it produces the system properties as an object of class Properties. The
handle that comes back is stored in a Properties handle called p. In line three, you can see
that the Properties object has a method called list( ) that sends its entire contents to a
PrintStream object that you pass as an argument.

The fourth and sixth lines in main( ) are typical print statements. Note that to print
multiple String values, we simply separate them with ‘+’ signs. However, there’s something
strange going on here. The ‘+’ sign doesn’t mean addition when it’s used with String



Chapter 2: Everything is an Object 85

objects. Normally, you wouldn’t ascribe any meaning to ‘+’ when you think of strings.
However, the Java String class is blessed with something called “operator overloading.” That
is, the ‘+’ sign, only when used with String objects, behaves differently from the way it does
with everything else. For Strings, it means “concatenate these two strings.”

But that’s not all. If you look at the statement:

    System.out.println("Total Memory = "
                       + rt.totalMemory()
                       + " Free Memory = "
                       + rt.freeMemory());

totalMemory( ) and freeMemory( ) return numerical values, and not String objects. What
happens when you “add” a numerical value to a String? The compiler sees the problem and
magically calls a method that turns that numerical value (int, float, etc.) into a String,
which can then be “added” with the plus sign. This automatic type conversion also falls into
the category of operator overloading.

Much of the Java literature states vehemently that operator overloading (a feature in C++)
is bad, and yet here it is! However, this is wired into the compiler, only for String objects,
and you can’t overload operators for any of the code you write.

The fifth line in main( ) creates a Runtime object by calling the static method
getRuntime( ) for the class Runtime. What’s returned is a handle to a Runtime object;
whether this is a static object or one created with new doesn’t need to concern you, since
you can use the objects without worrying about who’s responsible for cleaning them up. As
shown, the Runtime object can tell you information about memory usage.

Comments and embedded
documentation
There are two types of comments in Java. The first is the traditional C-style comment that
was inherited by C++. These comments begin with a /* and continue, possibly across many
lines, until a */. Note that many programmers will begin each line of a continued comment
with a *, so you’ll often see:

/* This is
*  A comment that continues
*  Across lines
*/

Remember, however, that everything inside the /* and */ is ignored so it’s no different to
say:

/* This is a comment that
continues across lines */

The second form of comment comes from C++. It is the single-line comment, which starts
at a // and continues until the end of the line. This type of comment is convenient and
commonly used because it’s easy. You don’t need to hunt on the keyboard to find / and then
* (you just press the same key twice), and you don’t need to close the comment. So you will
often see:



86 Thinking in Java  www.BruceEckel.com

// this is a one-line comment

Comment documentation
One of the thoughtful parts of the Java language is that the designers didn’t consider writing
code to be the only important activity – they also thought about documenting it. Possibly
the biggest problem with documenting code has been maintaining that documentation. If the
documentation and the code are separate, it becomes a hassle to change the documentation
every time you change the code. The solution seems simple: link the code to the
documentation. The easiest way to do this is to put everything in the same file. To complete
the picture, however, you need a special comment syntax to mark special documentation
and a tool to extract those comments and put them in a useful form. This is what Java has
done.

The tool to extract the comments is called javadoc. It uses some of the technology from the
Java compiler to look for special comment tags you put in your programs. It not only
extracts the information marked by these tags, but it also pulls out the class name or
method name that adjoins the comment. This way you can get away with the minimal
amount of work to generate decent program documentation.

The output of javadoc is an HTML file that you can view with your Web browser. This tool
allows you to create and maintain a single source file and automatically generate useful
documentation. Because of javadoc we have a standard for creating documentation, and it’s
easy enough that we can expect or even demand documentation with all Java libraries.

Syntax
All of the javadoc commands occur only within /** comments. The comments end with */
as usual. There are two primary ways to use javadoc: embed HTML, or use “doc tags.” Doc
tags are commands that start with a ‘@’ and are placed at the beginning of a comment line.
(A leading ‘*’, however, is ignored.)

There are three “types” of comment documentation, which correspond to the element the
comment precedes: class, variable, or method. That is, a class comment appears right before
the definition of a class; a variable comment appears right in front of the definition of a
variable and a method comment appears right in front of the definition of a method. As a
simple example:

/** A class comment */
public class docTest {
  /** A variable comment */
  public int i;
  /** A method comment */
  public void f() {}
}

Note that javadoc will process comment documentation for only public and protected
members. Comments for private and “friendly” (see Chapter 5) members are ignored and
you’ll see no output. (You can use the -private flag to include private members as well.)
This makes sense, since only public and protected members are available outside the file,
which is the client programmer’s perspective. However, all class comments are included in
the output.



Chapter 2: Everything is an Object 87

The output for the above code is an HTML file that has the same standard format as all the
rest of the Java documentation, so users will be comfortable with the format and can easily
navigate your classes. It’s worth entering the above code, sending it through javadoc and
viewing the resulting HTML file to see the results.

Embedded HTML
Javadoc passes HTML commands through to the generated HTML document. This allows
you full use of HTML; however, the primary motive is to let you format code, such as:

/**
* <pre>
* System.out.println(new Date());
* </pre>
*/

You can also use HTML just as you would in any other Web document to format the regular
text in your descriptions:

/**
* You can <em>even</em> insert a list:
* <ol>
* <li> Item one
* <li> Item two
* <li> Item three
* </ol>
*/

Note that within the documentation comment, asterisks at the beginning of a line are
thrown away by javadoc, along with leading spaces. Javadoc reformats everything so that it
conforms to the standard documentation appearance. Don’t use headings such as <h1> or
<hr> as embedded HTML because javadoc inserts its own headings and yours will interfere
with them.

All types of comment documentation – class, variable, and method – can support embedded
HTML.

@see: referring to other classes
All three types of comment documentation can contain @see tags, which allow you to refer
to the documentation in other classes. Javadoc will generate HTML with the @see tags
hyperlinked to the other documentation. The forms are:

@see classname
@see fully-qualified-classname
@see fully-qualified-classname#method-name

Each one adds a hyperlinked “See Also” entry to the generated documentation. Javadoc will
not check the hyperlinks you give it to make sure they are valid.



88 Thinking in Java  www.BruceEckel.com

Class documentation tags
Along with embedded HTML and @see references, class documentation can include tags for
version information and the author’s name. Class documentation can also be used for
interfaces (described later in the book).

@version
This is of the form:

@version version-information

in which version-information is any significant information you see fit to include. When
the -version flag is placed on the javadoc command line, the version information will be
called out specially in the generated HTML documentation.

@author
This is of the form:

@author author-information

in which author-information is, presumably, your name, but it could also include your
email address or any other appropriate information. When the -author flag is placed on the
javadoc command line, the author information will be called out specially in the generated
HTML documentation.

You can have multiple author tags for a list of authors, but they must be placed
consecutively. All the author information will be lumped together into a single paragraph in
the generated HTML.

Variable documentation tags
Variable documentation can include only embedded HTML and @see references.

Method documentation tags
As well as embedded documentation and @see references, methods allow documentation
tags for parameters, return values, and exceptions.

@param
This is of the form:

@param parameter - name description

in which parameter-name is the identifier in the parameter list, and description is text
that can continue on subsequent lines. The description is considered finished when a new
documentation tag is encountered. You can have any number of these, presumably one for
each parameter.

@return
This is of the form:



Chapter 2: Everything is an Object 89

@return description

in which description gives you the meaning of the return value. It can continue on
subsequent lines.

@exception
Exceptions will be described in Chapter 9, but briefly they are objects that can be “thrown”
out of a method if that method fails. Although only one exception object can emerge when
you call a method, a particular method might produce any number of different types of
exceptions, all of which need descriptions. So the form for the exception tag is:

@exception fully-qualified-class-name description

in which fully-qualified-class-name gives an unambiguous name of an exception class
that’s defined somewhere, and description (which can continue on subsequent lines) tells
you why this particular type of exception can emerge from the method call.

@deprecated
This is new in Java 1.1. It is used to tag features that were superseded by an improved
feature. The deprecated tag is a suggestion that you no longer use this particular feature,
since sometime in the future it is likely to be removed. Methods that are marked
@deprecated cause the compiler to issue warnings if it is used.

Documentation example
 Here is the first Java program again, this time with documentation comments added:

//: Property.java
import java.util.*;

/** The first Thinking in Java example program.
 * Lists system information on current machine.
 * @author Bruce Eckel
 * @author http://www.BruceEckel.com
 * @version 1.0
*/
public class Property {
  /** Sole entry point to class & application
   * @param args array of string arguments
   * @return No return value
   * @exception exceptions No exceptions thrown
  */
  public static void main(String[] args) {
    System.out.println(new Date());
    Properties p = System.getProperties();
    p.list(System.out);
    System.out.println("--- Memory Usage:");
    Runtime rt = Runtime.getRuntime();
    System.out.println("Total Memory = "
                       + rt.totalMemory()
                       + " Free Memory = "
                       + rt.freeMemory());



90 Thinking in Java  www.BruceEckel.com

  }
} ///:~

The first line:

   //: Property.java

uses my own technique of putting a ‘:’ as a special marker for the comment line containing
the source file name. The last line also finishes with a comment, and this one indicates the
end of the source code listing, which allows it to be automatically extracted from the text of
the book and checked with a compiler. This is described in detail in Chapter 17.

Coding style
The unofficial standard in Java is to capitalize the first letter of a class name. If the class
name consists of several words, they are run together (that is, you don’t use underscores to
separate the names) and the first letter of each embedded word is capitalized, such as:

class AllTheColorsOfTheRainbow { // ...

For almost everything else: methods, fields (member variables) and object handle names, the
accepted style is just as it is for classes except that the first letter of the identifier is lower
case. For example:

class AllTheColorsOfTheRainbow {
  int anIntegerRepresentingColors;
  void changeTheHueOfTheColor(int newHue) {
    // ...
  }
  // ...
}

Of course, you should remember that the user must also type all these long names, and be
merciful.

Summary
In this chapter you have seen enough of Java programming to understand how to write a
simple program, and you have gotten an overview of the language and some of its basic
ideas. However, the examples so far have all been of the form “do this, then do that, then do
something else.” What if you want the program to make choices, such as “if the result of
doing this is red, do that, if not, then do something else”? The support in Java for this
fundamental programming activity will be covered in the next chapter.

Exercises
 1.  Following the first example in this chapter, create a “Hello, World” program that simply

prints out that statement. You need only a single method in your class (the “main” one
that gets executed when the program starts). Remember to make it static and to put the



Chapter 2: Everything is an Object 91

argument list in, even though you don’t use the argument list. Compile the program with
javac and run it using java.

 2.  Write a program that prints three arguments taken from the command line.

 3.  Find the code for the second version of Property.java, which is the simple comment
documentation example. Execute javadoc on the file and view the results with your Web
browser.

 4.  Take the program in Exercise 1 and add comment documentation to it. Extract this
comment documentation into an HTML file using javadoc and view it with your Web
browser.



93

c

3: Controlling program
flow

Like a sentient creature, a program must manipulate its world and make
choices during execution.
In Java you manipulate objects and data using operators, and you make choices with
execution control statements. Java was inherited from C++, so most of these statements
and operators will be familiar to C and C++ programmers. Java has also added some
improvements and simplifications.

Using Java operators
An operator takes one or more arguments and produces a new value. The arguments are in a
different form than ordinary method calls, but the effect is the same. You should be
reasonably comfortable with the general concept of operators from your previous
programming experience. Addition (+), subtraction and unary minus (-), multiplication (*),
division (/) and assignment (=) all work much the same in any programming language.

All operators produce a value from their operands. In addition, an operator can change the
value of an operand. This is called a side effect. The most common use for operators that
modify their operands is to generate the side effect, but you should keep in mind that the
value produced is available for your use just as in operators without side effects.

Almost all operators work only with primitives. The exceptions are ‘=’, ‘==’ and ‘!=’, which
work with all objects (and are a point of confusion for objects). In addition, the String class
supports ‘+’ and ‘+=’.



94 Thinking in Java  www.BruceEckel.com

Precedence
Operator precedence defines how an expression evaluates when several operators are present.
Java has specific rules that determine the order of evaluation. The easiest one to remember is
that multiplication and division happen before addition and subtraction. Programmers often
forget the other precedence rules, so you should use parentheses to make the order of
evaluation explicit. For example:

A = X + Y - 2/2 + Z;

has a very different meaning from the same statement with a particular grouping of
parentheses:

A = X + (Y - 2)/(2 + Z);

Assignment
Assignment is performed with the operator =. It means “take the value of the right-hand
side (often called the rvalue) and copy it into the left-hand side (often called the lvalue). An
rvalue is any constant, variable or expression that can produce a value, but an lvalue must
be a distinct, named variable. (That is, there must be a physical space to store a value.) For
instance, you can assign a constant value to a variable (A = 4;), but you cannot assign
anything to constant value – it cannot be an lvalue. (You can’t say 4 = A;.)

Assignment of primitives is quite straightforward. Since the primitive holds the actual value
and not a handle to an object, when you assign primitives you copy the contents from one
place to another. For example, if you say A = B for primitives, then the contents of B is
copied into A. If you then go on to modify A, B is naturally unaffected by this modification.
This is what you’ve come to expect as a programmer for most situations.

When you assign objects, however, things change. Whenever you manipulate an object,
what you’re manipulating is the handle, so when you assign “from one object to another”
you’re actually copying a handle from one place to another. This means that if you say C =
D for objects, you end up with both C and D pointing to the object that, originally, only D
pointed to. The following example will demonstrate this.

As an aside, the first thing you see is a package statement for package c03, indicating this
book’s Chapter 3. The first code listing of each chapter will contain a package statement like
this to establish the chapter number for the remaining code listings in that chapter. In
Chapter 17, you’ll see that as a result, all the listings in chapter 3 (except those that have
different package names) will be automatically placed in a subdirectory called c03, Chapter
4’s listings will be in c04 and so on. All this will happen via the CodePackager.java
program shown in Chapter 17, and in Chapter 5 the concept of packages will be fully
explained. What you need to recognize at this point is that, for this book, lines of code of the
form package c03 are used just to establish the chapter subdirectory for the listings in the
chapter.

In order to run the program, you must ensure that the classpath contains the root directory
where you installed the source code for this book. (From this directory, you’ll see the
subdirectories c02, c03, c04, etc.)

For later versions of Java (1.1.4 and on), when your main( ) is inside a file with a package
statement, you must give the full package name before the program name in order to run
the program. In this case, the command line is:



Chapter 3: Controlling Program Flow 95

java c03.Assignment

Keep this in mind any time you’re running a program that’s in a package.

Here’s the example:

//: Assignment.java
// Assignment with objects is a bit tricky
package c03;

class Number {
  int i;
}

public class Assignment {
  public static void main(String[] args) {
    Number n1 = new Number();
    Number n2 = new Number();
    n1.i = 9;
    n2.i = 47;
    System.out.println("1: n1.i: " + n1.i +
      ", n2.i: " + n2.i);
    n1 = n2;
    System.out.println("2: n1.i: " + n1.i +
      ", n2.i: " + n2.i);
    n1.i = 27;
    System.out.println("3: n1.i: " + n1.i +
      ", n2.i: " + n2.i);
  }
} ///:~

The Number class is simple, and two instances of it (n1 and n2) are created within main( ).
The i value within each Number is given a different value, and then n2 is assigned to n1,
and n1 is changed. In many programming languages you would expect n1 and n2 to be
independent at all times, but because you’ve assigned a handle here’s the output you’ll see:

1: n1.i: 9, n2.i: 47
2: n1.i: 47, n2.i: 47
3: n1.i: 27, n2.i: 27

Changing the n1 object appears to change the n2 object as well! This is because both n1 and
n2 contain the same handle, which is pointing to the same object. (The original handle that
was in n1 that pointed to the object holding a value of 9 was overwritten during the
assignment and effectively lost; its object will be cleaned up by the garbage collector.)

This phenomenon is often called aliasing and it’s a fundamental way that Java works with
objects. But what if you don’t want aliasing to occur in this case? You could forego the
assignment and say:

n1.i = n2.i;

This retains the two separate objects instead of tossing one and tying n1 and n2 to the same
object, but you’ll soon realize that manipulating the fields within objects is messy and goes
against good object-oriented design principles. This is a non-trivial topic, so it is left for
Chapter 12, which is devoted to aliasing. In the meantime, you should keep in mind that
assignment for objects can add surprises.



96 Thinking in Java  www.BruceEckel.com

Aliasing during method calls
Aliasing will also occur when you pass an object into a method:

//: PassObject.java
// Passing objects to methods can be a bit tricky

class Letter {
  char c;
}

public class PassObject {
  static void f(Letter y) {
    y.c = 'z';
  }
  public static void main(String[] args) {
    Letter x = new Letter();
    x.c = 'a';
    System.out.println("1: x.c: " + x.c);
    f(x);
    System.out.println("2: x.c: " + x.c);
  }
} ///:~

In many programming languages, the method f( ) would appear to be making a copy of its
argument Letter y inside the scope of the method. But once again a handle is being passed so
the line

y.c = 'z';

is actually changing the object outside of f( ). The output shows this:

1: x.c: a
2: x.c: z

Aliasing and its solution is a complex issue and, although you must wait until Chapter 12
for all the answers, you should be aware of it at this point so you can watch for pitfalls.

Mathematical operators
The basic mathematical operators are the same as the ones available in most programming
languages: addition (+), subtraction (-), division (/), multiplication (*) and modulus (%,
produces the remainder from integer division). Integer division truncates, rather than
rounds, the result.

Java also uses a shorthand notation to perform an operation and an assignment at the same
time. This is denoted by an operator followed by an equal sign, and is consistent with all the
operators in the language (whenever it makes sense). For example, to add 4 to the variable x
and assign the result to x, use: x += 4;.

This example shows the use of the mathematical operators:

//: MathOps.java
// Demonstrates the mathematical operators
import java.util.*;



Chapter 3: Controlling Program Flow 97

public class MathOps {
  // Create a shorthand to save typing:
  static void prt(String s) {
    System.out.println(s);
  }
  // shorthand to print a string and an int:
  static void pInt(String s, int i) {
    prt(s + " = " + i);
  }
  // shorthand to print a string and a float:
  static void pFlt(String s, float f) {
    prt(s + " = " + f);
  }
  public static void main(String[] args) {
    // Create a random number generator,
    // seeds with current time by default:
    Random rand = new Random();
    int i, j, k;
    // '%' limits maximum value to 99:
    j = rand.nextInt() % 100;
    k = rand.nextInt() % 100;
    pInt("j",j);  pInt("k",k);
    i = j + k; pInt("j + k", i);
    i = j - k; pInt("j - k", i);
    i = k / j; pInt("k / j", i);
    i = k * j; pInt("k * j", i);
    i = k % j; pInt("k % j", i);
    j %= k; pInt("j %= k", j);
    // Floating-point number tests:
    float u,v,w;  // applies to doubles, too
    v = rand.nextFloat();
    w = rand.nextFloat();
    pFlt("v", v); pFlt("w", w);
    u = v + w; pFlt("v + w", u);
    u = v - w; pFlt("v - w", u);
    u = v * w; pFlt("v * w", u);
    u = v / w; pFlt("v / w", u);
    // the following also works for
    // char, byte, short, int, long,
    // and double:
    u += v; pFlt("u += v", u);
    u -= v; pFlt("u -= v", u);
    u *= v; pFlt("u *= v", u);
    u /= v; pFlt("u /= v", u);
  }
} ///:~

The first thing you will see are some shorthand methods for printing: the prt( ) method
prints a String, the pInt( ) prints a String followed by an int and the pFlt( ) prints a String
followed by a float. Of course, they all ultimately end up using System.out.println( ).

To generate numbers, the program first creates a Random object. Because no arguments are
passed during creation, Java uses the current time as a seed for the random number



98 Thinking in Java  www.BruceEckel.com

generator. The program generates a number of different types of random numbers with the
Random object simply by calling different methods: nextInt( ), nextLong( ), nextFloat( ) or
nextDouble( ).

The modulus operator, when used with the result of the random number generator, limits
the result to an upper bound of the operand minus one (99 in this case).

Unary minus and plus operators
The unary minus (-) and unary plus (+) are the same operators as binary minus and plus.
The compiler figures out which use is intended by the way you write the expression. For
instance, the statement

x = -a;

has an obvious meaning. The compiler is able to figure out:

x = a * -b;

but the reader might get confused, so it is more clear to say:

x = a * (-b);

The unary minus produces the negative of the value. Unary plus provides symmetry with
unary minus, although it doesn’t do much.

Auto increment and decrement
Java, like C, is full of shortcuts. Shortcuts can make code much easier to type, and either
easier or harder to read.

Two of the nicer shortcuts are the increment and decrement operators (often referred to as
the auto-increment and auto-decrement operators). The decrement operator is -- and means
“decrease by one unit.” The increment operator is ++ and means “increase by one unit.” If A
is an int, for example, the expression ++A is equivalent to (A = A + 1). Increment and
decrement operators produce the value of the variable as a result.

There are two versions of each type of operator, often called the prefix and postfix versions.
Pre-increment means the ++ operator appears before the variable or expression, and post-
increment means the ++ operator appears after the variable or expression. Similarly, pre-
decrement means the -- operator appears before the variable or expression, and post-
decrement means the -- operator appears after the variable or expression. For pre-increment
and pre-decrement, (i.e., ++A or --A), the operation is performed and the value is produced.
For post-increment and post-decrement (i.e. A++ or A--), the value is produced, then the
operation is performed. As an example:

//: AutoInc.java
// Demonstrates the ++ and -- operators

public class AutoInc {
  public static void main(String[] args) {
    int i = 1;
    prt("i : " + i);
    prt("++i : " + ++i); // Pre-increment
    prt("i++ : " + i++); // Post-increment
    prt("i : " + i);



Chapter 3: Controlling Program Flow 99

    prt("--i : " + --i); // Pre-decrement
    prt("i-- : " + i--); // Post-decrement
    prt("i : " + i);
  }
  static void prt(String s) {
    System.out.println(s);
  }
} ///:~

The output for this program is:

i : 1
++i : 2
i++ : 2
i : 3
--i : 2
i-- : 2
i : 1

You can see that for the prefix form you get the value after the operation has been
performed, but with the postfix form you get the value before the operation is performed.
These are the only operators (other than those involving assignment) that have side effects.
(That is, they change the operand rather than using just its value.)

The increment operator is one explanation for the name C++, implying “one step beyond C.”
In an early Java speech, Bill Joy (one of the creators), said that “Java=C++--“ (C plus plus
minus minus), suggesting that Java is C++ with the unnecessary hard parts removed and
therefore a much simpler language. As you progress in this book you’ll see that many parts
are simpler, and yet Java isn’t that much easier than C++.

Relational operators
Relational operators generate a boolean result. They evaluate the relationship between the
values of the operands. A relational expression produces true if the relationship is true, and
false if the relationship is untrue. The relational operators are less than (<), greater than
(>), less than or equal to (<=), greater than or equal to (>=), equivalent (==) and not
equivalent (!=). Equivalence and nonequivalence works with all built-in data types, but the
other comparisons won’t work with type boolean.

Testing object equivalence
The relational operators == and != also work with all objects, but their meaning often
confuses the first-time Java programmer. Here’s an example:

//: Equivalence.java

public class Equivalence {
  public static void main(String[] args) {
    Integer n1 = new Integer(47);
    Integer n2 = new Integer(47);
    System.out.println(n1 == n2);
    System.out.println(n1 != n2);
  }
} ///:~



100 Thinking in Java  www.BruceEckel.com

The expression System.out.println(n1 == n2) will print out the result of the boolean
comparison within it. Surely the output should be true and then false, since both Integer
objects are the same. But while the contents of the objects are the same, the handles are not
the same and the operators == and != compare object handles. So the output is actually
false and then true. Naturally, this surprises people at first.

What if you want to compare the actual contents of an object for equivalence? You must use
the special method equals( ) that exists for all objects (not primitives, which work fine with
== and !=). Here’s how it’s used:

//: EqualsMethod.java

public class EqualsMethod {
  public static void main(String[] args) {
    Integer n1 = new Integer(47);
    Integer n2 = new Integer(47);
    System.out.println(n1.equals(n2));
  }
} ///:~

The result will be true, as you would expect. Ah, but it’s not as simple as that. If you create
your own class, like this:

//: EqualsMethod2.java

class Value {
  int i;
}

public class EqualsMethod2 {
  public static void main(String[] args) {
    Value v1 = new Value();
    Value v2 = new Value();
    v1.i = v2.i = 100;
    System.out.println(v1.equals(v2));
  }
} ///:~

you’re back to square one: the result is false. This is because the default behavior of
equals( ) is to compare handles. So unless you override equals( ) in your new class you
won’t get the desired behavior. Unfortunately, you won’t learn about overriding until
Chapter 7, but being aware of the way equals( ) behaves might save you some grief in the
meantime.

Most of the Java library classes implement equals( ) so that it compares the contents of
objects instead of their handles.

Logical operators
The logical operators AND (&&), OR (||) and NOT (!) produce a boolean value of true or
false based on the logical relationship of its arguments. This example uses the relational and
logical operators:

//: Bool.java
// Relational and logical operators



Chapter 3: Controlling Program Flow 101

import java.util.*;

public class Bool {
  public static void main(String[] args) {
    Random rand = new Random();
    int i = rand.nextInt() % 100;
    int j = rand.nextInt() % 100;
    prt("i = " + i);
    prt("j = " + j);
    prt("i > j is " + (i > j));
    prt("i < j is " + (i < j));
    prt("i >= j is " + (i >= j));
    prt("i <= j is " + (i <= j));
    prt("i == j is " + (i == j));
    prt("i != j is " + (i != j));

    // Treating an int as a boolean is
    // not legal Java
//! prt("i && j is " + (i && j));
//! prt("i || j is " + (i || j));
//! prt("!i is " + !i);

    prt("(i < 10) && (j < 10) is "
       + ((i < 10) && (j < 10)) );
    prt("(i < 10) || (j < 10) is "
       + ((i < 10) || (j < 10)) );
  }
  static void prt(String s) {
    System.out.println(s);
  }
} ///:~

You can apply AND, OR, or NOT to boolean values only. You can’t use a non-boolean as if it
were a boolean in a logical expression as you can in C and C++. You can see the failed
attempts at doing this commented out with a //! comment marker. The subsequent
expressions, however, produce boolean values using relational comparisons, then use logical
operations on the results.

One output listing looked like this:

i = 85
j = 4
i > j is true
i < j is false
i >= j is true
i <= j is false
i == j is false
i != j is true
(i < 10) && (j < 10) is false
(i < 10) || (j < 10) is true

Note that a boolean value is automatically converted to an appropriate text form if it’s used
where a String is expected.



102 Thinking in Java  www.BruceEckel.com

You can replace the definition for int in the above program with any other primitive data
type except boolean. Be aware, however, that the comparison of floating-point numbers is
very strict. A number that is the tiniest fraction different from another number is still “not
equal.” A number that is the tiniest bit above zero is still nonzero.

Short-circuiting
When dealing with logical operators you run into a phenomenon called “short circuiting.”
This means that the expression will be evaluated only until the truth or falsehood of the
entire expression can be unambiguously determined. As a result, all the parts of a logical
expression might not be evaluated. Here’s an example that demonstrates short-circuiting:

//: ShortCircuit.java
// Demonstrates short-circuiting behavior
// with logical operators.

public class ShortCircuit {
  static boolean test1(int val) {
    System.out.println("test1(" + val + ")");
    System.out.println("result: " + (val < 1));
    return val < 1;
  }
  static boolean test2(int val) {
    System.out.println("test2(" + val + ")");
    System.out.println("result: " + (val < 2));
    return val < 2;
  }
  static boolean test3(int val) {
    System.out.println("test3(" + val + ")");
    System.out.println("result: " + (val < 3));
    return val < 3;
  }
  public static void main(String[] args) {
    if(test1(0) && test2(2) && test3(2))
      System.out.println("expression is true");
    else
      System.out.println("expression is false");
  }
} ///:~

Each test performs a comparison against the argument and returns true or false. It also
prints information to show you that it’s being called. The tests are used in the expression:

if(test1(0) && test2(2) && test3(2))

You might naturally think that all three tests would be executed, but the output shows
otherwise:

test1(0)
result: true
test2(2)
result: false
expression is false



Chapter 3: Controlling Program Flow 103

The first test produced a true result, so the expression evaluation continues. However, the
second test produced a false result. Since this means that the whole expression must be
false, why continue evaluating the rest of the expression? It could be expensive. The reason
for short-circuiting, in fact, is precisely that; you can get a potential performance increase if
all the parts of a logical expression do not need to be evaluated.

Bitwise operators
The bitwise operators allow you to manipulate individual bits in an integral primitive data
type. Bitwise operators perform boolean algebra on the corresponding bits in the two
arguments to produce the result.

The bitwise operators come from C’s low-level orientation; you were often manipulating
hardware directly and had to set the bits in hardware registers. Java was originally designed
to be embedded in TV set-top boxes, so this low-level orientation still made sense. However,
you probably won’t use the bitwise operators much.

The bitwise AND operator (&) produces a one in the output bit if both input bits are one;
otherwise it produces a zero. The bitwise OR operator (|) produces a one in the output bit if
either input bit is a one and produces a zero only if both input bits are zero. The bitwise,
EXCLUSIVE OR, or XOR (^), produces a one in the output bit if one or the other input bit is
a one, but not both. The bitwise NOT (~, also called the ones complement operator) is a
unary operator; it takes only one argument. (All other bitwise operators are binary
operators.) Bitwise NOT produces the opposite of the input bit – a one if the input bit is zero,
a zero if the input bit is one.

The bitwise operators and logical operators use the same characters, so it is helpful to have a
mnemonic device to help you remember the meanings: since bits are “small,” there is only
one character in the bitwise operators.

Bitwise operators can be combined with the = sign to unite the operation and assignment:
&=, |= and ^= are all legitimate. (Since ~ is a unary operator it cannot be combined with
the = sign.)

The boolean type is treated as a one-bit value so it is somewhat different. You can perform a
bitwise AND, OR and XOR, but you can’t perform a bitwise NOT (presumably to prevent
confusion with the logical NOT). For booleans the bitwise operators have the same effect as
the logical operators except that they do not short circuit. Also, the bitwise operators on
booleans gives you a XOR logical operator that is not included under the list of “logical”
operators. You’re prevented from using booleans in shift expressions, which is described
next.

Shift operators
The shift operators also manipulate bits. They can be used solely with primitive, integral
types. The left-shift operator (<<) produces the operand to the left of the operator shifted to
the left by the number of bits specified after the operator (inserting zeroes at the lower-order
bits). The signed right-shift operator (>>) produces the operand to the left of the operator
shifted to the right by the number of bits specified after the operator. The signed right shift
>> uses sign extension: if the value is positive, zeroes are inserted at the higher-order bits; if
the value is negative, ones are inserted at the higher-order bits. Java has also added the
unsigned right shift >>>, which uses zero extension: regardless of the sign, zeroes are
inserted at the higher-order bits. This operator does not exist in C or C++.



104 Thinking in Java  www.BruceEckel.com

If you shift a char, byte, or short, it will be promoted to int before the shift takes place, and
the result will be an int. Only the five low-order bits of the right-hand side will be used. This
prevents you from shifting more than the number of bits in an int. If you’re operating on a
long, long will be the result. Only the six low-order bits of the right-hand side will be used
so you can’t shift more than the number of bits in a long. There is a problem, however, with
the unsigned right shift. If you use it with byte or short you might not get the correct
results. (It’s broken in Java 1.0 and Java 1.1.) These are promoted to int and right shifted,
but the zero extension does not occur, so you get -1 in those cases. The following example
can be used to test your implementation:

//: URShift.java
// Test of unsigned right shift

public class URShift {
  public static void main(String[] args) {
    int i = -1;
    i >>>= 10;
    System.out.println(i);
    long l = -1;
    l >>>= 10;
    System.out.println(l);
    short s = -1;
    s >>>= 10;
    System.out.println(s);
    byte b = -1;
    b >>>= 10;
    System.out.println(b);
  }
} ///:~

Shifts can be combined with the equal sign (<<= or >>= or >>>=). The lvalue is replaced
by the lvalue shifted by the rvalue.

Here’s an example that demonstrates the use of all the operators involving bits:

//: BitManipulation.java
// Using the bitwise operators
import java.util.*;

public class BitManipulation {
  public static void main(String[] args) {
    Random rand = new Random();
    int i = rand.nextInt();
    int j = rand.nextInt();
    pBinInt("-1", -1);
    pBinInt("+1", +1);
    int maxpos = 2147483647;
    pBinInt("maxpos", maxpos);
    int maxneg = -2147483648;
    pBinInt("maxneg", maxneg);
    pBinInt("i", i);
    pBinInt("~i", ~i);
    pBinInt("-i", -i);
    pBinInt("j", j);



Chapter 3: Controlling Program Flow 105

    pBinInt("i & j", i & j);
    pBinInt("i | j", i | j);
    pBinInt("i ^ j", i ^ j);
    pBinInt("i << 5", i << 5);
    pBinInt("i >> 5", i >> 5);
    pBinInt("(~i) >> 5", (~i) >> 5);
    pBinInt("i >>> 5", i >>> 5);
    pBinInt("(~i) >>> 5", (~i) >>> 5);

    long l = rand.nextLong();
    long m = rand.nextLong();
    pBinLong("-1L", -1L);
    pBinLong("+1L", +1L);
    long ll = 9223372036854775807L;
    pBinLong("maxpos", ll);
    long lln = -9223372036854775808L;
    pBinLong("maxneg", lln);
    pBinLong("l", l);
    pBinLong("~l", ~l);
    pBinLong("-l", -l);
    pBinLong("m", m);
    pBinLong("l & m", l & m);
    pBinLong("l | m", l | m);
    pBinLong("l ^ m", l ^ m);
    pBinLong("l << 5", l << 5);
    pBinLong("l >> 5", l >> 5);
    pBinLong("(~l) >> 5", (~l) >> 5);
    pBinLong("l >>> 5", l >>> 5);
    pBinLong("(~l) >>> 5", (~l) >>> 5);
  }
  static void pBinInt(String s, int i) {
    System.out.println(
      s + ", int: " + i + ", binary: ");
    System.out.print("   ");
    for(int j = 31; j >=0; j--)
      if(((1 << j) &  i) != 0)
        System.out.print("1");
      else
        System.out.print("0");
    System.out.println();
  }
  static void pBinLong(String s, long l) {
    System.out.println(
      s + ", long: " + l + ", binary: ");
    System.out.print("   ");
    for(int i = 63; i >=0; i--)
      if(((1L << i) & l) != 0)
        System.out.print("1");
      else
        System.out.print("0");
    System.out.println();
  }
} ///:~



106 Thinking in Java  www.BruceEckel.com

The two methods at the end, pBinInt( ) and pBinLong( ) take an int or a long, respectively,
and print it out in binary format along with a descriptive string. You can ignore the
implementation of these for now.

You’ll note the use of System.out.print( ) instead of System.out.println( ). The print( )
method does not put out a new line, so it allows you to output a line in pieces.

As well as demonstrating the effect of all the bitwise operators for int and long, this
example also shows the minimum, maximum, +1 and -1 values for int and long so you can
see what they look like. Note that the high bit represents the sign: 0 means positive and 1
means negative. The output for the int portion looks like this:

-1, int: -1, binary:
   11111111111111111111111111111111
+1, int: 1, binary:
   00000000000000000000000000000001
maxpos, int: 2147483647, binary:
   01111111111111111111111111111111
maxneg, int: -2147483648, binary:
   10000000000000000000000000000000
i, int: 59081716, binary:
   00000011100001011000001111110100
~i, int: -59081717, binary:
   11111100011110100111110000001011
-i, int: -59081716, binary:
   11111100011110100111110000001100
j, int: 198850956, binary:
   00001011110110100011100110001100
i & j, int: 58720644, binary:
   00000011100000000000000110000100
i | j, int: 199212028, binary:
   00001011110111111011101111111100
i ^ j, int: 140491384, binary:
   00001000010111111011101001111000
i << 5, int: 1890614912, binary:
   01110000101100000111111010000000
i >> 5, int: 1846303, binary:
   00000000000111000010110000011111
(~i) >> 5, int: -1846304, binary:
   11111111111000111101001111100000
i >>> 5, int: 1846303, binary:
   00000000000111000010110000011111
(~i) >>> 5, int: 132371424, binary:
   00000111111000111101001111100000

The binary representation of the numbers is referred to as signed two’s complement.

Ternary if-else operator
This operator is unusual because it has three operands. It is truly an operator because it
produces a value, unlike the ordinary if-else statement that you’ll see in the next section of
this chapter. The expression is of the form
boolean-exp ? value0 : value1
If boolean-exp evaluates to true, value0 is evaluated and its result becomes the value



Chapter 3: Controlling Program Flow 107

produced by the operator. If boolean-exp is false, value1 is evaluated and its result becomes
the value produced by the operator.

Of course, you could use an ordinary if-else statement (described later), but the ternary
operator is much terser. Although C prides itself on being a terse language, and the ternary
operator might have been introduced partly for efficiency, you should be somewhat wary of
using it on an everyday basis – it’s easy to produce unreadable code.

The conditional operator can be used for its side effects or for the value it produces, but in
general you want the value since that’s what makes the operator distinct from the if-else.
Here’s an example:

static int ternary(int i) {
  return i < 10 ? i * 100 : i * 10;
}

You can see that this code is more compact than what you’d need to write without the
ternary operator:

static int alternative(int i) {
  if (i < 10)
    return i * 100;
  return i * 10;
}

The second form is easier to understand, and doesn’t require a lot more typing. So be sure to
ponder your reasons when choosing the ternary operator.

The comma operator
The comma is used in C and C++ not only as a separator in function argument lists, but
also as an operator for sequential evaluation. The sole place that the comma operator is used
in Java is in for loops, which will be described later in this chapter.

String operator +
There’s one special usage of an operator in Java: the + operator can be used to concatenate
strings, as you’ve already seen. It seems a natural use of the + even though it doesn’t fit
with the traditional way that + is used. This capability seemed like a good idea in C++, so
operator overloading was added to C++ to allow the C++ programmer to add meanings to
almost any operator. Unfortunately, operator overloading combined with some of the other
restrictions in C++ turns out to be a fairly complicated feature for programmers to design
into their classes. Although operator overloading would have been much simpler to
implement in Java than it was in C++, this feature was still considered too complex, so Java
programmers cannot implement their own overloaded operators as C++ programmers can.

The use of the String + has some interesting behavior. If an expression begins with a String,
then all operands that follow must be Strings:

int x = 0, y = 1, z = 2;
String sString = "x, y, z ";
System.out.println(sString + x + y + z);

Here, the Java compiler will convert x, y, and z into their String representations instead of
adding them together first. However, if you say:



108 Thinking in Java  www.BruceEckel.com

System.out.println(x + sString);

earlier versions of Java will signal an error. (Later versions, however, will turn x into a
String.) So if you’re putting together a String (using an earlier version of Java) with
addition, make sure the first element is a String (or a quoted sequence of characters, which
the compiler recognizes as a String).

Common pitfalls when using operators
One of the pitfalls when using operators is trying to get away without parentheses when
you are even the least bit uncertain about how an expression will evaluate. This is still true
in Java.

An extremely common error in C and C++ looks like this:

while(x = y) {
    // ....
}

The programmer was trying to test for equivalence (==) rather than do an assignment. In C
and C++ the result of this assignment will always be true if y is nonzero, and you’ll
probably get an infinite loop. In Java, the result of this expression is not a boolean, and the
compiler expects a boolean and won’t convert from an int, so it will conveniently give you
a compile-time error and catch the problem before you ever try to run the program. So the
pitfall never happens in Java. (The only time you won’t get a compile-time error is when x
and y are boolean, in which case x = y is a legal expression, and in the above case, probably
an error.)

A similar problem in C and C++ is using bitwise AND and OR instead of logical. Bitwise
AND and OR use one of the characters (& or |) while logical AND and OR use two (&& and
||). Just as with = and ==, it’s easy to type just one character instead of two. In Java, the
compiler again prevents this because it won’t let you cavalierly use one type where it doesn’t
belong.

Casting operators
The word cast is used in the sense of “casting into a mold.” Java will automatically change
one type of data into another when appropriate. For instance, if you assign an integral value
to a floating-point variable, the compiler will automatically convert the int to a float.
Casting allows you to make this type conversion explicit, or to force it when it wouldn’t
normally happen.

To perform a cast, put the desired data type (including all modifiers) inside parentheses to
the left of any value. Here’s an example:

void casts() {
  int i = 200;
  long l = (long)i;
  long l2 = (long)200;
}

As you can see, it’s possible to perform a cast on a numeric value as well as on a variable. In
both casts shown here, however, the cast is superfluous, since the compiler will
automatically promote an int value to a long when necessary. You can still put a cast in to



Chapter 3: Controlling Program Flow 109

make a point or to make your code more clear. In other situations, a cast is essential just to
get the code to compile.

In C and C++, casting can cause some headaches. In Java, casting is safe, with the exception
that when you perform a so-called narrowing conversion (that is, when you go from a data
type that can hold more information to one that doesn’t hold as much) you run the risk of
losing information. Here the compiler forces you to do a cast, in effect saying “this can be a
dangerous thing to do – if you want me to do it anyway you must make the cast explicit.”
With a widening conversion an explicit cast is not needed because the new type will more than
hold the information from the old type so that no information is ever lost.

Java allows you to cast any primitive type to any other primitive type, except for boolean,
which doesn’t allow any casting at all. Class types do not allow casting. To convert one to
the other there must be special methods. (String is a special case, and you’ll find out later in
the book that objects can be cast within a family of types; an Oak can be cast to a Tree and
vice-versa, but not to a foreign type such as a Rock.)

Literals
Ordinarily when you insert a literal value into a program the compiler knows exactly what
type to make it. Sometimes, however, the type is ambiguous. When this happens you must
guide the compiler by adding some extra information in the form of characters associated
with the literal value. The following code shows these characters:

//: Literals.java

class Literals {
  char c = 0xffff; // max char hex value
  byte b = 0x7f; // max byte hex value
  short s = 0x7fff; // max short hex value
  int i1 = 0x2f; // Hexadecimal (lowercase)
  int i2 = 0X2F; // Hexadecimal (uppercase)
  int i3 = 0177; // Octal (leading zero)
  // Hex and Oct also work with long.
  long n1 = 200L; // long suffix
  long n2 = 200l; // long suffix
  long n3 = 200;
  //! long l6(200); // not allowed
  float f1 = 1;
  float f2 = 1F; // float suffix
  float f3 = 1f; // float suffix
  float f4 = 1e-45f; // 10 to the power
  float f5 = 1e+9f; // float suffix
  double d1 = 1d; // double suffix
  double d2 = 1D; // double suffix
  double d3 = 47e47d; // 10 to the power
} ///:~

Hexadecimal (base 16), which works with all the integral data types, is denoted by a leading
0x or 0X followed by 0–9 and a–f either in upper or lower case. If you try to initialize a
variable with a value bigger than it can hold (regardless of the numerical form of the value),
the compiler will give you an error message. Notice in the above code the maximum possible
hexadecimal values for char, byte, and short. If you exceed these, the compiler will



110 Thinking in Java  www.BruceEckel.com

automatically make the value an int and tell you that you need a narrowing cast for the
assignment. You’ll know you’ve stepped over the line.

Octal (base 8) is denoted by a leading zero in the number and digits from 0-7. There is no
literal representation for binary numbers in C, C++ or Java.

A trailing character after a literal value establishes its type. Upper or lowercase L means
long, upper or lowercase F means float and upper or lowercase D means double.

Exponents use a notation that I’ve always found rather dismaying: 1.39 e-47f. In science
and engineering, ‘e’ refers to the base of natural logarithms, approximately 2.718. (A more
precise double value is available in Java as Math.E.) This is used in exponentiation
expressions such as 1.39 x e-47, which means 1.39 x 2.718-47. However, when FORTRAN was
invented they decided that e would naturally mean “ten to the power,” which is an odd
decision because FORTRAN was designed for science and engineering and one would think its
designers would be sensitive about introducing such an ambiguity.1 At any rate, this custom
was followed in C, C++ and now Java. So if you’re used to thinking in terms of e as the
base of natural logarithms, you must do a mental translation when you see an expression
such as 1.39 e-47f in Java; it means 1.39 x 10-47.

Note that you don’t need to use the trailing character when the compiler can figure out the
appropriate type. With

long n3 = 200;

there’s no ambiguity, so an L after the 200 would be superfluous. However, with

float f4 = 1e-47f; // 10 to the power

the compiler normally takes exponential numbers as doubles, so without the trailing f it will
give you an error telling you that you must use a cast to convert double to float.

Promotion
You’ll discover that if you perform any mathematical or bitwise operations on primitive data
types that are smaller than an int (that is, char, byte, or short), those values will be
promoted to int before performing the operations, and the resulting value will be of type
int. So if you want to assign back into the smaller type, you must use a cast. (And, since
you’re assigning back into a smaller type, you might be losing information.) In general, the
largest data type in an expression is the one that determines the size of the result of that
expression; if you multiply a float and a double, the result will be double; if you add an int
and a long, the result will be long.

                                                

1 John Kirkham writes, “I started computing in 1962 using FORTRAN II on an IBM 1620. At that time,
and throughout the 1960s and into the 1970s, FORTRAN was an all uppercase language. This probably
started because many of the early input devices were old teletype units that used 5 bit Baudot code,
which had no lowercase capability. The ‘E’ in the exponential notation was also always upper case and
was never confused with the natural logarithm base ‘e’, which is always lower case. The ‘E’ simply
stood for exponential, which was for the base of the number system used – usually 10. At the time
octal was also widely used by programmers. Although I never saw it used, if I had seen an octal
number in exponential notation I would have considered it to be base 8. The first time I remember
seeing an exponential using a lower case ‘e’ was in the late 1970s and I also found it confusing. The
problem arose as lowercase crept into FORTRAN, not at its beginning. We actually had functions to use
if you really wanted to use the natural logarithm base, but they were all uppercase.”



Chapter 3: Controlling Program Flow 111

Java has no “sizeof”
In C and C++, the sizeof( ) operator satisfies a specific need: it tells you the number of bytes
allocated for data items. The most compelling need for sizeof( ) in C and C++ is portability.
Different data types might be different sizes on different machines, so the programmer must
find out how big those types are when performing operations that are sensitive to size. For
example, one computer might store integers in 32 bits, whereas another might store integers
as 16 bits. Programs could store larger values in integers on the first machine. As you might
imagine, portability is a huge headache for C and C++ programmers.

Java does not need a sizeof( ) operator for this purpose because all the data types are the
same size on all machines. You do not need to think about portability on this level – it is
designed into the language.

Precedence revisited
Upon hearing me complain about the complexity of remembering operator precedence
during one of my seminars, a student suggested a mnemonic that is simultaneously a
commentary: “Ulcer Addicts Really Like C A lot.”

Mnemonic Operator type Operators
Ulcer Unary + - ++ –  [[ rest…]]
Addicts Arithmetic (and shift) * / % + -  << >>
Really Relational > < >= <= == !=
Like Logical (and bitwise) && ||  &  |  ^
C Conditional (ternary) A > B ? X : Y
A Lot Assignment = (and compound assignment

like *=)

Of course, with the shift and bitwise operators distributed around the table it is not a perfect
mnemonic, but for non-bit operations it works.

A compendium of operators
The following example shows which primitive data types can be used with particular
operators. Basically, it is the same example repeated over and over, but using different
primitive data types. The file will compile without error because the lines that would cause
errors are commented out with a //!.

//: AllOps.java
// Tests all the operators on all the
// primitive data types to show which
// ones are accepted by the Java compiler.

class AllOps {
  // To accept the results of a boolean test:
  void f(boolean b) {}
  void boolTest(boolean x, boolean y) {
    // Arithmetic operators:
    //! x = x * y;
    //! x = x / y;
    //! x = x % y;
    //! x = x + y;



112 Thinking in Java  www.BruceEckel.com

    //! x = x - y;
    //! x++;
    //! x--;
    //! x = +y;
    //! x = -y;
    // Relational and logical:
    //! f(x > y);
    //! f(x >= y);
    //! f(x < y);
    //! f(x <= y);
    f(x == y);
    f(x != y);
    f(!y);
    x = x && y;
    x = x || y;
    // Bitwise operators:
    //! x = ~y;
    x = x & y;
    x = x | y;
    x = x ^ y;
    //! x = x << 1;
    //! x = x >> 1;
    //! x = x >>> 1;
    // Compound assignment:
    //! x += y;
    //! x -= y;
    //! x *= y;
    //! x /= y;
    //! x %= y;
    //! x <<= 1;
    //! x >>= 1;
    //! x >>>= 1;
    x &= y;
    x ^= y;
    x |= y;
    // Casting:
    //! char c = (char)x;
    //! byte B = (byte)x;
    //! short s = (short)x;
    //! int i = (int)x;
    //! long l = (long)x;
    //! float f = (float)x;
    //! double d = (double)x;
  }
  void charTest(char x, char y) {
    // Arithmetic operators:
    x = (char)(x * y);
    x = (char)(x / y);
    x = (char)(x % y);
    x = (char)(x + y);
    x = (char)(x - y);
    x++;
    x--;
    x = (char)+y;



Chapter 3: Controlling Program Flow 113

    x = (char)-y;
    // Relational and logical:
    f(x > y);
    f(x >= y);
    f(x < y);
    f(x <= y);
    f(x == y);
    f(x != y);
    //! f(!x);
    //! f(x && y);
    //! f(x || y);
    // Bitwise operators:
    x= (char)~y;
    x = (char)(x & y);
    x  = (char)(x | y);
    x = (char)(x ^ y);
    x = (char)(x << 1);
    x = (char)(x >> 1);
    x = (char)(x >>> 1);
    // Compound assignment:
    x += y;
    x -= y;
    x *= y;
    x /= y;
    x %= y;
    x <<= 1;
    x >>= 1;
    x >>>= 1;
    x &= y;
    x ^= y;
    x |= y;
    // Casting:
    //! boolean b = (boolean)x;
    byte B = (byte)x;
    short s = (short)x;
    int i = (int)x;
    long l = (long)x;
    float f = (float)x;
    double d = (double)x;
  }
  void byteTest(byte x, byte y) {
    // Arithmetic operators:
    x = (byte)(x* y);
    x = (byte)(x / y);
    x = (byte)(x % y);
    x = (byte)(x + y);
    x = (byte)(x - y);
    x++;
    x--;
    x = (byte)+ y;
    x = (byte)- y;
    // Relational and logical:
    f(x > y);
    f(x >= y);



114 Thinking in Java  www.BruceEckel.com

    f(x < y);
    f(x <= y);
    f(x == y);
    f(x != y);
    //! f(!x);
    //! f(x && y);
    //! f(x || y);
    // Bitwise operators:
    x = (byte)~y;
    x = (byte)(x & y);
    x = (byte)(x | y);
    x = (byte)(x ^ y);
    x = (byte)(x << 1);
    x = (byte)(x >> 1);
    x = (byte)(x >>> 1);
    // Compound assignment:
    x += y;
    x -= y;
    x *= y;
    x /= y;
    x %= y;
    x <<= 1;
    x >>= 1;
    x >>>= 1;
    x &= y;
    x ^= y;
    x |= y;
    // Casting:
    //! boolean b = (boolean)x;
    char c = (char)x;
    short s = (short)x;
    int i = (int)x;
    long l = (long)x;
    float f = (float)x;
    double d = (double)x;
  }
  void shortTest(short x, short y) {
    // Arithmetic operators:
    x = (short)(x * y);
    x = (short)(x / y);
    x = (short)(x % y);
    x = (short)(x + y);
    x = (short)(x - y);
    x++;
    x--;
    x = (short)+y;
    x = (short)-y;
    // Relational and logical:
    f(x > y);
    f(x >= y);
    f(x < y);
    f(x <= y);
    f(x == y);
    f(x != y);



Chapter 3: Controlling Program Flow 115

    //! f(!x);
    //! f(x && y);
    //! f(x || y);
    // Bitwise operators:
    x = (short)~y;
    x = (short)(x & y);
    x = (short)(x | y);
    x = (short)(x ^ y);
    x = (short)(x << 1);
    x = (short)(x >> 1);
    x = (short)(x >>> 1);
    // Compound assignment:
    x += y;
    x -= y;
    x *= y;
    x /= y;
    x %= y;
    x <<= 1;
    x >>= 1;
    x >>>= 1;
    x &= y;
    x ^= y;
    x |= y;
    // Casting:
    //! boolean b = (boolean)x;
    char c = (char)x;
    byte B = (byte)x;
    int i = (int)x;
    long l = (long)x;
    float f = (float)x;
    double d = (double)x;
  }
  void intTest(int x, int y) {
    // Arithmetic operators:
    x = x * y;
    x = x / y;
    x = x % y;
    x = x + y;
    x = x - y;
    x++;
    x--;
    x = +y;
    x = -y;
    // Relational and logical:
    f(x > y);
    f(x >= y);
    f(x < y);
    f(x <= y);
    f(x == y);
    f(x != y);
    //! f(!x);
    //! f(x && y);
    //! f(x || y);
    // Bitwise operators:



116 Thinking in Java  www.BruceEckel.com

    x = ~y;
    x = x & y;
    x = x | y;
    x = x ^ y;
    x = x << 1;
    x = x >> 1;
    x = x >>> 1;
    // Compound assignment:
    x += y;
    x -= y;
    x *= y;
    x /= y;
    x %= y;
    x <<= 1;
    x >>= 1;
    x >>>= 1;
    x &= y;
    x ^= y;
    x |= y;
    // Casting:
    //! boolean b = (boolean)x;
    char c = (char)x;
    byte B = (byte)x;
    short s = (short)x;
    long l = (long)x;
    float f = (float)x;
    double d = (double)x;
  }
  void longTest(long x, long y) {
    // Arithmetic operators:
    x = x * y;
    x = x / y;
    x = x % y;
    x = x + y;
    x = x - y;
    x++;
    x--;
    x = +y;
    x = -y;
    // Relational and logical:
    f(x > y);
    f(x >= y);
    f(x < y);
    f(x <= y);
    f(x == y);
    f(x != y);
    //! f(!x);
    //! f(x && y);
    //! f(x || y);
    // Bitwise operators:
    x = ~y;
    x = x & y;
    x = x | y;
    x = x ^ y;



Chapter 3: Controlling Program Flow 117

    x = x << 1;
    x = x >> 1;
    x = x >>> 1;
    // Compound assignment:
    x += y;
    x -= y;
    x *= y;
    x /= y;
    x %= y;
    x <<= 1;
    x >>= 1;
    x >>>= 1;
    x &= y;
    x ^= y;
    x |= y;
    // Casting:
    //! boolean b = (boolean)x;
    char c = (char)x;
    byte B = (byte)x;
    short s = (short)x;
    int i = (int)x;
    float f = (float)x;
    double d = (double)x;
  }
  void floatTest(float x, float y) {
    // Arithmetic operators:
    x = x * y;
    x = x / y;
    x = x % y;
    x = x + y;
    x = x - y;
    x++;
    x--;
    x = +y;
    x = -y;
    // Relational and logical:
    f(x > y);
    f(x >= y);
    f(x < y);
    f(x <= y);
    f(x == y);
    f(x != y);
    //! f(!x);
    //! f(x && y);
    //! f(x || y);
    // Bitwise operators:
    //! x = ~y;
    //! x = x & y;
    //! x = x | y;
    //! x = x ^ y;
    //! x = x << 1;
    //! x = x >> 1;
    //! x = x >>> 1;
    // Compound assignment:



118 Thinking in Java  www.BruceEckel.com

    x += y;
    x -= y;
    x *= y;
    x /= y;
    x %= y;
    //! x <<= 1;
    //! x >>= 1;
    //! x >>>= 1;
    //! x &= y;
    //! x ^= y;
    //! x |= y;
    // Casting:
    //! boolean b = (boolean)x;
    char c = (char)x;
    byte B = (byte)x;
    short s = (short)x;
    int i = (int)x;
    long l = (long)x;
    double d = (double)x;
  }
  void doubleTest(double x, double y) {
    // Arithmetic operators:
    x = x * y;
    x = x / y;
    x = x % y;
    x = x + y;
    x = x - y;
    x++;
    x--;
    x = +y;
    x = -y;
    // Relational and logical:
    f(x > y);
    f(x >= y);
    f(x < y);
    f(x <= y);
    f(x == y);
    f(x != y);
    //! f(!x);
    //! f(x && y);
    //! f(x || y);
    // Bitwise operators:
    //! x = ~y;
    //! x = x & y;
    //! x = x | y;
    //! x = x ^ y;
    //! x = x << 1;
    //! x = x >> 1;
    //! x = x >>> 1;
    // Compound assignment:
    x += y;
    x -= y;
    x *= y;
    x /= y;



Chapter 3: Controlling Program Flow 119

    x %= y;
    //! x <<= 1;
    //! x >>= 1;
    //! x >>>= 1;
    //! x &= y;
    //! x ^= y;
    //! x |= y;
    // Casting:
    //! boolean b = (boolean)x;
    char c = (char)x;
    byte B = (byte)x;
    short s = (short)x;
    int i = (int)x;
    long l = (long)x;
    float f = (float)x;
  }
} ///:~

Note that boolean is quite limited. You can assign to it the values true and false, and you
can test it for truth or falsehood, but you cannot add booleans or perform any other type of
operation on them.

In char, byte, and short you can see the effect of promotion with the arithmetic operators.
Each arithmetic operation on any of those types results in an int result, which must be
explicitly cast back to the original type (a narrowing conversion that might lose
information) to assign back to that type. With int values, however, you do not need to cast,
because everything is already an int. Don’t be lulled into thinking everything is safe,
though. If you multiply two ints that are big enough, you’ll overflow the result. The
following example demonstrates this:

//: Overflow.java
// Surprise! Java lets you overflow.

public class Overflow {
  public static void main(String[] args) {
    int big = 0x7fffffff; // max int value
    prt("big = " + big);
    int bigger = big * 4;
    prt("bigger = " + bigger);
  }
  static void prt(String s) {
    System.out.println(s);
  }
} ///:~

The output of this is:

big = 2147483647
bigger = -4

and you get no errors or warnings from the compiler, and no exceptions at run-time. Java is
good, but it’s not that good.



120 Thinking in Java  www.BruceEckel.com

Compound assignments do not require casts for char, byte, or short, even though they are
performing promotions that have the same results as the direct arithmetic operations. On
the other hand, the lack of the cast certainly simplifies the code.

You can see that, with the exception of boolean, any primitive type can be cast to any other
primitive type. Again, you must be aware of the effect of a narrowing conversion when
casting to a smaller type, otherwise you might unknowingly lose information during the
cast.

Execution control
Java uses all of C’s execution control statements, so if you’ve programmed with C or C++
then most of what you see will be familiar. Most procedural programming languages have
some kind of control statements, and there is often overlap among languages. In Java, the
keywords include if-else, while, do-while, for, and a selection statement called switch. Java
does not, however, support the much-maligned goto (which can still be the most expedient
way to solve certain types of problems). You can still do a goto-like jump, but it is much
more constrained than a typical goto.

true and false
All conditional statements use the truth or falsehood of a conditional expression to
determine the execution path. An example of a conditional expression is A == B. This uses
the conditional operator == to see if the value of A is equivalent to the value of B. The
expression returns true or false. Any of the relational operators you’ve seen earlier in this
chapter can be used to produce a conditional statement. Note that Java doesn’t allow you to
use a number as a boolean, even though it’s allowed in C and C++ (where truth is nonzero
and falsehood is zero). If you want to use a non-boolean in a boolean test, such as if(a),
you must first convert it to a boolean value using a conditional expression, such as if(a !=
0).

if-else
The if-else statement is probably the most basic way to control program flow. The else is
optional, so you can use if in two forms:

if(Boolean-expression)
  statement

or

if(Boolean-expression)
  statement
else
  statement

The conditional must produce a Boolean result. The statement means either a simple
statement terminated by a semicolon or a compound statement, which is a group of simple
statements enclosed in braces. Anytime the word “statement” is used, it always implies that
the statement can be simple or compound.



Chapter 3: Controlling Program Flow 121

As an example of if-else, here is a test( ) method that will tell you whether a guess is above,
below, or equivalent to a target number:

static int test(int testval) {
  int result = 0;
  if(testval > target)
    result = -1;
  else if(testval < target)
    result = +1;
  else
    result = 0; // match
  return result;
}

It is conventional to indent the body of a control flow statement so the reader might easily
determine where it begins and ends.

return
The return keyword has two purposes: it specifies what value a method will return (if it
doesn’t have a void return value) and it causes that value to be returned immediately. The
test( ) method above can be rewritten to take advantage of this:

static int test2(int testval) {
  if(testval > target)
    return -1;
  if(testval < target)
    return +1;
  return 0; // match
}

 There’s no need for else because the method will not continue after executing a return.

Iteration
while, do-while and for control looping and are sometimes classified as iteration statements.
A statement repeats until the controlling Boolean-expression evaluates to false. The form for a
while loop is

while(Boolean-expression)
  statement

The Boolean-expression is evaluated once at the beginning of the loop and again before each
further iteration of the statement.

Here’s a simple example that generates random numbers until a particular condition is met:

//: WhileTest.java
// Demonstrates the while loop

public class WhileTest {
  public static void main(String[] args) {
    double r = 0;
    while(r < 0.99d) {
      r = Math.random();



122 Thinking in Java  www.BruceEckel.com

      System.out.println(r);
    }
  }
} ///:~

This uses the static method random( ) in the Math library, which generates a double value
between 0 and 1. (It includes 0, but not 1.) The conditional expression for the while says
“keep doing this loop until the number is 0.99 or greater.” Each time you run this program
you’ll get a different-sized list of numbers.

do-while
The form for do-while is

do
  statement
while(Boolean-expression);

The sole difference between while and do-while is that the statement of the do-while
always executes at least once, even if the expression evaluates to false the first time. In a
while, if the conditional is false the first time the statement never executes. In practice, do-
while is less common than while.

for
A for loop performs initialization before the first iteration. Then it performs conditional
testing and, at the end of each iteration, some form of “stepping.” The form of the for loop
is:

for(initialization; Boolean-expression; step)
  statement

Any of the expressions initialization, Boolean-expression or step can be empty. The expression
is tested before each iteration, and as soon as it evaluates to false execution will continue at
the line following the for statement. At the end of each loop, the step executes.

for loops are usually used for “counting” tasks:

//: ListCharacters.java
// Demonstrates "for" loop by listing
// all the ASCII characters.

public class ListCharacters {
  public static void main(String[] args) {
  for( char c = 0; c < 128; c++)
    if (c != 26 )  // ANSI Clear screen
      System.out.println(
        "value: " + (int)c +
        " character: " + c);
  }
} ///:~



Chapter 3: Controlling Program Flow 123

Note that the variable c is defined at the point where it is used, inside the control expression
of the for loop, rather than at the beginning of the block denoted by the open curly brace.
The scope of c is the expression controlled by the for.

Traditional procedural languages like C require that all variables be defined at the beginning
of a block so when the compiler creates a block it can allocate space for those variables. In
Java and C++ you can spread your variable declarations throughout the block, defining
them at the point that you need them. This allows a more natural coding style and makes
code easier to understand.

You can define multiple variables within a for statement, but they must be of the same type:

for(int i = 0, j = 1;
    i < 10 && j != 11;
    i++, j++)
 /* body of for loop */;

The int definition in the for statement covers both i and j. The ability to define variables in
the control expression is limited to the for loop. You cannot use this approach with any of
the other selection or iteration statements.

The comma operator
Earlier in this chapter I stated that the comma operator (not the comma separator, which is
used to separate function arguments) has only one use in Java: in the control expression of a
for loop. In both the initialization and step portions of the control expression you can have a
number of statements separated by commas, and those statements will be evaluated
sequentially. The previous bit of code uses this ability. Here’s another example:

//: CommaOperator.java

public class CommaOperator {
  public static void main(String[] args) {
    for(int i = 1, j = i + 10; i < 5;
        i++, j = i * 2) {
      System.out.println("i= " + i + " j= " + j);
    }
  }
} ///:~

Here’s the output:

i= 1 j= 11
i= 2 j= 4
i= 3 j= 6
i= 4 j= 8

You can see that in both the initialization and step portions the statements are evaluated in
sequential order. Also, the initialization portion can have any number of definitions of one
type.

break and continue
Inside the body of any of the iteration statements you can also control the flow of the loop
by using break and continue. break quits the loop without executing the rest of the



124 Thinking in Java  www.BruceEckel.com

statements in the loop. continue stops the execution of the current iteration and goes back
to the beginning of the loop to begin a new iteration.

This program shows examples of break and continue within for and while loops:

//: BreakAndContinue.java
// Demonstrates break and continue keywords

public class BreakAndContinue {
  public static void main(String[] args) {
    for(int i = 0; i < 100; i++) {
      if(i == 74) break; // Out of for loop
      if(i % 9 != 0) continue; // Next iteration
      System.out.println(i);
    }
    int i = 0;
    // An "infinite loop":
    while(true) {
      i++;
      int j = i * 27;
      if(j == 1269) break; // Out of loop
      if(i % 10 != 0) continue; // Top of loop
      System.out.println(i);
    }
  }
} ///:~

In the for loop the value of i never gets to 100 because the break statement breaks out of
the loop when i is 74. Normally, you’d use a break like this only if you didn’t know when
the terminating condition was going to occur. The continue statement causes execution to
go back to the top of the iteration loop (thus incrementing i) whenever i is not evenly
divisible by 9. When it is, the value is printed.

The second portion shows an “infinite loop” that would, in theory, continue forever.
However, inside the loop there is a break statement that will break out of the loop. In
addition, you’ll see that the continue moves back to the top of the loop without completing
the remainder. (Thus printing happens only when the value of i is divisible by 9.) The output
is:

0
9
18
27
36
45
54
63
72
10
20
30
40

The value 0 is printed because 0 % 9 produces 0.



Chapter 3: Controlling Program Flow 125

A second form of the infinite loop is for(;;). The compiler treats both while(true) and for(;;)
in the same way so whichever one you use is a matter of programming taste.

The infamous “goto”
The goto keyword has been present in programming languages from the beginning. Indeed,
goto was the genesis of program control in assembly language: “if condition A, then jump
here, otherwise jump there.” If you read the assembly code that is ultimately generated by
virtually any compiler, you’ll see that program control contains many jumps. However, goto
jumps at the source-code level, and that’s what brought it into disrepute. If a program will
always jump from one point to another, isn’t there some way to reorganize the code so the
flow of control is not so jumpy? goto fell into true disfavor with the publication of the
famous “Goto considered harmful” paper by Edsger Dijkstra, and since then goto-bashing
has been a popular sport, with advocates of the cast-out keyword scurrying for cover.

As is typical in situations like this, the middle ground is the most fruitful. The problem is not
the use of goto but the overuse of goto, and in rare situations goto is the best way to
structure control flow.

Although goto is a reserved word in Java, it is not used in the language; Java has no goto.
However, it does have something that looks a bit like a jump tied in with the break and
continue keywords. It’s not a jump but rather a way to break out of an iteration statement.
The reason it’s often thrown in with discussions of goto is because it uses the same
mechanism: a label.

A label is an identifier followed by a colon, like this:

label1:

The only place a label is useful in Java is right before an iteration statement. And that means
right before – it does no good to put any other statement between the label and the iteration.
And the sole reason to put a label before an iteration is if you’re going to nest another
iteration or a switch inside it. That’s because the break and continue keywords will
normally interrupt only the current loop, but when used with a label they’ll interrupt the
loops up to where the label exists:

label1:
outer-iteration {
  inner-iteration {
    //…
    break; // 1
    //…
    continue;  // 2
    //…
    continue label1; // 3
    //…
    break label1;  // 4
  }
}

In case 1, the break breaks out of the inner iteration and you end up in the outer iteration.
In case 2, the continue moves back to the beginning of the inner iteration. But in case 3, the
continue label1 breaks out of the inner iteration and the outer iteration, all the way back to
label1. Then it does in fact continue the iteration, but starting at the outer iteration. In case



126 Thinking in Java  www.BruceEckel.com

4, the break label1 also breaks all the way out to label1, but it does not re-enter the
iteration. It actually does break out of both iterations.

Here is an example using for loops:

//: LabeledFor.java
// Java’s "labeled for loop"

public class LabeledFor {
  public static void main(String[] args) {
    int i = 0;
    outer: // Can't have statements here
    for(; true ;) { // infinite loop
      inner: // Can't have statements here
      for(; i < 10; i++) {
        prt("i = " + i);
        if(i == 2) {
          prt("continue");
          continue;
        }
        if(i == 3) {
          prt("break");
          i++; // Otherwise i never
               // gets incremented.
          break;
        }
        if(i == 7) {
          prt("continue outer");
          i++; // Otherwise i never
               // gets incremented.
          continue outer;
        }
        if(i == 8) {
          prt("break outer");
          break outer;
        }
        for(int k = 0; k < 5; k++) {
          if(k == 3) {
            prt("continue inner");
            continue inner;
          }
        }
      }
    }
    // Can't break or continue
    // to labels here
  }
  static void prt(String s) {
    System.out.println(s);
  }
} ///:~

This uses the prt( ) method that has been defined in the other examples.



Chapter 3: Controlling Program Flow 127

Note that break breaks out of the for loop, and that the increment-expression doesn’t occur
until the end of the pass through the for loop. Since break skips the increment expression,
the increment is performed directly in the case of i == 3. The continue outer statement in
the case of I == 7 also goes to the top of the loop and also skips the increment, so it too is
incremented directly.

Here is the output:

i = 0
continue inner
i = 1
continue inner
i = 2
continue
i = 3
break
i = 4
continue inner
i = 5
continue inner
i = 6
continue inner
i = 7
continue outer
i = 8
break outer

If not for the break outer statement, there would be no way to get out of the outer loop
from within an inner loop, since break by itself can break out of only the innermost loop.
(The same is true for continue.)

Of course, in the cases where breaking out of a loop will also exit the method, you can
simply use a return.

Here is a demonstration of labeled break and continue statements with while loops:

//: LabeledWhile.java
// Java's "labeled while" loop

public class LabeledWhile {
  public static void main(String[] args) {
    int i = 0;
    outer:
    while(true) {
      prt("Outer while loop");
      while(true) {
        i++;
        prt("i = " + i);
        if(i == 1) {
          prt("continue");
          continue;
        }
        if(i == 3) {
          prt("continue outer");
          continue outer;



128 Thinking in Java  www.BruceEckel.com

        }
        if(i == 5) {
          prt("break");
          break;
        }
        if(i == 7) {
          prt("break outer");
          break outer;
        }
      }
    }
  }
  static void prt(String s) {
    System.out.println(s);
  }
} ///:~

The same rules hold true for while:

1. A plain continue goes to the top of the innermost loop and continues.

2. A labeled continue goes to the label and re-enters the loop right after that label.

3. A break “drops out of the bottom” of the loop.

4. A labeled break drops out of the bottom of the end of the loop denoted by the label.

The output of this method makes it clear:

Outer while loop
i = 1
continue
i = 2
i = 3
continue outer
Outer while loop
i = 4
i = 5
break
Outer while loop
i = 6
i = 7
break outer

It’s important to remember that the only reason to use labels in Java is when you have
nested loops and you want to break or continue through more than one nested level.

In Dijkstra’s “goto considered harmful” paper, what he specifically objected to was the labels,
not the goto. He observed that the number of bugs seems to increase with the number of
labels in a program. Labels and gotos make programs difficult to analyze statically, since it
introduces cycles in the program execution graph. Note that Java labels don’t suffer from
this problem, since they are constrained in their placement and can’t be used to transfer
control in an ad hoc manner. It’s also interesting to note that this is a case where a language
feature is made more useful by restricting the power of the statement.



Chapter 3: Controlling Program Flow 129

switch
The switch is sometimes classified as a selection statement. The switch statement selects from
among pieces of code based on the value of an integral expression. Its form is:

switch(integral-selector) {
  case integral-value1 : statement; break;
  case integral-value2 : statement; break;
  case integral-value3 : statement; break;
  case integral-value4 : statement; break;
  case integral-value5 : statement; break;
          // …
  default: statement;
}

Integral-selector is an expression that produces an integral value. The switch compares the
result of integral-selector to each integral-value. If it finds a match, the corresponding
statement (simple or compound) executes. If no match occurs, the default statement executes.

You will notice in the above definition that each case ends with a break, which causes
execution to jump to the end of the switch body. This is the conventional way to build a
switch statement, but the break is optional. If it is missing, the code for the following case
statements execute until a break is encountered. Although you don’t usually want this kind
of behavior, it can be useful to an experienced programmer. Note the last statement, for the
default, doesn’t have a break because the execution just falls through to where the break
would have taken it anyway. You could put a break at the end of the default statement
with no harm if you considered it important for style’s sake.

The switch statement is a clean way to implement multi-way selection (i.e., selecting from
among a number of different execution paths), but it requires a selector that evaluates to an
integral value such as int or char. If you want to use, for example, a string or a floating-
point number as a selector, it won’t work in a switch statement. For non-integral types, you
must use a series of if statements.

Here’s an example that creates letters randomly and determines whether they’re vowels or
consonants:

//: VowelsAndConsonants.java
// Demonstrates the switch statement

public class VowelsAndConsonants {
  public static void main(String[] args) {
    for(int i = 0; i < 100; i++) {
      char c = (char)(Math.random() * 26 + 'a');
      System.out.print(c + ": ");
      switch(c) {
      case 'a':
      case 'e':
      case 'i':
      case 'o':
      case 'u':
                System.out.println("vowel");
                break;
      case 'y':



130 Thinking in Java  www.BruceEckel.com

      case 'w':
                System.out.println(
                  "Sometimes a vowel");
                break;
      default:
                System.out.println("consonant");
      }
    }
  }
} ///:~

Since Math.random( ) generates a value between 0 and 1, you need only multiply it by the
upper bound of the range of numbers you want to produce (26 for the letters in the
alphabet) and add an offset to establish the lower bound.

Although it appears you’re switching on a character here, the switch statement is actually
using the integral value of the character. The singly-quoted characters in the case statements
also produce integral values that are used for comparison.

Notice how the cases can be “stacked” on top of each other to provide multiple matches for a
particular piece of code. You should also be aware that it’s essential to put the break
statement at the end of a particular case, otherwise control will simply drop through and
continue processing on the next case.

Calculation details
The statement:

char c = (char)(Math.random() * 26 + 'a');

deserves a closer look. Math.random( ) produces a double, so the value 26 is converted to a
double to perform the multiplication, which also produces a double. This means that ‘a’
must be converted to a double to perform the addition. The double result is turned back
into a char with a cast.

First, what does the cast to char do? That is, if you have the value 29.7 and you cast it to a
char, is the resulting value 30 or 29? The answer to this can be seen in this example:

//: CastingNumbers.java
// What happens when you cast a float or double
// to an integral value?

public class CastingNumbers {
  public static void main(String[] args) {
    double
      above = 0.7,
      below = 0.4;
    System.out.println("above: " + above);
    System.out.println("below: " + below);
    System.out.println(
      "(int)above: " + (int)above);
    System.out.println(
      "(int)below: " + (int)below);
    System.out.println(
      "(char)('a' + above): " +



Chapter 3: Controlling Program Flow 131

      (char)('a' + above));
    System.out.println(
      "(char)('a' + below): " +
      (char)('a' + below));
  }
} ///:~

The output is:

above: 0.7
below: 0.4
(int)above: 0
(int)below: 0
(char)('a' + above): a
(char)('a' + below): a

So the answer is that casting from a float or double to an integral value always truncates.

The second question has to do with Math.random( ). Does it produce a value from zero to
one, inclusive or exclusive of the value ‘1’? In math lingo, is it (0,1), or [0,1], or (0,1] or
[0,1)? (The square bracket means “includes” whereas the parenthesis means “doesn’t
include.”) Again, a test program provides the answer:

//: RandomBounds.java
// Does Math.random() produce 0.0 and 1.0?

public class RandomBounds {
  static void usage() {
    System.err.println("Usage: \n\t" +
      "RandomBounds lower\n\t" +
      "RandomBounds upper");
    System.exit(1);
  }
  public static void main(String[] args) {
    if(args.length != 1) usage();
    if(args[0].equals("lower")) {
      while(Math.random() != 0.0)
        ; // Keep trying
      System.out.println("Produced 0.0!");
    }
    else if(args[0].equals("upper")) {
      while(Math.random() != 1.0)
        ; // Keep trying
      System.out.println("Produced 1.0!");
    }
    else
      usage();
  }
} ///:~

To run the program, you type a command line of either:

java RandomBounds lower

or



132 Thinking in Java  www.BruceEckel.com

java RandomBounds upper

In both cases you are forced to break out of the program manually, so it would appear that
Math.random( ) never produces either 0.0 or 1.0. But this is where such an experiment can
be deceiving. If you consider that there are 2128 different double fractions between 0 and 1,
the likelihood of reaching any one value experimentally might exceed the lifetime of one
computer, or even one experimenter. It turns out that 0.0 is included in the output of
Math.random( ). Or, in math lingo, it is [0,1).

Summary
This chapter concludes the study of fundamental features that appear in most programming
languages: calculation, operator precedence, type casting, and selection and iteration. Now
you’re ready to begin taking steps that move you closer to the world of object-oriented
programming. The next chapter will cover the important issues of initialization and cleanup
of objects, followed in the subsequent chapter by the essential concept of implementation
hiding.

Exercises
 1.  Write a program that prints values from one to 100.

 2.  Modify Exercise 1 so that the program exits by using the break keyword at value 47. Try
using return instead.

 3.  Create a switch statement that prints a message for each case, and put the switch inside a
for loop that tries each case. Put a break after each case and test it, then remove the
breaks and see what happens.



133

o

4: Initialization
and cleanup

As the computer revolution progresses, “unsafe” programming has
become one of the major culprits that makes programming expensive.
Two of these safety issues are initialization and cleanup. Many C bugs occur when the
programmer forgets to initialize a variable. This is especially true with libraries when users
don’t know how to initialize a library component, or even that they must. Cleanup is a
special problem because it’s easy to forget about an element when you’re done with it, since
it no longer concerns you. Thus, the resources used by that element are retained and you
can easily end up running out of resources (most notably memory).

C++ introduced the concept of a constructor, a special method automatically called when an
object is created. Java also adopted the constructor, and in addition has a garbage collector
that automatically releases memory resources when they’re no longer being used. This
chapter examines the issues of initialization and cleanup and their support in Java.

Guaranteed initialization
with the constructor
You can imagine creating a method called initialize( ) for every class you write. The name is
a hint that it should be called before using the object. Unfortunately, this means the user
must remember to call the method. In Java, the class designer can guarantee initialization of
every object by providing a special method called a constructor. If a class has a constructor,



134 Thinking in Java  www.BruceEckel.com

Java automatically calls that constructor when an object is created, before users can even get
their hands on it. So initialization is guaranteed.

The next challenge is what to name this method. There are two issues. The first is that any
name you use could clash with a name you might like to use as a member in the class. The
second is that because the compiler is responsible for calling the constructor, it must always
know which method to call. The C++ solution seems the easiest and most logical, so it’s also
used in Java: The name of the constructor is the same as the name of the class. It makes
sense that such a method will be called automatically on initialization.

Here’s a simple class with a constructor: (See page 94 if you have trouble executing this
program.)

//: SimpleConstructor.java
// Demonstration of a simple constructor
package c04;

class Rock {
  Rock() { // This is the constructor
    System.out.println("Creating Rock");
  }
}

public class SimpleConstructor {
  public static void main(String[] args) {
    for(int i = 0; i < 10; i++)
      new Rock();
  }
} ///:~

Now, when an object is created:

new Rock();

storage is allocated and the constructor is called. It is guaranteed that the object will be
properly initialized before you can get your hands on it.

Note that the coding style of making the first letter of all methods lower case does not apply
to constructors, since the name of the constructor must match the name of the class exactly.

Like any method, the constructor can have arguments to allow you to specify how an object
is created. The above example can easily be changed so the constructor takes an argument:

class Rock {
  Rock(int i) {
    System.out.println(
      "Creating Rock number " + i);
  }
}

public class SimpleConstructor {
  public static void main(String[] args) {
    for(int i = 0; i < 10; i++)
      new Rock(i);
  }
}



Chapter 4: Initialization & Cleanup 135

Constructor arguments provide you with a way to provide parameters for the initialization
of an object. For example, if the class Tree has a constructor that takes a single integer
argument denoting the height of the tree, you would create a Tree object like this:

Tree t = new Tree(12);  // 12-foot tree

If Tree(int) is your only constructor, then the compiler won’t let you create a Tree object
any other way.

Constructors eliminate a large class of problems and make the code easier to read. In the
preceding code fragment, for example, you don’t see an explicit call to some initialize( )
method that is conceptually separate from definition. In Java, definition and initialization
are unified concepts – you can’t have one without the other.

The constructor is an unusual type of method because it has no return value. This is
distinctly different from a void return value, in which the method returns nothing but you
still have the option to make it return something else. Constructors return nothing and you
don’t have an option. If there were a return value, and if you could select your own, the
compiler would somehow need to know what to do with that return value.

Method overloading
One of the important features in any programming language is the use of names. When you
create an object, you give a name to a region of storage. A method is a name for an action.
By using names to describe your system, you create a program that is easier for people to
understand and change. It’s a lot like writing prose – the goal is to communicate with your
readers.

You refer to all objects and methods by using names. Well-chosen names make it easier for
you and others to understand your code.

A problem arises when mapping the concept of nuance in human language onto a
programming language. Often, the same word expresses a number of different meanings –
it’s overloaded. This is useful, especially when it comes to trivial differences. You say “wash
the shirt,” “wash the car,” and “wash the dog.” It would be silly to be forced to say,
“shirtWash the shirt,” “carWash the car,” and “dogWash the dog” just so the listener doesn’t
need to make any distinction about the action performed. Most human languages are
redundant, so even if you miss a few words, you can still determine the meaning. We don’t
need unique identifiers – we can deduce meaning from context.

Most programming languages (C in particular) require you to have a unique identifier for
each function. So you could not have one function called print( ) for printing integers and
another called print( ) for printing floats – each function requires a unique name.

In Java, another factor forces the overloading of method names: the constructor. Because the
constructor’s name is predetermined by the name of the class, there can be only one
constructor name. But what if you want to create an object in more than one way? For
example, suppose you build a class that can initialize itself in a standard way and by reading
information from a file. You need two constructors, one that takes no arguments (the default
constructor), and one that takes a String as an argument, which is the name of the file from
which to initialize the object. Both are constructors, so they must have the same name – the
name of the class. Thus method overloading is essential to allow the same method name to be



136 Thinking in Java  www.BruceEckel.com

used with different argument types. And although method overloading is a must for
constructors, it’s a general convenience and can be used with any method.

Here’s an example that shows both overloaded constructors and overloaded ordinary
methods:

//: Overloading.java
// Demonstration of both constructor
// and ordinary method overloading.
import java.util.*;

class Tree {
  int height;
  Tree() {
    prt("Planting a seedling");
    height = 0;
  }
  Tree(int i) {
    prt("Creating new Tree that is "
        + i + " feet tall");
    height = i;
  }
  void info() {
    prt("Tree is " + height
        + " feet tall");
  }
  void info(String s) {
    prt(s + ": Tree is "
        + height + " feet tall");
  }
  static void prt(String s) {
    System.out.println(s);
  }
}

public class Overloading {
  public static void main(String[] args) {
    for(int i = 0; i < 5; i++) {
      Tree t = new Tree(i);
      t.info();
      t.info("overloaded method");
    }
    // Overloaded constructor:
    new Tree();
  }
} ///:~

A Tree object can be created either as a seedling, with no argument, or as a plant grown in a
nursery, with an existing height. To support this, there are two constructors, one that takes



Chapter 4: Initialization & Cleanup 137

no arguments (we call constructors that take no arguments default constructors1) and one
that takes the existing height.

You might also want to call the info( ) method in more than one way. For example, with a
String argument if you have an extra message you want printed, and without if you have
nothing more to say. It would seem strange to give two separate names to what is obviously
the same concept. Fortunately, method overloading allows you to use the same name for
both.

Distinguishing overloaded methods
If the methods have the same name, how can Java know which method you mean? There’s a
simple rule: Each overloaded method must take a unique list of argument types.

If you think about this for a second, it makes sense: how else could a programmer tell the
difference between two methods that have the same name, other than by the types of their
arguments?

Even differences in the ordering of arguments is sufficient to distinguish two methods:
(Although you don’t normally want to take this approach, as it produces difficult-to-
maintain code.)

//: OverloadingOrder.java
// Overloading based on the order of
// the arguments.

public class OverloadingOrder {
  static void print(String s, int i) {
    System.out.println(
      "String: " + s +
      ", int: " + i);
  }
  static void print(int i, String s) {
    System.out.println(
      "int: " + i +
      ", String: " + s);
  }
  public static void main(String[] args) {
    print("String first", 11);
    print(99, "Int first");
  }
} ///:~

The two print( ) methods have identical arguments, but the order is different, and that’s
what makes them distinct.

                                                

1 In some of the Java literature from Sun they instead refer to these with the clumsy but descriptive
name “no-arg constructors.” The term “default constructor” has been in use for many years and so I
will use that.



138 Thinking in Java  www.BruceEckel.com

Overloading with primitives
Primitives can be automatically promoted from a smaller type to a larger one and this can be
slightly confusing in combination with overloading. The following example demonstrates
what happens when a primitive is handed to an overloaded method:

//: PrimitiveOverloading.java
// Promotion of primitives and overloading

public class PrimitiveOverloading {
  // boolean can't be automatically converted
  static void prt(String s) {
    System.out.println(s);
  }

  void f1(char x) { prt("f1(char)"); }
  void f1(byte x) { prt("f1(byte)"); }
  void f1(short x) { prt("f1(short)"); }
  void f1(int x) { prt("f1(int)"); }
  void f1(long x) { prt("f1(long)"); }
  void f1(float x) { prt("f1(float)"); }
  void f1(double x) { prt("f1(double)"); }

  void f2(byte x) { prt("f2(byte)"); }
  void f2(short x) { prt("f2(short)"); }
  void f2(int x) { prt("f2(int)"); }
  void f2(long x) { prt("f2(long)"); }
  void f2(float x) { prt("f2(float)"); }
  void f2(double x) { prt("f2(double)"); }

  void f3(short x) { prt("f3(short)"); }
  void f3(int x) { prt("f3(int)"); }
  void f3(long x) { prt("f3(long)"); }
  void f3(float x) { prt("f3(float)"); }
  void f3(double x) { prt("f3(double)"); }

  void f4(int x) { prt("f4(int)"); }
  void f4(long x) { prt("f4(long)"); }
  void f4(float x) { prt("f4(float)"); }
  void f4(double x) { prt("f4(double)"); }

  void f5(long x) { prt("f5(long)"); }
  void f5(float x) { prt("f5(float)"); }
  void f5(double x) { prt("f5(double)"); }

  void f6(float x) { prt("f6(float)"); }
  void f6(double x) { prt("f6(double)"); }

  void f7(double x) { prt("f7(double)"); }

  void testConstVal() {
    prt("Testing with 5");
    f1(5);f2(5);f3(5);f4(5);f5(5);f6(5);f7(5);
  }



Chapter 4: Initialization & Cleanup 139

  void testChar() {
    char x = 'x';
    prt("char argument:");
    f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);
  }
  void testByte() {
    byte x = 0;
    prt("byte argument:");
    f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);
  }
  void testShort() {
    short x = 0;
    prt("short argument:");
    f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);
  }
  void testInt() {
    int x = 0;
    prt("int argument:");
    f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);
  }
  void testLong() {
    long x = 0;
    prt("long argument:");
    f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);
  }
  void testFloat() {
    float x = 0;
    prt("float argument:");
    f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);
  }
  void testDouble() {
    double x = 0;
    prt("double argument:");
    f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);
  }
  public static void main(String[] args) {
    PrimitiveOverloading p =
      new PrimitiveOverloading();
    p.testConstVal();
    p.testChar();
    p.testByte();
    p.testShort();
    p.testInt();
    p.testLong();
    p.testFloat();
    p.testDouble();
  }
} ///:~

If you view the output of this program, you’ll see that the constant value 5 is treated as an
int, so if an overloaded method is available that takes an int it is used. In all other cases, if
you have a data type that is smaller than the argument in the method, that data type is
promoted. char produces a slightly different effect, since if it doesn’t find an exact char
match, it is promoted to int.



140 Thinking in Java  www.BruceEckel.com

What happens if your argument is bigger than the argument expected by the overloaded
method? A modification of the above program gives the answer:

//: Demotion.java
// Demotion of primitives and overloading

public class Demotion {
  static void prt(String s) {
    System.out.println(s);
  }

  void f1(char x) { prt("f1(char)"); }
  void f1(byte x) { prt("f1(byte)"); }
  void f1(short x) { prt("f1(short)"); }
  void f1(int x) { prt("f1(int)"); }
  void f1(long x) { prt("f1(long)"); }
  void f1(float x) { prt("f1(float)"); }
  void f1(double x) { prt("f1(double)"); }

  void f2(char x) { prt("f2(char)"); }
  void f2(byte x) { prt("f2(byte)"); }
  void f2(short x) { prt("f2(short)"); }
  void f2(int x) { prt("f2(int)"); }
  void f2(long x) { prt("f2(long)"); }
  void f2(float x) { prt("f2(float)"); }

  void f3(char x) { prt("f3(char)"); }
  void f3(byte x) { prt("f3(byte)"); }
  void f3(short x) { prt("f3(short)"); }
  void f3(int x) { prt("f3(int)"); }
  void f3(long x) { prt("f3(long)"); }

  void f4(char x) { prt("f4(char)"); }
  void f4(byte x) { prt("f4(byte)"); }
  void f4(short x) { prt("f4(short)"); }
  void f4(int x) { prt("f4(int)"); }

  void f5(char x) { prt("f5(char)"); }
  void f5(byte x) { prt("f5(byte)"); }
  void f5(short x) { prt("f5(short)"); }

  void f6(char x) { prt("f6(char)"); }
  void f6(byte x) { prt("f6(byte)"); }

  void f7(char x) { prt("f7(char)"); }

  void testDouble() {
    double x = 0;
    prt("double argument:");
    f1(x);f2((float)x);f3((long)x);f4((int)x);
    f5((short)x);f6((byte)x);f7((char)x);
  }
  public static void main(String[] args) {
    Demotion p = new Demotion();



Chapter 4: Initialization & Cleanup 141

    p.testDouble();
  }
} ///:~

Here, the methods take narrower primitive values. If your argument is wider then you must
cast to the necessary type using the type name in parentheses. If you don’t do this, the
compiler will issue an error message.

You should be aware that this is a narrowing conversion, which means you might lose
information during the cast. This is why the compiler forces you to do it – to flag the
narrowing conversion.

Overloading on return values
It is common to wonder “Why only class names and method argument lists? Why not
distinguish between methods based on their return values?” For example, these two
methods, which have the same name and arguments, are easily distinguished from each
other:

void f() {}
int f() {}

This works fine when the compiler can unequivocally determine the meaning from the
context, as in int x = f( ). However, you can call a method and ignore the return value; this
is often referred to as calling a method for its side effect since you don’t care about the return
value but instead want the other effects of the method call. So if you call the method this
way:

f();

how can Java determine which f( ) should be called? And how could someone reading the
code see it? Because of this sort of problem, you cannot use return value types to distinguish
overloaded methods.

Default constructors
As mentioned previously, a default constructor is one without arguments, used to create a
“vanilla object.” If you create a class that has no constructors, the compiler will
automatically create a default constructor for you. For example:

//: DefaultConstructor.java

class Bird {
  int i;
}

public class DefaultConstructor {
  public static void main(String[] args) {
    Bird nc = new Bird(); // default!
  }
} ///:~

The line

new Bird();



142 Thinking in Java  www.BruceEckel.com

creates a new object and calls the default constructor, even though one was not explicitly
defined. Without it we would have no method to call to build our object. However, if you
define any constructors (with or without arguments), the compiler will not synthesize one
for you:

class Bush {
  Bush(int i) {}
  Bush(double d) {}
}

Now if you say:

new Bush();

the compiler will complain that it cannot find a constructor that matches. It’s as if when
you don’t put in any constructors, the compiler says “You are bound to need some
constructor, so let me make one for you.” But if you write a constructor, the compiler says
“You’ve written a constructor so you know what you’re doing; if you didn’t put in a default
it’s because you meant to leave it out.”

The tthis keyword
If you have two objects of the same type called a and b, you might wonder how it is that
you can call a method f( ) for both those objects:

class Banana { void f(int i) { /* ... */ } }
Banana a = new Banana(), b = new Banana();
a.f(1);
b.f(2);

If there’s only one method called f( ), how can that method know whether it’s being called
for the object a or b?

To allow you to write the code in a convenient object-oriented syntax in which you “send a
message to an object,” the compiler does some undercover work for you. There’s a secret
first argument passed to the method f( ), and that argument is the handle to the object that’s
being manipulated. So the two method calls above become something like:

Banana.f(a,1);
Banana.f(b,2);

This is internal and you can’t write these expressions and get the compiler to accept them,
but it gives you an idea of what’s happening.

Suppose you’re inside a method and you’d like to get the handle to the current object. Since
that handle is passed secretly by the compiler, there’s no identifier for it. However, for this
purpose there’s a keyword: this. The this keyword – which can be used only inside a method
– produces the handle to the object the method has been called for. You can treat this handle
just like any other object handle. Keep in mind that if you’re calling a method of your class
from within another method of your class, you don’t need to use this; you simply call the
method. The current this handle is automatically used for the other method. Thus you can
say:

class Apricot {
  void pick() { /* ... */ }



Chapter 4: Initialization & Cleanup 143

  void pit() { pick(); /* ... */ }
}

Inside pit( ), you could say this.pick( ) but there’s no need to. The compiler does it for you
automatically. The this keyword is used only for those special cases in which you need to
explicitly use the handle to the current object. For example, it’s often used in return
statements when you want to return the handle to the current object:

//: Leaf.java
// Simple use of the "this" keyword

public class Leaf {
  private int i = 0;
  Leaf increment() {
    i++;
    return this;
  }
  void print() {
    System.out.println("i = " + i);
  }
  public static void main(String[] args) {
    Leaf x = new Leaf();
    x.increment().increment().increment().print();
  }
} ///:~

Because increment( ) returns the handle to the current object via the this keyword, multiple
operations can easily be performed on the same object.

Calling constructors from constructors
When you write several constructors for a class, there are times when you’d like to call one
constructor from another to avoid duplicating code. You can do this using the this keyword.

Normally, when you say this, it is in the sense of “this object” or “the current object,” and
by itself it produces the handle to the current object. In a constructor, the this keyword takes
on a different meaning when you give it an argument list: it makes an explicit call to the
constructor that matches that argument list. Thus you have a straightforward way to call
other constructors:

//: Flower.java
// Calling constructors with "this"

public class Flower {
  private int petalCount = 0;
  private String s = new String("null");
  Flower(int petals) {
    petalCount = petals;
    System.out.println(
      "Constructor w/ int arg only, petalCount= "
      + petalCount);
  }
  Flower(String ss) {
    System.out.println(
      "Constructor w/ String arg only, s=" + ss);



144 Thinking in Java  www.BruceEckel.com

    s = ss;
  }
  Flower(String s, int petals) {
    this(petals);
//!    this(s); // Can't call two!
    this.s = s; // Another use of "this"
    System.out.println("String & int args");
  }
  Flower() {
    this("hi", 47);
    System.out.println(
      "default constructor (no args)");
  }
  void print() {
//!    this(11); // Not inside non-constructor!
    System.out.println(
      "petalCount = " + petalCount + " s = "+ s);
  }
  public static void main(String[] args) {
    Flower x = new Flower();
    x.print();
  }
} ///:~

The constructor Flower(String s, int petals) shows that, while you can call one constructor
using this, you cannot call two. In addition, the constructor call must be the first thing you
do or you’ll get a compiler error message.

This example also shows another way you’ll see this used. Since the name of the argument s
and the name of the member data s are the same, there’s an ambiguity. You can resolve it by
saying this.s to refer to the member data. You’ll often see this form used in Java code, and
it’s used in numerous places in this book.

In print( ) you can see that the compiler won’t let you call a constructor from inside any
method other than a constructor.

The meaning of sstatic
With the this keyword in mind, you can more fully understand what it means to make a
method static. It means that there is no this for that particular method. You cannot call
non-static methods from inside static methods2 (although the reverse is possible), and you
can call a static method for the class itself, without any object. In fact, that’s primarily what
a static method is for. It’s as if you’re creating the equivalent of a global function (from C).
Except global functions are not permitted in Java, and putting the static method inside a
class allows it access to other static methods and to static fields.

Some people argue that static methods are not object-oriented since they do have the
semantics of a global function; with a static method you don’t send a message to an object,

                                                

2 The one case in which this is possible occurs if you pass a handle to an object into the static method.
Then, via the handle (which is now effectively this), you can call non-static methods and access non-
static fields. But typically if you want to do something like this you’ll just make an ordinary, non-
static method.



Chapter 4: Initialization & Cleanup 145

since there’s no this. This is probably a fair argument, and if you find yourself using a lot of
static methods you should probably rethink your strategy. However, statics are pragmatic
and there are times when you genuinely need them, so whether or not they are “proper
OOP” should be left to the theoreticians. Indeed, even Smalltalk has the equivalent in its
“class methods.”

Cleanup: finalization and
garbage collection
Programmers know about the importance of initialization, but often forget the importance
of cleanup. After all, who needs to clean up an int? But with libraries, simply “letting go” of
an object once you’re done with it is not always safe. Of course, Java has the garbage
collector to reclaim the memory of objects that are no longer used. Now consider a very
special and unusual case. Suppose your object allocates “special” memory without using
new. The garbage collector knows only how to release memory allocated with new, so it
won’t know how to release the object’s “special” memory. To handle this case, Java provides
a method called finalize( ) that you can define for your class. Here’s how it’s supposed to
work. When the garbage collector is ready to release the storage used for your object, it will
first call finalize( ), and only on the next garbage-collection pass will it reclaim the object’s
memory. So if you choose to use finalize( ), it gives you the ability to perform some
important cleanup at the time of garbage collection.

This is a potential programming pitfall because some programmers, especially C++
programmers, might initially mistake finalize( ) for the destructor in C++, which is a
function that is always called when an object is destroyed. But it is important to distinguish
between C++ and Java here, because in C++ objects always get destroyed (in a bug-free
program), whereas in Java objects do not always get garbage-collected. Or, put another way:

Garbage collection is not destruction.
If you remember this, you will stay out of trouble. What it means is that if there is some
activity that must be performed before you no longer need an object, you must perform that
activity yourself. Java has no destructor or similar concept, so you must create an ordinary
method to perform this cleanup. For example, suppose in the process of creating your object
it draws itself on the screen. If you don’t explicitly erase its image from the screen, it might
never get cleaned up. If you put some kind of erasing functionality inside finalize( ), then if
an object is garbage-collected, the image will first be removed from the screen, but if it isn’t,
the image will remain. So a second point to remember is:

Your objects might not get garbage collected.
You might find that the storage for an object never gets released because your program never
nears the point of running out of storage. If your program completes and the garbage
collector never gets around to releasing the storage for any of your objects, that storage will
be returned to the operating system en masse as the program exits. This is a good thing,
because garbage collection has some overhead, and if you never do it you never incur that
expense.



146 Thinking in Java  www.BruceEckel.com

What is ffinalize( ) for?
You might believe at this point that you should not use finalize( ) as a general-purpose
cleanup method. What good is it?

A third point to remember is:

Garbage collection is only about memory.
That is, the sole reason for the existence of the garbage collector is to recover memory that
your program is no longer using. So any activity that is associated with garbage collection,
most notably your finalize( ) method, must also be only about memory and its
deallocation.

Does this mean that if your object contains other objects finalize( ) should explicitly release
those objects? Well, no – the garbage collector takes care of the release of all object memory
regardless of how the object is created. It turns out that the need for finalize( ) is limited to
special cases, in which your object can allocate some storage in some way other than
creating an object. But, you might observe, everything in Java is an object so how can this
be?

It would seem that finalize( ) is in place because of the possibility that you’ll do something
C-like by allocating memory using a mechanism other than the normal one in Java. This
can happen primarily through native methods, which are a way to call non-Java code from
Java. (Native methods are discussed in Appendix A.) C and C++ are the only languages
currently supported by native methods, but since they can call subprograms in other
languages, you can effectively call anything. Inside the non-Java code, C’s malloc( ) family
of functions might be called to allocate storage, and unless you call free( ) that storage will
not be released, causing a memory leak. Of course, free( ) is a C and C++ function, so you’d
need call it in a native method inside your finalize( ).

After reading this, you probably get the idea that you won’t use finalize( ) much. You’re
correct; it is not the appropriate place for normal cleanup to occur. So where should normal
cleanup be performed?

You must perform cleanup
To clean up an object, the user of that object must call a cleanup method at the point the
cleanup is desired. This sounds pretty straightforward, but it collides a bit with the C++
concept of the destructor. In C++, all objects are destroyed. Or rather, all objects should be
destroyed. If the C++ object is created as a local, i.e. on the stack (not possible in Java), then
the destruction happens at the closing curly brace of the scope in which the object was
created. If the object was created using new (like in Java) the destructor is called when the
programmer calls the C++ operator delete (which doesn’t exist in Java). If the programmer
forgets, the destructor is never called and you have a memory leak, plus the other parts of
the object never get cleaned up.

In contrast, Java doesn’t allow you to create local objects – you must always use new. But
in Java, there’s no “delete” to call for releasing the object since the garbage collector releases
the storage for you. So from a simplistic standpoint you could say that because of garbage
collection, Java has no destructor. You’ll see as this book progresses, however, that the
presence of a garbage collector does not remove the need or utility of destructors. (And you
should never call finalize( ) directly, so that’s not an appropriate avenue for a solution.) If



Chapter 4: Initialization & Cleanup 147

you want some kind of cleanup performed other than storage release you must still call a
method in Java, which is the equivalent of a C++ destructor without the convenience.

One of the things finalize( ) can be useful for is observing the process of garbage collection.
The following example shows you what’s going on and summarizes the previous
descriptions of garbage collection:

//: Garbage.java
// Demonstration of the garbage
// collector and finalization

class Chair {
  static boolean gcrun = false;
  static boolean f = false;
  static int created = 0;
  static int finalized = 0;
  int i;
  Chair() {
    i = ++created;
    if(created == 47)
      System.out.println("Created 47");
  }
  protected void finalize() {
    if(!gcrun) {
      gcrun = true;
      System.out.println(
        "Beginning to finalize after " +
        created + " Chairs have been created");
    }
    if(i == 47) {
      System.out.println(
        "Finalizing Chair #47, " +
        "Setting flag to stop Chair creation");
      f = true;
    }
    finalized++;
    if(finalized >= created)
      System.out.println(
        "All " + finalized + " finalized");
  }
}

public class Garbage {
  public static void main(String[] args) {
    if(args.length == 0) {
      System.err.println("Usage: \n" +
        "java Garbage before\n  or:\n" +
        "java Garbage after");
      return;
    }
    while(!Chair.f) {
      new Chair();
      new String("To take up space");
    }



148 Thinking in Java  www.BruceEckel.com

    System.out.println(
      "After all Chairs have been created:\n" +
      "total created = " + Chair.created +
      ", total finalized = " + Chair.finalized);
    if(args[0].equals("before")) {
      System.out.println("gc():");
      System.gc();
      System.out.println("runFinalization():");
      System.runFinalization();
    }
    System.out.println("bye!");
    if(args[0].equals("after"))
      System.runFinalizersOnExit(true);
  }
} ///:~

The above program creates many Chair objects, and at some point after the garbage
collector begins running, the program stops creating Chairs. Since the garbage collector can
run at any time, you don’t know exactly when it will start up, so there’s a flag called gcrun
to indicate whether the garbage collector has started running yet. A second flag f is a way
for Chair to tell the main( ) loop that it should stop making objects. Both of these flags are
set within finalize( ), which is called during garbage collection.

Two other static variables, created and finalized, keep track of the number of objs created
versus the number that get finalized by the garbage collector. Finally, each Chair has its own
(non-static) int i so it can keep track of what number it is. When Chair number 47 is
finalized, the flag is set to true to bring the process of Chair creation to a stop.

All this happens in main( ), in the loop

    while(!Chair.f) {
      new Chair();
      new String("To take up space");
    }

You might wonder how this loop could ever finish, since there’s nothing inside that changes
the value of Chair.f. However, the finalize( ) process will, eventually, when it finalizes
number 47.

 The creation of a String object during each iteration is simply extra garbage being created to
encourage the garbage collector to kick in, which it will do when it starts to get nervous
about the amount of memory available.

When you run the program, you provide a command-line argument of “before” or “after.”
The “before” argument will call the System.gc( ) method (to force execution of the garbage
collector) along with the System.runFinalization( ) method to run the finalizers. These
methods were available in Java 1.0, but the runFinalizersOnExit( ) method that is invoked
by using the “after” argument is available only in Java 1.13 and beyond. (Note you can call

                                                

3 Unfortunately, the implementations of the garbage collector in Java 1.0 would never call finalize( )
correctly. As a result, finalize( ) methods that were essential (such as those to close a file) often didn’t
get called. The documentation claimed that all finalizers would be called at the exit of a program, even
if the garbage collector hadn’t been run on those objects by the time the program terminated. This



Chapter 4: Initialization & Cleanup 149

this method any time during program execution, and the execution of the finalizers is
independent of whether the garbage collector runs).

The preceding program shows that, in Java 1.1, the promise that finalizers will always be
run holds true, but only if you explicitly force it to happen yourself. If you use an argument
that isn’t “before” or “after” (such as “none”), then neither finalization process will occur,
and you’ll get an output like this:

Created 47
Beginning to finalize after 8694 Chairs have been created
Finalizing Chair #47, Setting flag to stop Chair creation
After all Chairs have been created:
total created = 9834, total finalized = 108
bye!

Thus, not all finalizers get called by the time the program completes.4 To force finalization to
happen, you can call System.gc( ) followed by System.runFinalization( ). This will destroy
all the objects that are no longer in use up to that point. The odd thing about this is that you
call gc( ) before you call runFinalization( ), which seems to contradict the Sun
documentation, which claims that finalizers are run first, and then the storage is released.
However, if you call runFinalization( ) first, and then gc( ), the finalizers will not be
executed.

One reason that Java 1.1 might default to skipping finalization for all objects is because it
seems to be expensive. When you use either of the approaches that force garbage collection
you might notice longer delays than you would without the extra finalization.

Member initialization
Java goes out of its way to guarantee that any variable is properly initialized before it is
used. In the case of variables that are defined locally to a method, this guarantee comes in
the form of a compile-time error. So if you say:

  void f() {
    int i;
    i++;
  }

You’ll get an error message that says that i might not have been initialized. Of course, the
compiler could have given i a default value, but it’s more likely that this is a programmer
error and a default value would have covered that up. Forcing the programmer to provide an
initialization value is more likely to catch a bug.

If a primitive is a data member of a class, however, things are a bit different. Since any
method can initialize or use that data, it might not be practical to force the user to initialize
it to its appropriate value before the data is used. However, it’s unsafe to leave it with a

                                                                                                                                                

wasn’t true, so as a result you couldn’t reliably expect finalize( ) to be called for all objects. Effectively,
finalize( ) was useless in Java 1.0.

4 By the time you read this, some Java Virtual Machines may show different behavior.



150 Thinking in Java  www.BruceEckel.com

garbage value, so each primitive data member of a class is guaranteed to get an initial value.
Those values can be seen here:

//: InitialValues.java
// Shows default initial values

class Measurement {
  boolean t;
  char c;
  byte b;
  short s;
  int i;
  long l;
  float f;
  double d;
  void print() {
    System.out.println(
      "Data type      Inital value\n" +
      "boolean        " + t + "\n" +
      "char           " + c + "\n" +
      "byte           " + b + "\n" +
      "short          " + s + "\n" +
      "int            " + i + "\n" +
      "long           " + l + "\n" +
      "float          " + f + "\n" +
      "double         " + d);
  }
}

public class InitialValues {
  public static void main(String[] args) {
    Measurement d = new Measurement();
    d.print();
    /* In this case you could also say:
    new Measurement().print();
    */
  }
} ///:~

The output of this program is:

Data type      Inital value
boolean        false
char
byte           0
short          0
int            0
long           0
float          0.0
double         0.0

The char value is a null, which doesn’t print.

You’ll see later that when you define an object handle inside a class without initializing it to
a new object, that handle is given a value of null.



Chapter 4: Initialization & Cleanup 151

You can see that even though the values are not specified, they automatically get initialized.
So at least there’s no threat of working with uninitialized variables.

Specifying initialization
What happens if you want to give a variable an initial value? One direct way to do this is
simply to assign the value at the point you define the variable in the class. (Notice you
cannot do this in C++, although C++ novices always try.) Here the field definitions in class
Measurement are changed to provide initial values:

class Measurement {
  boolean b = true;
  char c = 'x';
  byte B = 47;
  short s = 0xff;
  int i = 999;
  long l = 1;
  float f = 3.14f;
  double d = 3.14159;
  //. . .

You can also initialize non-primitive objects in this same way. If Depth is a class, you can
insert a variable and initialize it like so:

class Measurement {
  Depth o = new Depth();
  boolean b = true;
  // . . .

If you haven’t given o an initial value and you go ahead and try to use it anyway, you’ll get
a run-time error called an exception (covered in Chapter 9).

You can even call a method to provide an initialization value:

class CInit {
  int i = f();
  //...
}

This method can have arguments, of course, but those arguments cannot be other class
members that haven’t been initialized yet. Thus, you can do this:

class CInit {
  int i = f();
  int j = g(i);
  //...
}

But you cannot do this:

class CInit {
  int j = g(i);
  int i = f();
  //...
}



152 Thinking in Java  www.BruceEckel.com

This is one place in which the compiler, appropriately, does complain about forward
referencing, since this has to do with the order of initialization and not the way the program
is compiled.

This approach to initialization is simple and straightforward. It has the limitation that every
object of type Measurement will get these same initialization values. Sometimes this is
exactly what you need, but at other times you need more flexibility.

Constructor initialization
The constructor can be used to perform initialization, and this gives you greater flexibility in
your programming since you can call methods and perform actions at run time to
determine the initial values. There’s one thing to keep in mind, however: you aren’t
precluding the automatic initialization, which happens before the constructor is entered. So,
for example, if you say:

class Counter {
  int i;
  Counter() { i = 7; }
  // . . .

then i will first be initialized to zero, then to 7. This is true with all the primitive types and
with object handles, including those that are given explicit initialization at the point of
definition. For this reason, the compiler doesn’t try to force you to initialize elements in the
constructor at any particular place, or before they are used – initialization is already
guaranteed.5

Order of initialization
Within a class, the order of initialization is determined by the order that the variables are
defined within the class. Even if the variable definitions are scattered throughout in between
method definitions, the variables are initialized before any methods can be called – even the
constructor. For example:

//: OrderOfInitialization.java
// Demonstrates initialization order.

// When the constructor is called, to create a
// Tag object, you'll see a message:
class Tag {
  Tag(int marker) {
    System.out.println("Tag(" + marker + ")");
  }
}

class Card {
  Tag t1 = new Tag(1); // Before constructor
  Card() {
    // Indicate we're in the constructor:

                                                

5 In contrast, C++ has the constructor initializer list that causes initialization to occur before entering
the constructor body, and is enforced for objects. See Thinking in C++.



Chapter 4: Initialization & Cleanup 153

    System.out.println("Card()");
    t3 = new Tag(33); // Re-initialize t3
  }
  Tag t2 = new Tag(2); // After constructor
  void f() {
    System.out.println("f()");
  }
  Tag t3 = new Tag(3); // At end
}

public class OrderOfInitialization {
  public static void main(String[] args) {
    Card t = new Card();
    t.f(); // Shows that construction is done
  }
} ///:~

In Card, the definitions of the Tag objects are intentionally scattered about to prove that
they’ll all get initialized before the constructor is entered or anything else can happen. In
addition, t3 is re-initialized inside the constructor. The output is:

Tag(1)
Tag(2)
Tag(3)
Card()
Tag(33)
f()

Thus, the t3 handle gets initialized twice, once before and once during the constructor call.
(The first object is dropped, so it can be garbage-collected later.) This might not seem efficient
at first, but it guarantees proper initialization – what would happen if an overloaded
constructor were defined that did not initialize t3 and there wasn’t a “default” initialization
for t3 in its definition?

Static data initialization
When the data is static the same thing happens; if it’s a primitive and you don’t initialize it,
it gets the standard primitive initial values. If it’s a handle to an object, it’s null unless you
create a new object and attach your handle to it.

If you want to place initialization at the point of definition, it looks the same as for non-
statics. But since there’s only a single piece of storage for a static, regardless of how many
objects are created the question of when that storage gets initialized arises. An example
makes this question clear:

//: StaticInitialization.java
// Specifying initial values in a
// class definition.

class Bowl {
  Bowl(int marker) {
    System.out.println("Bowl(" + marker + ")");
  }
  void f(int marker) {
    System.out.println("f(" + marker + ")");



154 Thinking in Java  www.BruceEckel.com

  }
}

class Table {
  static Bowl b1 = new Bowl(1);
  Table() {
    System.out.println("Table()");
    b2.f(1);
  }
  void f2(int marker) {
    System.out.println("f2(" + marker + ")");
  }
  static Bowl b2 = new Bowl(2);
}

class Cupboard {
  Bowl b3 = new Bowl(3);
  static Bowl b4 = new Bowl(4);
  Cupboard() {
    System.out.println("Cupboard()");
    b4.f(2);
  }
  void f3(int marker) {
    System.out.println("f3(" + marker + ")");
  }
  static Bowl b5 = new Bowl(5);
}

public class StaticInitialization {
  public static void main(String[] args) {
    System.out.println(
      "Creating new Cupboard() in main");
    new Cupboard();
    System.out.println(
      "Creating new Cupboard() in main");
    new Cupboard();
    t2.f2(1);
    t3.f3(1);
  }
  static Table t2 = new Table();
  static Cupboard t3 = new Cupboard();
} ///:~

Bowl allows you to view the creation of a class, and Table and Cupboard create static
members of Bowl scattered through their class definitions. Note that Cupboard creates a
non-static Bowl b3 prior to the static definitions. The output shows what happens:

Bowl(1)
Bowl(2)
Table()
f(1)
Bowl(4)
Bowl(5)
Bowl(3)



Chapter 4: Initialization & Cleanup 155

Cupboard()
f(2)
Creating new Cupboard() in main
Bowl(3)
Cupboard()
f(2)
Creating new Cupboard() in main
Bowl(3)
Cupboard()
f(2)
f2(1)
f3(1)

The static initialization occurs only if it’s necessary. If you don’t create a Table object and
you never refer to Table.b1 or Table.b2, the static Bowl b1 and b2 will never be created.
However, they are created only when the first Table object is created (or the first static
access occurs). After that, the static object is not re-initialized.

The order of initialization is statics first, if they haven’t already been initialized by a
previous object creation, and then the non-static objects. You can see the evidence of this in
the output.

It’s helpful to summarize the process of creating an object. Consider a class called Dog:

1. The first time an object of type Dog is created, or the first time a static method or static
field of class Dog is accessed, the Java interpreter must locate Dog.class, which it does
by searching through the classpath.

2. As Dog.class is loaded (which creates a Class object, which you’ll learn about later), all
of its static initializers are run. Thus, static initialization takes place only once, as the
Class object is loaded for the first time.

3. When you create a new Dog( ), the construction process for a Dog object first allocates
enough storage for a Dog object on the heap.

4. This storage is wiped to zero, automatically setting all the primitives in Dog to their
default values (zero for numbers and the equivalent for boolean and char).

5. Any initializations that occur at the point of field definition are executed.

6. Constructors are executed. As you shall see in Chapter 6, this might actually involve a
fair amount of activity, especially when inheritance is involved.

Explicit static initialization
Java allows you to group other static initializations inside a special “static construction
clause” (sometimes called a static block) in a class. It looks like this:

class Spoon {
  static int i;
  static {
    i = 47;
  }
  // . . .



156 Thinking in Java  www.BruceEckel.com

So it looks like a method, but it’s just the static keyword followed by a method body. This
code, like the other static initialization, is executed only once, the first time you make an
object of that class or you access a static member of that class (even if you never make an
object of that class). For example:

//: ExplicitStatic.java
// Explicit static initialization
// with the "static" clause.

class Cup {
  Cup(int marker) {
    System.out.println("Cup(" + marker + ")");
  }
  void f(int marker) {
    System.out.println("f(" + marker + ")");
  }
}

class Cups {
  static Cup c1;
  static Cup c2;
  static {
    c1 = new Cup(1);
    c2 = new Cup(2);
  }
  Cups() {
    System.out.println("Cups()");
  }
}

public class ExplicitStatic {
  public static void main(String[] args) {
    System.out.println("Inside main()");
    Cups.c1.f(99);  // (1)
  }
  static Cups x = new Cups();  // (2)
  static Cups y = new Cups();  // (2)
} ///:~

The static initializers for Cups will be run when either the access of the static object c1
occurs on the line marked (1), or if line (1) is commented out and the lines marked (2) are
uncommented. If both (1) and (2) are commented out, the static initialization for Cups
never occurs.

Non-static instance initialization
Java 1.1 provides a similar syntax for initializing non-static variables for each object. Here’s
an example:

//: Mugs.java
// Java 1.1 "Instance Initialization"

class Mug {
  Mug(int marker) {



Chapter 4: Initialization & Cleanup 157

    System.out.println("Mug(" + marker + ")");
  }
  void f(int marker) {
    System.out.println("f(" + marker + ")");
  }
}

public class Mugs {
  Mug c1;
  Mug c2;
  {
    c1 = new Mug(1);
    c2 = new Mug(2);
    System.out.println("c1 & c2 initialized");
  }
  Mugs() {
    System.out.println("Mugs()");
  }
  public static void main(String[] args) {
    System.out.println("Inside main()");
    Mugs x = new Mugs();
  }
} ///:~

You can see that the instance initialization clause:

  {
    c1 = new Mug(1);
    c2 = new Mug(2);
    System.out.println("c1 & c2 initialized");
  }

looks exactly like the static initialization clause except for the missing static keyword. This
syntax is necessary to support the initialization of anonymous inner classes (see Chapter 7).

Array initialization
Initializing arrays in C is error-prone and tedious. C++ uses aggregate initialization to make
it much safer.6 Java has no “aggregates” like C++, since everything is an object in Java. It
does have arrays, and these are supported with array initialization.

An array is simply a sequence of either objects or primitives, all the same type and packaged
together under one identifier name. Arrays are defined and used with the square-brackets
indexing operator [ ]. To define an array you simply follow your type name with empty
square brackets:

int[] a1;

You can also put the square brackets after the identifier to produce exactly the same
meaning:

                                                

6 See Thinking in C++ for a complete description of aggregate initialization.



158 Thinking in Java  www.BruceEckel.com

int a1[];

This conforms to expectations from C and C++ programmers. The former style, however, is
probably a more sensible syntax, since it says that the type is “an int array.” That style will
be used in this book.

The compiler doesn’t allow you to tell it how big the array is. This brings us back to that
issue of “handles.” All that you have at this point is a handle to an array, and there’s been no
space allocated for the array. To create storage for the array you must write an initialization
expression. For arrays, initialization can appear anywhere in your code, but you can also use
a special kind of initialization expression that must occur at the point where the array is
created. This special initialization is a set of values surrounded by curly braces. The storage
allocation (the equivalent of using new) is taken care of by the compiler in this case. For
example:

int[] a1 = { 1, 2, 3, 4, 5 };

So why would you ever define an array handle without an array?

int[] a2;

Well, it’s possible to assign one array to another in Java, so you can say:

a2 = a1;

What you’re really doing is copying a handle, as demonstrated here:

//: Arrays.java
// Arrays of primitives.

public class Arrays {
  public static void main(String[] args) {
    int[] a1 = { 1, 2, 3, 4, 5 };
    int[] a2;
    a2 = a1;
    for(int i = 0; i < a2.length; i++)
      a2[i]++;
    for(int i = 0; i < a1.length; i++)
      prt("a1[" + i + "] = " + a1[i]);
  }
  static void prt(String s) {
    System.out.println(s);
  }
} ///:~

You can see that a1 is given an initialization value while a2 is not; a2 is assigned later – in
this case, to another array.

There’s something new here: all arrays have an intrinsic member (whether they’re arrays of
objects or arrays of primitives) that you can query – but not change – to tell you how many
elements there are in the array. This member is length. Since arrays in Java, like C and
C++, start counting from element zero, the largest element you can index is length - 1. If
you go out of bounds, C and C++ quietly accept this and allow you to stomp all over your
memory, which is the source of many infamous bugs. However, Java protects you against
such problems by causing a run-time error (an exception, the subject of Chapter 9) if you
step out of bounds. Of course, checking every array access costs time and code and there’s



Chapter 4: Initialization & Cleanup 159

no way to turn it off, which means that array accesses might be a source of inefficiency in
your program if they occur at a critical juncture. For Internet security and programmer
productivity, the Java designers thought that this was a worthwhile tradeoff.

What if you don’t know how many elements you’re going to need in your array while
you’re writing the program? You simply use new to create the elements in the array. Here,
new works even though it’s creating an array of primitives (new won’t create a non-array
primitive):

//: ArrayNew.java
// Creating arrays with new.
import java.util.*;

public class ArrayNew {
  static Random rand = new Random();
  static int pRand(int mod) {
    return Math.abs(rand.nextInt()) % mod;
  }
  public static void main(String[] args) {
    int[] a;
    a = new int[pRand(20)];
    prt("length of a = " + a.length);
    for(int i = 0; i < a.length; i++)
      prt("a[" + i + "] = " + a[i]);
  }
  static void prt(String s) {
    System.out.println(s);
  }
} ///:~

Since the size of the array is chosen at random (using the pRand( ) method defined earlier),
it’s clear that array creation is actually happening at run-time. In addition, you’ll see from
the output of this program that array elements of primitive types are automatically
initialized to ”empty” values. (For numerics, this is zero, for char, it’s null, and for boolean,
it's false.)

Of course, the array could also have been defined and initialized in the same statement:

int[] a = new int[pRand(20)];

If you’re dealing with an array of non-primitive objects, you must always use new. Here,
the handle issue comes up again because what you create is an array of handles. Consider
the wrapper type Integer, which is a class and not a primitive:

//: ArrayClassObj.java
// Creating an array of non-primitive objects.
import java.util.*;

public class ArrayClassObj {
  static Random rand = new Random();
  static int pRand(int mod) {
    return Math.abs(rand.nextInt()) % mod;
  }
  public static void main(String[] args) {
    Integer[] a = new Integer[pRand(20)];



160 Thinking in Java  www.BruceEckel.com

    prt("length of a = " + a.length);
    for(int i = 0; i < a.length; i++) {
      a[i] = new Integer(pRand(500));
      prt("a[" + i + "] = " + a[i]);
    }
  }
  static void prt(String s) {
    System.out.println(s);
  }
} ///:~

Here, even after new is called to create the array:

Integer[] a = new Integer[pRand(20)];

it’s only an array of handles, and not until the handle itself is initialized by creating a new
Integer object is the initialization complete:

a[i] = new Integer(pRand(500));

If you forget to create the object, however, you’ll get an exception at run-time when you try
to read the empty array location.

Take a look at the formation of the String object inside the print statements. You can see that
the handle to the Integer object is automatically converted to produce a String representing
the value inside the object.

It’s also possible to initialize arrays of objects using the curly-brace-enclosed list. There are
two forms, the first of which is the only one allowed in Java 1.0. The second (equivalent)
form is allowed starting with Java 1.1:

//: ArrayInit.java
// Array initialization

public class ArrayInit {
  public static void main(String[] args) {
    Integer[] a = {
      new Integer(1),
      new Integer(2),
      new Integer(3),
    };

    // Java 1.1 only:
    Integer[] b = new Integer[] {
      new Integer(1),
      new Integer(2),
      new Integer(3),
    };
  }
} ///:~

This is useful at times, but it’s more limited since the size of the array is determined at
compile time. The final comma in the list of initializers is optional. (This feature makes for
easier maintenance of long lists.)



Chapter 4: Initialization & Cleanup 161

The second form of array initialization, added in Java 1.1, provides a convenient syntax to
create and call methods that can produce the same effect as C’s variable argument lists
(known as “varargs” in C). These included, if you choose, unknown quantity of arguments
as well as unknown type. Since all classes are ultimately inherited from the common root
class Object, you can create a method that takes an array of Object and call it like this:

//: VarArgs.java
// Using the Java 1.1 array syntax to create
// variable argument lists

class A { int i; }

public class VarArgs {
  static void f(Object[] x) {
    for(int i = 0; i < x.length; i++)
      System.out.println(x[i]);
  }
  public static void main(String[] args) {
    f(new Object[] {
        new Integer(47), new VarArgs(),
        new Float(3.14), new Double(11.11) });
    f(new Object[] {"one", "two", "three" });
    f(new Object[] {new A(), new A(), new A()});
  }
} ///:~

At this point, there’s not much you can do with these unknown objects, and this program
uses the automatic String conversion to do something useful with each Object. In Chapter
11 (run-time type identification or RTTI) you’ll learn how to discover the exact type of such
objects so that you can do something more interesting with them.

Multidimensional arrays
Java allows you to easily create multidimensional arrays:

//: MultiDimArray.java
// Creating multidimensional arrays.
import java.util.*;

public class MultiDimArray {
  static Random rand = new Random();
  static int pRand(int mod) {
    return Math.abs(rand.nextInt()) % mod;
  }
  public static void main(String[] args) {
    int[][] a1 = {
      { 1, 2, 3, },
      { 4, 5, 6, },
    };
    for(int i = 0; i < a1.length; i++)
      for(int j = 0; j < a1[i].length; j++)
        prt("a1[" + i + "][" + j +
            "] = " + a1[i][j]);
    // 3-D array with fixed length:



162 Thinking in Java  www.BruceEckel.com

    int[][][] a2 = new int[2][2][4];
    for(int i = 0; i < a2.length; i++)
      for(int j = 0; j < a2[i].length; j++)
        for(int k = 0; k < a2[i][j].length;
            k++)
          prt("a2[" + i + "][" +
              j + "][" + k +
              "] = " + a2[i][j][k]);
    // 3-D array with varied-length vectors:
    int[][][] a3 = new int[pRand(7)][][];
    for(int i = 0; i < a3.length; i++) {
      a3[i] = new int[pRand(5)][];
      for(int j = 0; j < a3[i].length; j++)
        a3[i][j] = new int[pRand(5)];
    }
    for(int i = 0; i < a3.length; i++)
      for(int j = 0; j < a3[i].length; j++)
        for(int k = 0; k < a3[i][j].length;
            k++)
          prt("a3[" + i + "][" +
              j + "][" + k +
              "] = " + a3[i][j][k]);
    // Array of non-primitive objects:
    Integer[][] a4 = {
      { new Integer(1), new Integer(2)},
      { new Integer(3), new Integer(4)},
      { new Integer(5), new Integer(6)},
    };
    for(int i = 0; i < a4.length; i++)
      for(int j = 0; j < a4[i].length; j++)
        prt("a4[" + i + "][" + j +
            "] = " + a4[i][j]);
    Integer[][] a5;
    a5 = new Integer[3][];
    for(int i = 0; i < a5.length; i++) {
      a5[i] = new Integer[3];
      for(int j = 0; j < a5[i].length; j++)
        a5[i][j] = new Integer(i*j);
    }
    for(int i = 0; i < a5.length; i++)
      for(int j = 0; j < a5[i].length; j++)
        prt("a5[" + i + "][" + j +
            "] = " + a5[i][j]);
  }
  static void prt(String s) {
    System.out.println(s);
  }
} ///:~

The code used for printing uses length so that it doesn’t depend on fixed array sizes.

The first example shows a multidimensional array of primitives. You delimit each vector in
the array with curly braces:



Chapter 4: Initialization & Cleanup 163

    int[][] a1 = {
      { 1, 2, 3, },
      { 4, 5, 6, },
    };

Each set of square brackets moves you into the next level of the array.

The second example shows a three-dimensional array allocated with new. Here, the whole
array is allocated at once:

int[][][] a2 = new int[2][2][4];

But the third example shows that each vector in the arrays that make up the matrix can be
of any length:

    int[][][] a3 = new int[pRand(7)][][];
    for(int i = 0; i < a3.length; i++) {
      a3[i] = new int[pRand(5)][];
      for(int j = 0; j < a3[i].length; j++)
        a3[i][j] = new int[pRand(5)];
    }

The first new creates an array with a random-length first element and the rest
undetermined. The second new inside the for loop fills out the elements but leaves the third
index undetermined until you hit the third new.

You will see from the output that array values are automatically initialized to zero if you
don’t give them an explicit initialization value.

You can deal with arrays of non-primitive objects in a similar fashion, which is shown in the
fourth example, demonstrating the ability to collect many new expressions with curly
braces:

    Integer[][] a4 = {
      { new Integer(1), new Integer(2)},
      { new Integer(3), new Integer(4)},
      { new Integer(5), new Integer(6)},
    };

The fifth example shows how an array of non-primitive objects can be built up piece by
piece:

    Integer[][] a5;
    a5 = new Integer[3][];
    for(int i = 0; i < a5.length; i++) {
      a5[i] = new Integer[3];
      for(int j = 0; j < a5[i].length; j++)
        a5[i][j] = new Integer(i*j);
    }

The i*j is just to put an interesting value into the Integer.



164 Thinking in Java  www.BruceEckel.com

Summary
The seemingly elaborate mechanism for initialization, the constructor, should give you a
strong hint about the critical importance placed on initialization in the language. As
Stroustrup was designing C++, one of the first observations he made about productivity in
C was that improper initialization of variables causes a significant portion of programming
problems. These kinds of bugs are hard to find, and similar issues apply to improper
cleanup. Because constructors allow you to guarantee proper initialization and cleanup (the
compiler will not allow an object to be created without the proper constructor calls), you get
complete control and safety.

In C++, destruction is quite important because objects created with new must be explicitly
destroyed. In Java, the garbage collector automatically releases the memory for all objects,
so the equivalent cleanup method in Java isn’t necessary much of the time. In cases where
you don’t need destructor-like behavior, Java’s garbage collector greatly simplifies
programming, and adds much-needed safety in managing memory. Some garbage collectors
are even cleaning up other resources like graphics and file handles. However, the garbage
collector does add a run-time cost, the expense of which is difficult to put into perspective
because of the overall slowness of Java interpreters at this writing. As this changes, we’ll be
able to discover if the overhead of the garbage collector will preclude the use of Java for
certain types of programs. (One of the issues is the unpredictability of the garbage collector.)

Because of the guarantee that all objects will be constructed, there’s actually more to the
constructor than what is shown here. In particular, when you create new classes using
either composition or inheritance the guarantee of construction also holds, and some
additional syntax is necessary to support this. You’ll learn about composition, inheritance
and how they affect constructors in future chapters.

Exercises
 1.  Create a class with a default constructor (one that takes no arguments) that prints a

message. Create an object of this class.

 2.  Add an overloaded constructor to Exercise 1 that takes a String argument and prints it
along with your message.

 3.  Create an array of object handles of the class you created in Exercise 2, but don’t actually
create objects to assign into the array. When you run the program, notice whether the
initialization messages from the constructor calls are printed.

 4.  Complete Exercise 3 by creating objects to attach to the array of handles.

 5.  Experiment with Garbage.java by running the program using the arguments “before,”
“after” and “none.” Repeat the process and see if you detect any patterns in the output.
Change the code so that System.runFinalization( ) is called before System.gc( ) and
observe the results.



165

d

5: Hiding the
implementation

A primary consideration in object-oriented design is “separating the
things that change from the things that stay the same.”
This is particularly important for libraries. The user (client programmer) of that library must
be able to rely on the part they use, and know that they won’t need to rewrite code if a new
version of the library comes out. On the flip side, the library creator must have the freedom
to make modifications and improvements with the certainty that the client programmer’s
code won’t be affected by those changes.

This can be achieved through convention. For example, the library programmer must agree
to not remove existing methods when modifying a class in the library, since that would
break the client programmer’s code. The reverse situation is thornier, however. In the case of
a data member, how can the library creator know which data members have been accessed
by client programmers? This is also true with methods that are only part of the
implementation of a class, and not meant to be used directly by the client programmer. But
what if the library creator wants to rip out an old implementation and put in a new one?
Changing any of those members might break a client programmer’s code. Thus the library
creator is in a strait jacket and can’t change anything.

To solve this problem, Java provides access specifiers to allow the library creator to say what
is available to the client programmer and what is not. The levels of access control from
“most access” to “least access” are public, “friendly” (which has no keyword), protected,
and private. From the previous paragraph you might think that, as a library designer, you’ll
want to keep everything as “private” as possible, and expose only the methods that you
want the client programmer to use. This is exactly right, even though it’s often
counterintuitive for people who program in other languages (especially C) and are used to



166 Thinking in Java  www.BruceEckel.com

accessing everything without restriction. By the end of this chapter you should be convinced
of the value of access control in Java.

The concept of a library of components and the control over who can access the components
of that library is not complete, however. There’s still the question of how the components
are bundled together into a cohesive library unit. This is controlled with the package
keyword in Java, and the access specifiers are affected by whether a class is in the same
package or in a separate package. So to begin this chapter, you’ll learn how library
components are placed into packages. Then you’ll be able to understand the complete
meaning of the access specifiers.

package: the library unit
A package is what you get when you use the import keyword to bring in an entire library,
such as

import java.util.*;

This brings in the entire utility library that’s part of the standard Java distribution. Since
Vector is in java.util, you can now either specify the full name java.util.Vector (which you
can do without the import statement), or you can simply say Vector (because of the
import).

If you want to bring in a single class, you can name that class in the import statement

import java.util.Vector;

Now you can use Vector with no qualification. However, none of the other classes in
java.util are available.

The reason for all this importing is to provide a mechanism to manage “name spaces.” The
names of all your class members are insulated from each other. A method f( ) inside a class A
will not clash with an f( ) that has the same signature (argument list) in class B. But what
about the class names? Suppose you create a stack class that is installed on a machine that
already has a stack class that’s written by someone else? With Java on the Internet, this can
happen without the user knowing it since classes can get downloaded automatically in the
process of running a Java program.

This potential clashing of names is why it’s important to have complete control over the
name spaces in Java, and to be able to create a completely unique name regardless of the
constraints of the Internet.

So far, most of the examples in this book have existed in a single file and have been designed
for local use, and haven’t bothered with package names. (In this case the class name is placed
in the “default package.”) This is certainly an option, and for simplicity’s sake this approach
will be used whenever possible throughout the rest of the book. If you’re planning to create
a program that is “Internet friendly,” however, you must think about preventing class name
clashes.

When you create a source-code file for Java, it’s commonly called a compilation unit
(sometimes a translation unit). Each compilation unit must have a name ending in .java, and
inside the compilation unit there can be a public class that must have the same name as the
file (including capitalization, but excluding the .java filename extension). If you don’t do
this, the compiler will complain. There can be only one public class in each compilation unit



Chapter 5: Hiding the Implementation 167

(again, the compiler will complain). The rest of the classes in that compilation unit, if there
are any, are hidden from the world outside that package because they’re not public, and they
comprise “support” classes for the main public class.

When you compile a .java file you get an output file with exactly the same name but an
extension of .class for each class in the .java file. Thus you can end up with quite a few
.class files from a small number of .java files. If you’ve programmed with a compiled
language, you might be used to the compiler spitting out an intermediate form (usually an
“obj” file) that is then packaged together with others of its kind using a linker (to create an
executable file) or a librarian (to create a library). That’s not how Java works. A working
program is a bunch of .class files, which can be packaged and compressed into a JAR file
(using the jar utility in Java 1.1). The Java interpreter is responsible for finding, loading and
interpreting these files.1

A library is also a bunch of these class files. Each file has one class that is public (you’re not
forced to have a public class, but it’s typical), so there’s one component for each file. If you
want to say that all these components (that are in their own separate .java and .class files)
belong together, that’s where the package keyword comes in.

When you say:

package mypackage;

at the beginning of a file, where the package statement must appear as the first non-
comment in the file, you’re stating that this compilation unit is part of a library named
mypackage. Or, put another way, you’re saying that the public class name within this
compilation unit is under the umbrella of the name mypackage, and if anyone wants to use
the name they must either fully specify the name or use the import keyword in combination
with mypackage (using the choices given previously). Note that the convention for Java
packages is to use all lowercase letters, even for intermediate words.

For example, suppose the name of the file is MyClass.java. This means there can be one and
only one public class in that file, and the name of that class must be MyClass (including the
capitalization):

package mypackage;
public class MyClass {
  // . . .

Now, if someone wants to use MyClass or, for that matter, any of the other public classes in
mypackage, they must use the import keyword to make the name or names in mypackage
available. The alternative is to give the fully-qualified name:

mypackage.MyClass m = new mypackage.MyClass();

The import keyword can make this much cleaner:

import mypackage.*;
// . . .
MyClass m = new MyClass();

                                                

1 There’s nothing in Java that forces the use of an interpreter. There exist native-code Java compilers
that generate a single executable file.



168 Thinking in Java  www.BruceEckel.com

It’s worth keeping in mind that what the package and import keywords allow you to do, as
a library designer, is to divide up the single global name space so you won’t have clashing
names, no matter how many people get on the Internet and start writing classes in Java.

Creating unique package names
You might observe that, since a package never really gets “packaged” into a single file, a
package could be made up of many .class files, and things could get a bit cluttered. To
prevent this, a logical thing to do is to place all the .class files for a particular package into a
single directory; that is, use the hierarchical file structure of the operating system to your
advantage. This is how Java handles the problem of clutter.

It also solves two other problems: creating unique package names and finding those classes
that might be buried in a directory structure someplace. This is accomplished, as was
introduced in Chapter 2, by encoding the path of the location of the .class file into the name
of the package. The compiler enforces this, but by convention, the first part of the package
name is the Internet domain name of the creator of the class, reversed. Since Internet domain
names are guaranteed to be unique (by InterNIC,2 who controls their assignment) if you
follow this convention it’s guaranteed that your package name will be unique and thus
you’ll never have a name clash. (That is, until you lose the domain name to someone else
who starts writing Java code with the same path names as you did.) Of course, if you don’t
have your own domain name then you must fabricate an unlikely combination (such as
your first and last name) to create unique package names. If you’ve decided to start
publishing Java code it’s worth the relatively small effort to get a domain name.

The second part of this trick is resolving the package name into a directory on your
machine, so when the Java program runs and it needs to load the .class file (which it does
dynamically, at the point in the program where it needs to create an object of that particular
class, or the first time you access a static member of the class), it can locate the directory
where the .class file resides.

The Java interpreter proceeds as follows. First, it finds the environment variable CLASSPATH
(set via the operating system when Java, or a tool like a Java-enabled browser, is installed on
a machine). CLASSPATH contains one or more directories that are used as roots for a search
for .class files. Starting at that root, the interpreter will take the package name and replace
each dot with a slash to generate a path name from the CLASSPATH root (so package
foo.bar.baz becomes foo\bar\baz or foo/bar/baz depending on your operating system).
This is then concatenated to the various entries in the CLASSPATH. That’s where it looks for
the .class file with the name corresponding to the class you’re trying to create. (It also
searches some standard directories relative to where the Java interpreter resides).

To understand this, consider my domain name, which is bruceeckel.com. By reversing this,
com.bruceeckel establishes my unique global name for my classes. (The com, edu, org, etc.
extension was formerly capitalized in Java packages, but this was changed in Java 1.2 so the
entire package name is lowercase.) I can further subdivide this by deciding that I want to
create a library named util, so I’ll end up with a package name:

package com.bruceeckel.util;

Now this package name can be used as an umbrella name space for the following two files:

                                                

2 ftp://ftp.internic.net



Chapter 5: Hiding the Implementation 169

//: Vector.java
// Creating a package
package com.bruceeckel.util;

public class Vector {
  public Vector() {
    System.out.println(
      "com.bruceeckel.util.Vector");
  }
} ///:~

When you create your own packages, you’ll discover that the package statement must be
the first non-comment code in the file. The second file looks much the same:

//: List.java
// Creating a package
package com.bruceeckel.util;

public class List {
  public List() {
    System.out.println(
      "com.bruceeckel.util.List");
  }
} ///:~

Both of these files are placed in the subdirectory on my system:

C:\DOC\JavaT\com\bruceeckel\util

If you walk back through this, you can see the package name com.bruceeckel.util, but
what about the first portion of the path? That’s taken care of in the CLASSPATH
environment variable, which is, on my machine:

CLASSPATH=.;D:\JAVA\LIB;C:\DOC\JavaT

You can see that the CLASSPATH can contain a number of alternative search paths. There’s a
variation when using JAR files, however. You must put the name of the JAR file in the
classpath, not just the path where it’s located. So for a JAR named grape.jar your classpath
would include:

CLASSPATH=.;D:\JAVA\LIB;C:\flavors\grape.jar

Once the classpath is set up properly, the following file can be placed in any directory: (See
page 94 if you have trouble executing this program.):

//: LibTest.java
// Uses the library
package c05;
import com.bruceeckel.util.*;

public class LibTest {
  public static void main(String[] args) {
    Vector v = new Vector();
    List l = new List();
  }
} ///:~



170 Thinking in Java  www.BruceEckel.com

When the compiler encounters the import statement, it begins searching at the directories
specified by CLASSPATH, looking for subdirectory com\bruceeckel\util, then seeking the
compiled files of the appropriate names (Vector.class for Vector and List.class for List). Note
that both the classes and the desired methods in Vector and List must be public.

Automatic compilation
The first time you create an object of an imported class (or you access a static member of a
class), the compiler will hunt for the .class file of the same name (so if you’re creating an
object of class X, it looks for X.class) in the appropriate directory. If it finds only X.class,
that’s what it must use. However, if it also finds an X.java in the same directory, the
compiler will compare the date stamp on the two files, and if X.java is more recent than
X.class, it will automatically recompile X.java to generate an up-to-date X.class.

If a class is not in a .java file of the same name as that class, this behavior will not occur for
that class.

Collisions
What happens if two libraries are imported via * and they include the same names? For
example, suppose a program does this:

import com.bruceeckel.util.*;
import java.util.*;

Since java.util.* also contains a Vector class, this causes a potential collision. However, as
long as the collision doesn’t actually occur, everything is OK – this is good because otherwise
you might end up doing a lot of typing to prevent collisions that would never happen.

The collision does occur if you now try to make a Vector:

Vector v = new Vector();

Which Vector class does this refer to? The compiler can’t know, and the reader can’t know
either. So the compiler complains and forces you to be explicit. If I want the standard Java
Vector, for example, I must say:

java.util.Vector v = new java.util.Vector();

Since this (along with the CLASSPATH) completely specifies the location of that Vector,
there’s no need for the import java.util.* statement unless I’m using something else from
java.util.

A custom tool library
With this knowledge, you can now create your own libraries of tools to reduce or eliminate
duplicate code. Consider, for example, creating an alias for System.out.println( ) to reduce
typing. This can be part of a package called tools:

//: P.java
// The P.rint & P.rintln shorthand
package com.bruceeckel.tools;

public class P {
  public static void rint(Object obj) {



Chapter 5: Hiding the Implementation 171

    System.out.print(obj);
  }
  public static void rint(String s) {
    System.out.print(s);
  }
  public static void rint(char[] s) {
    System.out.print(s);
  }
  public static void rint(char c) {
    System.out.print(c);
  }
  public static void rint(int i) {
    System.out.print(i);
  }
  public static void rint(long l) {
    System.out.print(l);
  }
  public static void rint(float f) {
    System.out.print(f);
  }
  public static void rint(double d) {
    System.out.print(d);
  }
  public static void rint(boolean b) {
    System.out.print(b);
  }
  public static void rintln() {
    System.out.println();
  }
  public static void rintln(Object obj) {
    System.out.println(obj);
  }
  public static void rintln(String s) {
    System.out.println(s);
  }
  public static void rintln(char[] s) {
    System.out.println(s);
  }
  public static void rintln(char c) {
    System.out.println(c);
  }
  public static void rintln(int i) {
    System.out.println(i);
  }
  public static void rintln(long l) {
    System.out.println(l);
  }
  public static void rintln(float f) {
    System.out.println(f);
  }
  public static void rintln(double d) {
    System.out.println(d);
  }
  public static void rintln(boolean b) {



172 Thinking in Java  www.BruceEckel.com

    System.out.println(b);
  }
} ///:~

All the different data types can now be printed out either with a newline (P.rintln( )) or
without a newline (P.rint( )).

You can guess that the location of this file must be in a directory that starts at one of the
CLASSPATH locations, then continues com/bruceeckel/tools. After compiling, the P.class file
can be used anywhere on your system with an import statement:

//: ToolTest.java
// Uses the tools library
import com.bruceeckel.tools.*;

public class ToolTest {
  public static void main(String[] args) {
    P.rintln("Available from now on!");
  }
} ///:~

So from now on, whenever you come up with a useful new utility, you can add it to the
tools directory. (Or to your own personal util or tools directory.)

Classpath pitfall
The P.java file brought up an interesting pitfall. Especially with early implementations of
Java, setting the classpath correctly is generally quite a headache. During the development
of this book, the P.java file was introduced and seemed to work fine, but at some point it
began breaking. For a long time I was certain that this was the fault of one implementation
of Java or another, but finally I discovered that at one point I had introduced a program
(CodePackager.java, shown in Chapter 17) that used a different class P. Because it was used
as a tool, it was sometimes placed in the classpath, and other times it wasn’t. When it was,
the P in CodePackager.java was found first by Java when executing a program in which it
was looking for the class in com.bruceeckel.tools, and the compiler would say that a
particular method couldn’t be found. This was frustrating because you can see the method
in the above class P and no further diagnostics were reported to give you a clue that it was
finding a completely different class. (That wasn’t even public.)

At first this could seem like a compiler bug, but if you look at the import statement it says
only “here’s where you might find P.” However, the compiler is supposed to look anywhere
in its classpath, so if it finds a P there it will use it, and if it finds the “wrong” one first
during a search then it will stop looking. This is slightly different from the case described on
page 170 because there the offending classes were both in packages, and here there was a P
that was not in a package, but could still be found during a normal classpath search.

If you’re having an experience like this, check to make sure that there’s only one class of
each name anywhere in your classpath.

Using imports to change behavior
A feature that is missing from Java is C’s conditional compilation, which allows you to
change a switch and get different behavior without changing any other code. The reason
such a feature was left out of Java is probably because it is most often used in C to solve



Chapter 5: Hiding the Implementation 173

cross-platform issues: different portions of the code are compiled depending on the platform
that the code is being compiled for. Since Java is intended to be automatically cross-platform,
such a feature should not be necessary.

However, there are other valuable uses for conditional compilation. A very common use is
for debugging code. The debugging features are enabled during development, and disabled
for a shipping product. Allen Holub (www.holub.com) came up with the idea of using
packages to mimic conditional compilation. He used this to create a Java version of C’s very
useful assertion mechanism, whereby you can say “this should be true” or “this should be
false” and if the statement doesn’t agree with your assertion you’ll find out about it. Such a
tool is quite helpful during debugging.

Here is the class that you’ll use for debugging:

//: Assert.java
// Assertion tool for debugging
package com.bruceeckel.tools.debug;

public class Assert {
  private static void perr(String msg) {
    System.err.println(msg);
  }
  public final static void is_true(boolean exp) {
    if(!exp) perr("Assertion failed");
  }
  public final static void is_false(boolean exp){
    if(exp) perr("Assertion failed");
  }
  public final static void
  is_true(boolean exp, String msg) {
    if(!exp) perr("Assertion failed: " + msg);
  }
  public final static void
  is_false(boolean exp, String msg) {
    if(exp) perr("Assertion failed: " + msg);
  }
} ///:~

This class simply encapsulates boolean tests, which print error messages if they fail. In
Chapter 9, you’ll learn about a more sophisticated tool for dealing with errors called
exception handling, but the perr( ) method will work fine in the meantime.

When you want to use this class, you add a line in your program:

import com.bruceeckel.tools.debug.*;

To remove the assertions so you can ship the code, a second Assert class is created, but in a
different package:

//: Assert.java
// Turning off the assertion output
// so you can ship the program.
package com.bruceeckel.tools;

public class Assert {



174 Thinking in Java  www.BruceEckel.com

  public final static void is_true(boolean exp){}
  public final static void is_false(boolean exp){}
  public final static void
  is_true(boolean exp, String msg) {}
  public final static void
  is_false(boolean exp, String msg) {}
} ///:~

Now if you change the previous import statement to:

import com.bruceeckel.tools.*;

The program will no longer print out assertions. Here’s an example:

//: TestAssert.java
// Demonstrating the assertion tool
package c05;
// Comment the following, and uncomment the
// subsequent line to change assertion behavior:
import com.bruceeckel.tools.debug.*;
// import com.bruceeckel.tools.*;

public class TestAssert {
  public static void main(String[] args) {
    Assert.is_true((2 + 2) == 5);
    Assert.is_false((1 + 1) == 2);
    Assert.is_true((2 + 2) == 5, "2 + 2 == 5");
    Assert.is_false((1 + 1) == 2, "1 +1 != 2");
  }
} ///:~

By changing the package that’s imported, you change your code from the debug version to
the production version. This technique can be used for any kind of conditional code.

Package caveat
It’s worth remembering that anytime you create a package, you implicitly specify a
directory structure when you give the package a name. The package must live in the
directory indicated by its name, which must be a directory that is searchable starting from
the CLASSPATH. Experimenting with the package keyword can be a bit frustrating at first,
because unless you adhere to the package-name to directory-path rule, you’ll get a lot of
mysterious run-time messages about not being able to find a particular class, even if that
class is sitting there in the same directory. If you get a message like this, try commenting out
the package statement, and if it runs you’ll know where the problem lies.

Java access specifiers
The Java access specifiers public, protected and private are placed in front of each
definition for each member in your class, whether it’s a data member or a method. Each
access specifier controls the access for only that particular definition. This is a distinct
contrast to C++, in which the access specifier controls all the definitions following it until
another access specifier comes along.



Chapter 5: Hiding the Implementation 175

One way or another, everything has some kind of access specified for it. In the following
sections, you’ll learn all about the various types of access, starting with the default access.

“Friendly”
What if you give no access specifier at all, as in all the examples before this chapter? The
default access has no keyword, but it is commonly referred to as “friendly.” It means that all
the other classes in the current package have access to the friendly member, but to all the
classes outside of this package the member appears to be private. Since a compilation unit – a
file – can belong only to a single package, all the classes within a single compilation unit are
automatically friendly with each other. Thus, friendly elements are also said to have package
access.

Friendly access allows you to group related classes together in a package so that they can
easily interact with each other. When you put classes together in a package (thus granting
mutual access to their friendly members; e.g. making them “friends”) you “own” the code in
that package. It makes sense that only code that you own should have friendly access to
other code that you own. You could say that friendly access gives a meaning or a reason for
grouping classes together in a package. In many languages the way you organize your
definitions in files can be willy-nilly, but in Java you’re compelled to organize them in a
sensible fashion. In addition, you’ll probably want to exclude classes that shouldn’t have
access to the classes being defined in the current package.

An important question in any relationship is “Who can access my private implementation?”
The class controls which code has access to its members. There’s no magic way to “break in;”
someone in another package can’t declare a new class and say, “Hi, I’m a friend of Bob’s!”
and expect to see the protected, friendly, and private members of Bob. The only way to
grant access to a member is to:

1. Make the member public. Then everybody, everywhere, can access it.

2. Make the member friendly by leaving off any access specifier, and put the other classes in
the same package. Then the other classes can access the member.

3. As you’ll see in a later chapter where inheritance is introduced, an inherited class can
access a protected member as well as a public member (but not private members). It
can access friendly members only if the two classes are in the same package. But don’t
worry about that now.

4. Provide “accessor/mutator” methods (also known as “get/set” methods) that read and
change the value. This is the most civilized approach in terms of OOP, and it is
fundamental to Java Beans, as you’ll see in Chapter 13.

public: interface access
When you use the public keyword, it means that the member declaration that immediately
follows public is available to everyone, in particular to the client programmer who uses the
library. Suppose you define a package dessert containing the following compilation unit:
(See page 94 if you have trouble executing this program.)

//: Cookie.java
// Creates a library
package c05.dessert;



176 Thinking in Java  www.BruceEckel.com

public class Cookie {
  public Cookie() {
   System.out.println("Cookie constructor");
  }
  void foo() { System.out.println("foo"); }
} ///:~

Remember, Cookie.java must reside in a subdirectory called dessert, in a directory under
C05 (indicating Chapter 5 of this book) that must be under one of the CLASSPATH
directories. Don’t make the mistake of thinking that Java will always look at the current
directory as one of the starting points for searching. If you don’t have a ‘.’ as one of the
paths in your CLASSPATH, Java won’t look there.

Now if you create a program that uses Cookie:

//: Dinner.java
// Uses the library
import c05.dessert.*;

public class Dinner {
  public Dinner() {
   System.out.println("Dinner constructor");
  }
  public static void main(String[] args) {
    Cookie x = new Cookie();
    //! x.foo(); // Can't access
  }
} ///:~

You can create a Cookie object, since its constructor is public and the class is public. (We’ll
look more at the concept of a public class later.) However, the foo( ) member is inaccessible
inside Dinner.java since foo( ) is friendly only within package dessert.

The default package
You might be surprised to discover that the following code compiles, even though it would
appear that it breaks the rules:

//: Cake.java
// Accesses a class in a separate
// compilation unit.

class Cake {
  public static void main(String[] args) {
    Pie x = new Pie();
    x.f();
  }
} ///:~

In a second file, in the same directory:

//: Pie.java
// The other class

class Pie {



Chapter 5: Hiding the Implementation 177

  void f() { System.out.println("Pie.f()"); }
} ///:~

You might initially view these as completely foreign files, and yet Cake is able to create a Pie
object and call its f( ) method! You’d typically think that Pie and f( ) are friendly and
therefore not available to Cake. They are friendly – that part is correct. The reason that they
are available in Cake.java is because they are in the same directory and have no explicit
package name. Java treats files like this as implicitly part of the “default package” for that
directory, and therefore friendly to all the other files in that directory.

private: you can’t touch that!
The private keyword that means no one can access that member except that particular class,
inside methods of that class. Other classes in the same package cannot access private
members, so it’s as if you’re even insulating the class against yourself. On the other hand,
it’s not unlikely that a package might be created by several people collaborating together, so
private allows you to freely change that member without concern that it will affect another
class in the same package. The default “friendly” package access is often an adequate amount
of hiding; remember, a “friendly” member is inaccessible to the user of the package. This is
nice, since the default access is the one that you normally use. Thus, you’ll typically think
about access for the members that you explicitly want to make public for the client
programmer, and as a result, you might not initially think you’ll use the private keyword
often since it’s tolerable to get away without it. (This is a distinct contrast with C++.)
However, it turns out that the consistent use of private is very important, especially where
multithreading is concerned. (As you’ll see in Chapter 14.)

Here’s an example of the use of private:

//: IceCream.java
// Demonstrates "private" keyword

class Sundae {
  private Sundae() {}
  static Sundae makeASundae() {
    return new Sundae();
  }
}

public class IceCream {
  public static void main(String[] args) {
    //! Sundae x = new Sundae();
    Sundae x = Sundae.makeASundae();
  }
} ///:~

This shows an example in which private comes in handy: you might want to control how
an object is created and prevent someone from directly accessing a particular constructor (or
all of them). In the example above, you cannot create a Sundae object via its constructor;
instead you must call the makeASundae( ) method to do it for you.3

                                                

3 There’s another effect in this case: Since the default constructor is the only one defined, and it’s
private, it will prevent inheritance of this class. (A subject that will be introduced in Chapter 6.)



178 Thinking in Java  www.BruceEckel.com

Any method that you’re certain is only a “helper” method for that class can be made private
to ensure that you don’t accidentally use it elsewhere in the package and thus prohibit you
from changing or removing the method. Making a method private guarantees that you
retain this option. (However, just because the handle is private doesn't mean that some other
object can't have a public handle to the same object. See Chapter 12 for issues about
aliasing.)

protected: “sort of friendly”
The protected access specifier requires a jump ahead to understand. First, you should be
aware that you don’t need to understand this section to continue through the book up
through the inheritance chapter. But for completeness, here is a brief description and
example using protected.

The protected keyword deals with a concept called inheritance, which takes an existing class
and adds new members to that class without touching the existing class, which we refer to
as the base class. You can also change the behavior of existing members of the class. To
inherit from an existing class, you say that your new class extends an existing class, like
this:

class Foo extends Bar {

The rest of the class definition looks the same.

If you create a new package and you inherit from a class in another package, the only
members you have access to are the public members of the original package. (Of course, if
you perform the inheritance in the same package, you have the normal package access to all
the “friendly” members.) Sometimes the creator of the base class would like to take a
particular member and grant access to derived classes but not the world in general. That’s
what protected does. If you refer back to the file Cookie.java on page 175, the following
class cannot access the “friendly” member:

//: ChocolateChip.java
// Can't access friendly member
// in another class
import c05.dessert.*;

public class ChocolateChip extends Cookie {
  public ChocolateChip() {
   System.out.println(
     "ChocolateChip constructor");
  }
  public static void main(String[] args) {
    ChocolateChip x = new ChocolateChip();
    //! x.foo(); // Can't access foo
  }
} ///:~

One of the interesting things about inheritance is that if a method foo( ) exists in class
Cookie, then it also exists in any class inherited from Cookie. But since foo( ) is “friendly” in
a foreign package, it’s unavailable to us in this one. Of course, you could make it public, but
then everyone would have access and maybe that’s not what you want. If we change the
class Cookie as follows:

public class Cookie {



Chapter 5: Hiding the Implementation 179

  public Cookie() {
    System.out.println("Cookie constructor");
  }
  protected void foo() {
    System.out.println("foo");
  }
}

then foo( ) still has “friendly” access within package dessert, but it is also accessible to
anyone inheriting from Cookie. However, it is not public.

Interface and implementation
Access control is often referred to as implementation hiding. Wrapping data and methods
within classes (combined with implementation hiding this is often called encapsulation)
produces a data type with characteristics and behaviors, but access control puts boundaries
within that data type for two important reasons. The first is to establish what the client
programmers can and can’t use. You can build your internal mechanisms into the structure
without worrying that the client programmers will think it’s part of the interface that they
should be using.

This feeds directly into the second reason, which is to separate the interface from the
implementation. If the structure is used in a set of programs, but users can’t do anything
but send messages to the public interface, then you can change anything that’s not public
(e.g. “friendly,” protected, or private) without requiring modifications to their code.

We’re now in the world of object-oriented programming, where a class is actually describing
“a class of objects,” as you would describe a class of fishes or a class of birds. Any object
belonging to this class will share these characteristics and behaviors. The class is a
description of the way all objects of this type will look and act.

In the original OOP language, Simula-67, the keyword class was used to describe a new data
type. The same keyword has been used for most object-oriented languages. This is the focal
point of the whole language: the creation of new data types that are more than just boxes
containing data and methods.

The class is the fundamental OOP concept in Java. It is one of the keywords that will not be
set in bold in this book – it becomes annoying with a word repeated as often as “class.”

For clarity, you might prefer a style of creating classes that puts the public members at the
beginning, followed by the protected, friendly and private members. The advantage is that
the user of the class can then read down from the top and see first what’s important to them
(the public members, because they can be accessed outside the file) and stop reading when
they encounter the non-public members, which are part of the internal implementation.
However, with the comment documentation supported by javadoc (described in Chapter 2)
the issue of code readability by the client programmer becomes less important.

public class X {
  public void pub1( ) { /* . . . */ }
  public void pub2( ) { /* . . . */ }
  public void pub3( ) { /* . . . */ }
  private void priv1( ) { /* . . . */ }
  private void priv2( ) { /* . . . */ }
  private void priv3( ) { /* . . . */ }



180 Thinking in Java  www.BruceEckel.com

  private int i;
  // . . .
}

This will make it only partially easier to read because the interface and implementation are
still mixed together. That is, you still see the source code – the implementation – because it’s
right there in the class. Displaying the interface to the consumer of a class is really the job of
the class browser, a tool whose job is to look at all the available classes and show you what
you can do with them (i.e. what members are available) in a useful fashion. By the time you
read this, good browsers should be an expected part of any good Java development tool.

Class access
In Java, the access specifiers can also be used to determine which classes within a library will
be available to the users of that library. If you want a class to be available to a client
programmer, you place the public keyword somewhere before the opening brace of the class
body. This controls whether the client programmer can even create an object of the class.

To control the access of a class, the specifier must appear before the keyword class. Thus you
can say:

public class Widget {

That is, if the name of your library is mylib any client programmer can access Widget by
saying

import mylib.Widget;

or

import mylib.*;

However, there’s an extra pair of constraints:

1. There can be only one public class per compilation unit (file). The idea is that each
compilation unit has a single public interface represented by that public class. It can have
as many supporting “friendly” classes as you want. If you have more than one public
class inside a compilation unit, the compiler will give you an error message.

2. The name of the public class must exactly match the name of the file containing the
compilation unit, including capitalization. So for Widget, the name of the file must be
Widget.java, not widget.java or WIDGET.java. Again, you’ll get a compile-time error if
they don’t agree.

3. It is possible, though not typical, to have a compilation unit with no public class at all.
In this case, you can name the file whatever you like.

What if you’ve got a class inside mylib that you’re just using to accomplish the tasks
performed by Widget or some other public class in mylib? You don’t want to go to the
bother of creating documentation for the client programmer, and you think that sometime
later you might want to completely change things and rip out your class altogether,
substituting a different one. To give you this flexibility, you need to ensure that no client
programmers become dependent on your particular implementation details hidden inside
mylib. To accomplish this, you just leave the public keyword off the class, in which case it
becomes friendly. (That class can be used only within that package.)



Chapter 5: Hiding the Implementation 181

Note that a class cannot be private (that would make it accessible to no one but the class),
or protected.4 So you have only two choices for class access: “friendly” or public. If you
don’t want anyone else to have access to that class, you can make all the constructors
private, thereby preventing anyone but you, inside a static member of the class, from
creating an object of that class.5 Here’s an example:

//: Lunch.java
// Demonstrates class access specifiers.
// Make a class effectively private
// with private constructors:

class Soup {
  private Soup() {}
  // (1) Allow creation via static method:
  public static Soup makeSoup() {
    return new Soup();
  }
  // (2) Create a static object and
  // return a reference upon request.
  // (The "Singleton" pattern):
  private static Soup ps1 = new Soup();
  public static Soup access() {
    return ps1;
  }
  public void f() {}
}

class Sandwich { // Uses Lunch
  void f() { new Lunch(); }
}

// Only one public class allowed per file:
public class Lunch {
  void test() {
    // Can't do this! Private constructor:
    //! Soup priv1 = new Soup();
    Soup priv2 = Soup.makeSoup();
    Sandwich f1 = new Sandwich();
    Soup.access().f();
  }
} ///:~

Up to now, most of the methods have been returning either void or a primitive type so the
definition:

  public static Soup access() {
    return ps1;

                                                

4 Actually, a Java 1.1 inner class can be private or protected, but that’s a special case. These will be
introduced in Chapter 7.

5 You can also do it by inheriting (Chapter 6) from that class.



182 Thinking in Java  www.BruceEckel.com

  }

might look a little confusing at first. The word before the method name (access) tells what
the method returns. So far this has most often been void, which means it returns nothing.
But you can also return a handle to an object, which is what happens here. This method
returns a handle to an object of class Soup.

The class Soup shows how to prevent direct creation of a class by making all the
constructors private. Remember that if you don’t explicitly create at least one constructor,
the default constructor (a constructor with no arguments) will be created for you. By
writing the default constructor, it won’t be created automatically. By making it private, no
one can create an object of that class. But now how does anyone use this class? The above
example shows two options. First, a static method is created that creates a new Soup and
returns a handle to it. This could be useful if you want to do some extra operations on the
Soup before returning it, or if you want to keep count of how many Soup objects to create
(perhaps to restrict their population).

The second option uses what’s called a design pattern, which will be discussed later in this
book. This particular pattern is called a “singleton” because it allows only a single object to
ever be created. The object of class Soup is created as a static private member of Soup, so
there’s one and only one, and you can’t get at it except through the public method access( ).

As previously mentioned, if you don’t put an access specifier for class access it defaults to
“friendly.” This means that an object of that class can be created by any other class in the
package, but not outside the package. (Remember, all the files within the same directory that
don’t have explicit package declarations are implicitly part of the default package for that
directory.) However, if a static member of that class is public, the client programmer can
still access that static member even though they cannot create an object of that class.

Summary
In any relationship it’s important to have boundaries that are respected by all parties
involved. When you create a library, you establish a relationship with the user of that
library – the client programmer – who is another programmer, but one putting together an
application or using your library to build a bigger library.

Without rules, client programmers can do anything they want with all the members of a
class, even if you might prefer they don’t directly manipulate some of the members.
Everything’s naked to the world.

This chapter looked at how classes are built to form libraries; first, the way a group of
classes is packaged within a library, and second, the way the class controls access to its
members.

It is estimated that a C programming project begins to break down somewhere between 50K
and 100K lines of code because C has a single “name space” so names begin to collide,
causing an extra management overhead. In Java, the package keyword, the package naming
scheme and the import keyword give you complete control over names, so the issue of name
collision is easily avoided.

There are two reasons for controlling access to members. The first is to keep users’ hands off
tools that they shouldn’t touch; tools that are necessary for the internal machinations of the
data type, but not part of the interface that users need to solve their particular problems. So



Chapter 5: Hiding the Implementation 183

making methods and fields private is a service to users because they can easily see what’s
important to them and what they can ignore. It simplifies their understanding of the class.

The second and most important reason for access control is to allow the library designer to
change the internal workings of the class without worrying about how it will affect the
client programmer. You might build a class one way at first, and then discover that
restructuring your code will provide much greater speed. If the interface and
implementation are clearly separated and protected, you can accomplish this without forcing
the user to rewrite their code.

Access specifiers in Java give valuable control to the creator of a class. The users of the class
can clearly see exactly what they can use and what to ignore. More important, though, is
the ability to ensure that no user becomes dependent on any part of the underlying
implementation of a class. If you know this as the creator of the class, you can change the
underlying implementation with the knowledge that no client programmer will be affected
by the changes because they can’t access that part of the class.

When you have the ability to change the underlying implementation, you can not only
improve your design later, but you also have the freedom to make mistakes. No matter how
carefully you plan and design you’ll make mistakes. Knowing that it’s relatively safe to
make these mistakes means you’ll be more experimental, you’ll learn faster and you’ll finish
your project sooner.

The public interface to a class is what the user does see, so that is the most important part of
the class to get “right” during analysis and design. Even that allows you some leeway for
change. If you don’t get the interface right the first time, you can add more methods, as
long as you don’t remove any that client programmers have already used in their code.

Exercises
 1.  Create a class with public, private, protected, and “friendly” data members and method

members. Create an object of this class and see what kind of compiler messages you get
when you try to access all the class members. Be aware that classes in the same directory
are part of the “default” package.

 2.  Create a class with protected data. Create a second class in the same file with a method
that manipulates the protected data in the first class.

 3.  Create a new directory and edit your CLASSPATH to include that new directory. Copy the
P.class file to your new directory and then change the names of the file, the P class inside
and the method names. (You might also want to add additional output to watch how it
works.) Create another program in a different directory that uses your new class.

 4.  Create the following file in the c05 directory (presumably in your CLASSPATH):

//: PackagedClass.java
package c05;
class PackagedClass {
  public PackagedClass() {
    System.out.println(
      "Creating a packaged class");
  }



184 Thinking in Java  www.BruceEckel.com

} ///:~

Then create the following file in a directory other than c05:

//: Foreign.java
package c05.foreign;
import c05.*;
public class Foreign {
   public static void main (String[] args) {
      PackagedClass pc = new PackagedClass();
   }
} ///:~

Explain why the compiler generates an error. Would making the Foreign class part of the
c05 package change anything?



185

k

6: Reusing classes
One of the most compelling features about Java is code reuse. But to be
revolutionary, you’ve got to be able to do a lot more than copy code and
change it.
That’s the approach used in procedural languages like C, and it hasn’t worked very well. Like
everything in Java, the solution revolves around the class. You reuse code by creating new
classes, but instead of creating them from scratch, you use existing classes that someone has
already built and debugged.

The trick is to use the classes without soiling the existing code. In this chapter you’ll see two
ways to accomplish this. The first is quite straightforward: You simply create objects of your
existing class inside the new class. This is called composition because the new class is
composed of objects of existing classes. You’re simply reusing the functionality of the code,
not its form.

The second approach is more subtle. It creates a new class as a type of an existing class. You
literally take the form of the existing class and add code to it without modifying the existing
class. This magical act is called inheritance, and the compiler does most of the work.
Inheritance is one of the cornerstones of object-oriented programming and has additional
implications that will be explored in the next chapter.

It turns out that much of the syntax and behavior are similar for both composition and
inheritance (which makes sense because they are both ways of making new types from
existing types). In this chapter, you’ll learn about these code reuse mechanisms.

Composition syntax
Until now, composition has been used quite frequently. You simply place object handles
inside new classes. For example, suppose you’d like an object that holds several String



186 Thinking in Java  www.BruceEckel.com

objects, a couple of primitives and an object of another class. For the non-primitive objects,
just put handles inside your new class, and for the primitives just define them inside your
class: (See page 94 if you have trouble executing this program.)

//: SprinklerSystem.java
// Composition for code reuse
package c06;

class WaterSource {
  private String s;
  WaterSource() {
    System.out.println("WaterSource()");
    s = new String("Constructed");
  }
  public String toString() { return s; }
}

public class SprinklerSystem {
  private String valve1, valve2, valve3, valve4;
  WaterSource source;
  int i;
  float f;
  void print() {
    System.out.println("valve1 = " + valve1);
    System.out.println("valve2 = " + valve2);
    System.out.println("valve3 = " + valve3);
    System.out.println("valve4 = " + valve4);
    System.out.println("i = " + i);
    System.out.println("f = " + f);
    System.out.println("source = " + source);
  }
  public static void main(String[] args) {
    SprinklerSystem x = new SprinklerSystem();
    x.print();
  }
} ///:~

One of the methods defined in WaterSource is special: toString( ). You will learn later that
every non-primitive object has a toString( ) method, and it’s called in special situations
when the compiler wants a String but it’s got one of these objects. So in the expression:

System.out.println("source = " + source);

the compiler sees you trying to add a String object (“source = “) to a WaterSource. This
doesn’t make sense to it, because you can only “add” a String to another String, so it says
“I’ll turn source into a String by calling toString( )!” After doing this it can combine the
two Strings and pass the resulting String to System.out.println( ). Any time you want to
allow this behavior with a class you create you need only write a toString( ) method.

At first glance, you might assume – Java being as safe and careful as it is – that the compiler
would automatically construct objects for each of the handles in the above code, for example
calling the default constructor for WaterSource to initialize source. The output of the print
statement is in fact:

valve1 = null



Chapter 6: Reusing Code & Classes 187

valve2 = null
valve3 = null
valve4 = null
i = 0
f = 0.0
source = null

Primitives that are fields in a class are automatically initialized to zero, as noted in Chapter
2. But the object handles are initialized to null, and if you try to call methods for any of
them you’ll get an exception. It’s actually pretty good (and useful) that you can still print
them out without throwing an exception.

It makes sense that the compiler doesn’t just create a default object for every handle because
that would incur unnecessary overhead in many cases. If you want the handles initialized,
you can do it:

1. At the point the objects are defined. This means that they’ll always be initialized before
the constructor is called.

2. In the constructor for that class

3. Right before you actually need to use the object. This can reduce overhead, if there are
situations where the object doesn’t need to be created.

All three approaches are shown here:

//: Bath.java
// Constructor initialization with composition

class Soap {
  private String s;
  Soap() {
    System.out.println("Soap()");
    s = new String("Constructed");
  }
  public String toString() { return s; }
}

public class Bath {
  private String
    // Initializing at point of definition:
    s1 = new String("Happy"),
    s2 = "Happy",
    s3, s4;
  Soap castille;
  int i;
  float toy;
  Bath() {
    System.out.println("Inside Bath()");
    s3 = new String("Joy");
    i = 47;
    toy = 3.14f;
    castille = new Soap();
  }
  void print() {



188 Thinking in Java  www.BruceEckel.com

    // Delayed initialization:
    if(s4 == null)
      s4 = new String("Joy");
    System.out.println("s1 = " + s1);
    System.out.println("s2 = " + s2);
    System.out.println("s3 = " + s3);
    System.out.println("s4 = " + s4);
    System.out.println("i = " + i);
    System.out.println("toy = " + toy);
    System.out.println("castille = " + castille);
  }
  public static void main(String[] args) {
    Bath b = new Bath();
    b.print();
  }
} ///:~

Note that in the Bath constructor a statement is executed before any of the initializations
take place. When you don’t initialize at the point of definition, there’s still no guarantee that
you’ll perform any initialization before you send a message to an object handle – except for
the inevitable run-time exception.

Here’s the output for the program:

Inside Bath()
Soap()
s1 = Happy
s2 = Happy
s3 = Joy
s4 = Joy
i = 47
toy = 3.14
castille = Constructed

When print( ) is called it fills in s4 so that all the fields are properly initialized by the time
they are used.

Inheritance syntax
Inheritance is such an integral part of Java (and OOP languages in general) that it was
introduced in Chapter 1 and has been used occasionally in chapters before this one because
certain situations required it. In addition, you’re always doing inheritance when you create a
class, because if you don’t say otherwise you inherit from Java’s standard root class Object.

The syntax for composition is obvious, but to perform inheritance there’s a distinctly
different form. When you inherit, you say “This new class is like that old class.” You state
this in code by giving the name of the class as usual, but before the opening brace of the
class body, put the keyword extends followed by the name of the base class. When you do
this, you automatically get all the data members and methods in the base class. Here’s an
example:

//: Detergent.java
// Inheritance syntax & properties



Chapter 6: Reusing Code & Classes 189

class Cleanser {
  private String s = new String("Cleanser");
  public void append(String a) { s += a; }
  public void dilute() { append(" dilute()"); }
  public void apply() { append(" apply()"); }
  public void scrub() { append(" scrub()"); }
  public void print() { System.out.println(s); }
  public static void main(String[] args) {
    Cleanser x = new Cleanser();
    x.dilute(); x.apply(); x.scrub();
    x.print();
  }
}

public class Detergent extends Cleanser {
  // Change a method:
  public void scrub() {
    append(" Detergent.scrub()");
    super.scrub(); // Call base-class version
  }
  // Add methods to the interface:
  public void foam() { append(" foam()"); }
  // Test the new class:
  public static void main(String[] args) {
    Detergent x = new Detergent();
    x.dilute();
    x.apply();
    x.scrub();
    x.foam();
    x.print();
    System.out.println("Testing base class:");
    Cleanser.main(args);
  }
} ///:~

This demonstrates a number of features. First, in the Cleanser append( ) method, Strings
are concatenated to s using the += operator, which is one of the operators (along with ‘+’)
that the Java designers “overloaded” to work with Strings.

Second, both Cleanser and Detergent contain a main( ) method. You can create a main( )
for each one of your classes, and it’s often recommended to code this way so that your test
code is wrapped in with the class. Even if you have a lot of classes in a program only the
main( ) for the public class invoked on the command line will be called. (And you can have
only one public class per file.) So in this case, when you say java Detergent,
Detergent.main( ) will be called. But you can also say java Cleanser to invoke
Cleanser.main( ), even though Cleanser is not a public class. This technique of putting a
main( ) in each class allows easy unit testing for each class. And you don’t need to remove
the main( ) when you’re finished testing; you can leave it in for later testing.

Here, you can see that Detergent.main( ) calls Cleanser.main( ) explicitly.

It’s important that all of the methods in Cleanser are public. Remember that if you leave off
any access specifier the member defaults to “friendly,” which allows access only to package
members. Thus, within this package, anyone could use those methods if there were no access



190 Thinking in Java  www.BruceEckel.com

specifier. Detergent would have no trouble, for example. However, if a class from some
other package were to inherit Cleanser it could access only public members. So to plan for
inheritance, as a general rule make all fields private and all methods public. (protected
members also allow access by derived classes; you’ll learn about this later.) Of course, in
particular cases you must make adjustments, but this is a useful guideline.

Note that Cleanser has a set of methods in its interface: append( ), dilute( ), apply( ),
scrub( ) and print( ). Because Detergent is derived from Cleanser (via the extends keyword)
it automatically gets all these methods in its interface, even though you don’t see them all
explicitly defined in Detergent. You can think of inheritance, then, as reusing the interface.
(The implementation comes along for free, but that part isn’t the primary point.)

As seen in scrub( ), it’s possible to take a method that’s been defined in the base class and
modify it. In this case, you might want to call the method from the base class inside the new
version. But inside scrub( ) you cannot simply call scrub( ), since that would produce a
recursive call, which isn’t what you want. To solve this problem Java has the keyword super
that refers to the “superclass” that the current class has been inherited from. Thus the
expression super.scrub( ) calls the base-class version of the method scrub( ).

When inheriting you’re not restricted to using the methods of the base class. You can also
add new methods to the derived class exactly the way you put any method in a class: just
define it. The extends keyword suggests that you are going to add new methods to the base-
class interface, and the method foam( ) is an example of this.

In Detergent.main( ) you can see that for a Detergent object you can call all the methods
that are available in Cleanser as well as in Detergent (i.e. foam( )).

Initializing the base class
Since there are now two classes involved – the base class and the derived class – instead of
just one, it can be a bit confusing to try to imagine the resulting object produced by a
derived class. From the outside, it looks like the new class has the same interface as the base
class and maybe some additional methods and fields. But inheritance doesn’t just copy the
interface of the base class. When you create an object of the derived class, it contains within
it a subobject of the base class. This subobject is the same as if you had created an object of
the base class by itself. It’s just that, from the outside, the subobject of the base class is
wrapped within the derived-class object.

Of course, it’s essential that the base-class subobject be initialized correctly and there’s only
one way to guarantee that: perform the initialization in the constructor, by calling the base-
class constructor, which has all the appropriate knowledge and privileges to perform the
base-class initialization. Java automatically inserts calls to the base-class constructor in the
derived-class constructor. The following example shows this working with three levels of
inheritance:

//: Cartoon.java
// Constructor calls during inheritance

class Art {
  Art() {
    System.out.println("Art constructor");
  }
}



Chapter 6: Reusing Code & Classes 191

class Drawing extends Art {
  Drawing() {
    System.out.println("Drawing constructor");
  }
}

public class Cartoon extends Drawing {
  Cartoon() {
    System.out.println("Cartoon constructor");
  }
  public static void main(String[] args) {
    Cartoon x = new Cartoon();
  }
} ///:~

The output for this program shows the automatic calls:

Art constructor
Drawing constructor
Cartoon constructor

You can see that the construction happens from the base “outward,” so the base class is
initialized before the derived-class constructors can access it.

Even if you don’t create a constructor for Cartoon( ), the compiler will synthesize a default
constructor for you that calls the base class constructor.

Constructors with arguments
The above example has default constructors; that is, they don’t have any arguments. It’s
easy for the compiler to call these because there’s no question about what arguments to
pass. If your class doesn’t have default arguments or if you want to call a base-class
constructor that has an argument you must explicitly write the calls to the base-class
constructor using the super keyword and the appropriate argument list:

//: Chess.java
// Inheritance, constructors and arguments

class Game {
  Game(int i) {
    System.out.println("Game constructor");
  }
}

class BoardGame extends Game {
  BoardGame(int i) {
    super(i);
    System.out.println("BoardGame constructor");
  }
}

public class Chess extends BoardGame {
  Chess() {
    super(11);
    System.out.println("Chess constructor");



192 Thinking in Java  www.BruceEckel.com

  }
  public static void main(String[] args) {
    Chess x = new Chess();
  }
} ///:~

If you don’t call the base-class constructor in BoardGame( ), the compiler will complain
that it can’t find a constructor of the form Game( ). In addition, the call to the base-class
constructor must be the first thing you do in the derived-class constructor. (The compiler
will remind you if you get it wrong.)

Catching base constructor exceptions
As just noted, the compiler forces you to place the base-class constructor call first in the
body of the derived-class constructor. This means nothing else can appear before it. As you’ll
see in Chapter 9, this also prevents a derived-class constructor from catching any exceptions
that come from a base class. This can be inconvenient at times.

Combining composition
and inheritance
It is very common to use composition and inheritance together. The following example
shows the creation of a more complex class, using both inheritance and composition, along
with the necessary constructor initialization:

//: PlaceSetting.java
// Combining composition & inheritance

class Plate {
  Plate(int i) {
    System.out.println("Plate constructor");
  }
}

class DinnerPlate extends Plate {
  DinnerPlate(int i) {
    super(i);
    System.out.println(
      "DinnerPlate constructor");
  }
}

class Utensil {
  Utensil(int i) {
    System.out.println("Utensil constructor");
  }
}

class Spoon extends Utensil {
  Spoon(int i) {
    super(i);



Chapter 6: Reusing Code & Classes 193

    System.out.println("Spoon constructor");
  }
}

class Fork extends Utensil {
  Fork(int i) {
    super(i);
    System.out.println("Fork constructor");
  }
}

class Knife extends Utensil {
  Knife(int i) {
    super(i);
    System.out.println("Knife constructor");
  }
}

// A cultural way of doing something:
class Custom {
  Custom(int i) {
    System.out.println("Custom constructor");
  }
}

public class PlaceSetting extends Custom {
  Spoon sp;
  Fork frk;
  Knife kn;
  DinnerPlate pl;
  PlaceSetting(int i) {
    super(i + 1);
    sp = new Spoon(i + 2);
    frk = new Fork(i + 3);
    kn = new Knife(i + 4);
    pl = new DinnerPlate(i + 5);
    System.out.println(
      "PlaceSetting constructor");
  }
  public static void main(String[] args) {
    PlaceSetting x = new PlaceSetting(9);
  }
} ///:~

While the compiler forces you to initialize the base classes, and requires that you do it right
at the beginning of the constructor, it doesn’t watch over you to make sure that you
initialize the member objects, so you must remember to pay attention to that.

Guaranteeing proper cleanup
Java doesn’t have the C++ concept of a destructor, a method that is automatically called
when an object is destroyed. The reason is probably that in Java the practice is simply to



194 Thinking in Java  www.BruceEckel.com

forget about objects rather than to destroy them, allowing the garbage collector to reclaim
the memory as necessary.

Often this is fine, but there are times when your class might perform some activities during
its lifetime that require cleanup. As mentioned in Chapter 4, you can’t know when the
garbage collector will be called, or if it will be called. So if you want something cleaned up
for a class, you must write a special method to do it explicitly, and make sure that the client
programmer knows that they must call this method. On top of this, as described in Chapter
9 (exception handling), you must guard against an exception by putting such cleanup in a
finally clause.

Consider an example of a computer-aided design system that draws pictures on the screen:

//: CADSystem.java
// Ensuring proper cleanup
import java.util.*;

class Shape {
  Shape(int i) {
    System.out.println("Shape constructor");
  }
  void cleanup() {
    System.out.println("Shape cleanup");
  }
}

class Circle extends Shape {
  Circle(int i) {
    super(i);
    System.out.println("Drawing a Circle");
  }
  void cleanup() {
    System.out.println("Erasing a Circle");
    super.cleanup();
  }
}

class Triangle extends Shape {
  Triangle(int i) {
    super(i);
    System.out.println("Drawing a Triangle");
  }
  void cleanup() {
    System.out.println("Erasing a Triangle");
    super.cleanup();
  }
}

class Line extends Shape {
  private int start, end;
  Line(int start, int end) {
    super(start);
    this.start = start;
    this.end = end;



Chapter 6: Reusing Code & Classes 195

    System.out.println("Drawing a Line: " +
           start + ", " + end);
  }
  void cleanup() {
    System.out.println("Erasing a Line: " +
           start + ", " + end);
    super.cleanup();
  }
}

public class CADSystem extends Shape {
  private Circle c;
  private Triangle t;
  private Line[] lines = new Line[10];
  CADSystem(int i) {
    super(i + 1);
    for(int j = 0; j < 10; j++)
      lines[j] = new Line(j, j*j);
    c = new Circle(1);
    t = new Triangle(1);
    System.out.println("Combined constructor");
  }
  void cleanup() {
    System.out.println("CADSystem.cleanup()");
    t.cleanup();
    c.cleanup();
    for(int i = 0; i < lines.length; i++)
      lines[i].cleanup();
    super.cleanup();
  }
  public static void main(String[] args) {
    CADSystem x = new CADSystem(47);
    try {
      // Code and exception handling...
    } finally {
      x.cleanup();
    }
  }
} ///:~

Everything in this system is some kind of Shape (which is itself a kind of Object since it’s
implicitly inherited from the root class). Each class redefines Shape’s cleanup( ) method in
addition to calling the base-class version of that method using super. The specific Shape
classes Circle, Triangle and Line all have constructors that “draw,” although any method
called during the lifetime of the object could be responsible for doing something that needs
cleanup. Each class has its own cleanup( ) method to restore non-memory things back to
the way they were before the object existed.

In main( ), you can see two keywords that are new, and won’t officially be introduced until
Chapter 9: try and finally. The try keyword indicates that the block that follows (delimited
by curly braces) is a guarded region, which means that it is given special treatment. One of
these special treatments is that the code in the finally clause following this guarded region is
always executed, no matter how the try block exits. (With exception handling, it’s possible to
leave a try block in a number of non-ordinary ways.) Here, the finally clause is saying



196 Thinking in Java  www.BruceEckel.com

“always call cleanup( ) for x, no matter what happens.” These keywords will be explained
thoroughly in Chapter 9.

Note that in your cleanup method you must also pay attention to the calling order for the
base-class and member-object cleanup methods in case one subobject depends on another. In
general, you should follow the same form that is imposed by a C++ compiler on its
destructors: First perform all of the work specific to your class (which might require that
base-class elements still be viable) then call the base-class cleanup method, as demonstrated
here.

There can be many cases in which the cleanup issue is not a problem; you just let the
garbage collector do the work. But when you must do it explicitly, diligence and attention is
required.

Order of garbage collection
There’s not much you can rely on when it comes to garbage collection. The garbage collector
might never be called. If it is, it can reclaim objects in any order it wants. In addition,
implementations of the garbage collector in Java 1.0 often don’t call the finalize( ) methods.
It’s best to not rely on garbage collection for anything but memory reclamation. If you want
cleanup to take place, make your own cleanup methods and don’t rely on finalize( ). (As
mentioned earlier, Java 1.1 can be forced to call all the finalizers.)

Name hiding
Only C++ programmers might be surprised by name hiding, since it works differently in
that language. If a Java base class has a method name that’s overloaded several times,
redefining that method name in the derived class will not hide any of the base-class versions.
Thus overloading works regardless of whether the method was defined at this level or in a
base class:

//: Hide.java
// Overloading a base-class method name
// in a derived class does not hide the
// base-class versions

class Homer {
  char doh(char c) {
    System.out.println("doh(char)");
    return 'd';
  }
  float doh(float f) {
    System.out.println("doh(float)");
    return 1.0f;
  }
}

class Milhouse {}

class Bart extends Homer {
  void doh(Milhouse m) {}
}

class Hide {



Chapter 6: Reusing Code & Classes 197

  public static void main(String[] args) {
    Bart b = new Bart();
    b.doh(1); // doh(float) used
    b.doh('x');
    b.doh(1.0f);
    b.doh(new Milhouse());
  }
} ///:~

As you’ll see in the next chapter, it’s far more common to override methods of the same
name using exactly the same signature and return type as in the base class. It can be
confusing otherwise (which is why C++ disallows it, to prevent you from making what is
probably a mistake).

Choosing composition
vs. inheritance
Both composition and inheritance allow you to place subobjects inside your new class. You
might wonder about the difference between the two, and when to choose one over the other.

Composition is generally used when you want the features of an existing class inside your
new class, but not its interface. That is, you embed an object so that you can use it to
implement features of your new class, but the user of your new class sees the interface
you’ve defined rather than the interface from the embedded object. For this effect, you
embed private objects of existing classes inside your new class.

Sometimes it makes sense to allow the class user to directly access the composition of your
new class; that is, to make the member objects public. The member objects use
implementation hiding themselves, so this is a safe thing to do and when the user knows
you’re assembling a bunch of parts, it makes the interface easier to understand. A car object
is a good example:

//: Car.java
// Composition with public objects

class Engine {
  public void start() {}
  public void rev() {}
  public void stop() {}
}

class Wheel {
  public void inflate(int psi) {}
}

class Window {
  public void rollup() {}
  public void rolldown() {}
}

class Door {



198 Thinking in Java  www.BruceEckel.com

  public Window window = new Window();
  public void open() {}
  public void close() {}
}

public class Car {
  public Engine engine = new Engine();
  public Wheel[] wheel = new Wheel[4];
  public Door left = new Door(),
       right = new Door(); // 2-door
  Car() {
    for(int i = 0; i < 4; i++)
      wheel[i] = new Wheel();
  }
  public static void main(String[] args) {
    Car car = new Car();
    car.left.window.rollup();
    car.wheel[0].inflate(72);
  }
} ///:~

Because the composition of a car is part of the analysis of the problem (and not simply part
of the underlying design), making the members public assists the client programmer’s
understanding of how to use the class and requires less code complexity for the creator of
the class.

When you inherit, you take an existing class and make a special version of it. In general, this
means that you’re taking a general-purpose class and specializing it for a particular need.
With a little thought, you’ll see that it would make no sense to compose a car using a vehicle
object – a car doesn’t contain a vehicle, it is a vehicle. The is-a relationship is expressed with
inheritance, and the has-a relationship is expressed with composition.

protected
Now that you’ve been introduced to inheritance, the keyword protected finally has
meaning. In an ideal world, private members would always be hard-and-fast private, but
in real projects there are times when you want to make something hidden from the world at
large and yet allow access for members of derived classes. The protected keyword is a nod to
pragmatism. It says “This is private as far as the class user is concerned, but available to
anyone who inherits from this class or anyone else in the same package.” That is, protected
in Java is automatically “friendly.”

The best tack to take is to leave the data members private – you should always preserve
your right to change the underlying implementation. You can then allow controlled access to
inheritors of your class through protected methods:

//: Orc.java
// The protected keyword
import java.util.*;

class Villain {
  private int i;
  protected int read() { return i; }



Chapter 6: Reusing Code & Classes 199

  protected void set(int ii) { i = ii; }
  public Villain(int ii) { i = ii; }
  public int value(int m) { return m*i; }
}

public class Orc extends Villain {
  private int j;
  public Orc(int jj) { super(jj); j = jj; }
  public void change(int x) { set(x); }
} ///:~

You can see that change( ) has access to set( ) because it’s protected.

Incremental development
One of the advantages of inheritance is that it supports incremental development by allowing
you to introduce new code without causing bugs in existing code. This also isolates new
bugs to the new code. By inheriting from an existing, functional class and adding data
members and methods (and redefining existing methods), you leave the existing code – that
someone else might still be using – untouched and unbugged. If a bug happens, you know
that it’s in your new code, which is much shorter and easier to read than if you had
modified the body of existing code.

It’s rather amazing how cleanly the classes are separated. You don’t even need the source
code for the methods in order to reuse the code. At most, you just import a package. (This is
true for both inheritance and composition.)

It’s important to realize that program development is an incremental process, just like
human learning. You can do as much analysis as you want, but you still won’t know all the
answers when you set out on a project. You’ll have much more success – and more
immediate feedback – if you start out to “grow” your project as an organic, evolutionary
creature, rather than constructing it all at once like a glass-box skyscraper.

Although inheritance for experimentation can be a useful technique, at some point after
things stabilize you need to take a new look at your class hierarchy with an eye to collapsing
it into a sensible structure. Remember that underneath it all, inheritance is meant to express
a relationship that says “This new class is a type of that old class.” Your program should not
be concerned with pushing bits around, but instead with creating and manipulating objects
of various types to express a model in the terms that come from the problem space.

Upcasting
The most important aspect of inheritance is not that it provides methods for the new class.
It’s the relationship expressed between the new class and the base class. This relationship can
be summarized by saying “The new class is a type of the existing class.”

This description is not just a fanciful way of explaining inheritance – it’s supported directly
by the language. As an example, consider a base class called Instrument that represents
musical instruments and a derived class called Wind. Because inheritance means that all of
the methods in the base class are also available in the derived class, any message you can
send to the base class can also be sent to the derived class. If the Instrument class has a
play( ) method, so will Wind instruments. This means we can accurately say that a Wind



200 Thinking in Java  www.BruceEckel.com

object is also a type of Instrument. The following example shows how the compiler
supports this notion:

//: Wind.java
// Inheritance & upcasting
import java.util.*;

class Instrument {
  public void play() {}
  static void tune(Instrument i) {
    // ...
    i.play();
  }
}

// Wind objects are instruments
// because they have the same interface:
class Wind extends Instrument {
  public static void main(String[] args) {
    Wind flute = new Wind();
    Instrument.tune(flute); // Upcasting
  }
} ///:~

What’s interesting in this example is the tune( ) method, which accepts an Instrument
handle. However, in Wind.main( ) the tune( ) method is called by giving it a Wind handle.
Given that Java is particular about type checking, it seems strange that a method that
accepts one type will readily accept another type, until you realize that a Wind object is also
an Instrument object, and there’s no method that tune( ) could call for an Instrument that
isn’t also in Wind. Inside tune( ), the code works for Instrument and anything derived from
Instrument, and the act of converting a Wind handle into an Instrument handle is called
upcasting.

Why “upcasting”?
The reason for the term is historical and is based on the way class inheritance diagrams have
traditionally been drawn with the root at the top of the page, growing downward. (Of
course, you can draw your diagrams any way you find helpful.) The inheritance diagram
for Wind.java is then:

Casting from derived to base moves up on the inheritance diagram, so it’s commonly
referred to as upcasting. Upcasting is always safe because you’re going from a more specific
type to a more general type. That is, the derived class is a superset of the base class. It might
contain more methods than the base class, but it must contain at least the methods in the
base class. The only thing that can occur to the class interface during the upcast is that it can

instrument

wind



Chapter 6: Reusing Code & Classes 201

lose methods, not gain them. This is why the compiler allows upcasting without any explicit
casts or other special notation.

You can also perform the reverse of upcasting, called downcasting, but this involves a
dilemma that is the subject of Chapter 11.

Composition vs. inheritance revisited
In object-oriented programming, the most likely way that you’ll create and use code is by
simply packaging data and methods together into a class, and using objects of that class.
Occasionally, you’ll use existing classes to build new classes with composition. Even less
frequently than that you’ll use inheritance. So although inheritance gets a lot of emphasis
while learning OOP, it doesn’t mean that you should use it everywhere you possibly can. On
the contrary, you should use it sparingly, only when it’s clear that inheritance is useful. One
of the clearest ways to determine whether you should use composition or inheritance is to
ask whether you’ll ever need to upcast from your new class to the base class. If you must
upcast, then inheritance is necessary, but if you don’t need to upcast, then you should look
closely at whether you need inheritance. The next chapter (polymorphism) provides one of
the most compelling reasons for upcasting, but if you remember to ask “Do I need to
upcast?”, you’ll have a good tool for deciding between composition and inheritance.

The finalfinal keyword
The final keyword has slightly different meanings depending on the context, but in general
it says “This cannot be changed.” You might want to prevent changes for two reasons:
design or efficiency. Because these two reasons are quite different, it’s possible to misuse the
final keyword.

The following sections discuss the three places where final can be used: for data, methods
and for a class.

Final data
Many programming languages have a way to tell the compiler that a piece of data is
“constant.” A constant is useful for two reasons:

1. It can be a compile-time constant that won’t ever change.

2. It can be a value initialized at run-time that you don’t want changed.

In the case of a compile-time constant the compiler is allowed to “fold” the constant value
into any calculations in which it’s used; that is, the calculation can be performed at compile
time, eliminating some run-time overhead. In Java, these sorts of constants must be
primitives and are expressed using the final keyword. A value must be given at the time of
definition of such a constant.

A field that is both static and final has only one piece of storage that cannot be changed.

When using final with object handles rather than primitives the meaning gets a bit
confusing. With a primitive, final makes the value a constant, but with an object handle,
final makes the handle a constant. The handle must be initialized to an object at the point of
declaration, and the handle can never be changed to point to another object. However, the
object can be modified; Java does not provide a way to make any arbitrary object a constant.



202 Thinking in Java  www.BruceEckel.com

(You can, however, write your class so that objects have the effect of being constant.) This
restriction includes arrays, which are also objects.

Here’s an example that demonstrates final fields:

//: FinalData.java
// The effect of final on fields

class Value {
  int i = 1;
}

public class FinalData {
  // Can be compile-time constants
  final int i1 = 9;
  static final int I2 = 99;
  // Typical public constant:
  public static final int I3 = 39;
  // Cannot be compile-time constants:
  final int i4 = (int)(Math.random()*20);
  static final int i5 = (int)(Math.random()*20);

  Value v1 = new Value();
  final Value v2 = new Value();
  static final Value v3 = new Value();
  //! final Value v4; // Pre-Java 1.1 Error:
                      // no initializer
  // Arrays:
  final int[] a = { 1, 2, 3, 4, 5, 6 };

  public void print(String id) {
    System.out.println(
      id + ": " + "i4 = " + i4 +
      ", i5 = " + i5);
  }
  public static void main(String[] args) {
    FinalData fd1 = new FinalData();
    //! fd1.i1++; // Error: can't change value
    fd1.v2.i++; // Object isn't constant!
    fd1.v1 = new Value(); // OK -- not final
    for(int i = 0; i < fd1.a.length; i++)
      fd1.a[i]++; // Object isn't constant!
    //! fd1.v2 = new Value(); // Error: Can't
    //! fd1.v3 = new Value(); // change handle
    //! fd1.a = new int[3];

    fd1.print("fd1");
    System.out.println("Creating new FinalData");
    FinalData fd2 = new FinalData();
    fd1.print("fd1");
    fd2.print("fd2");
  }
} ///:~



Chapter 6: Reusing Code & Classes 203

Since i1 and I2 are final primitives with compile-time values, they can both be used as
compile-time constants and are not different in any important way. I3 is the more typical
way you’ll see such constants defined: public so they’re usable outside the package, static to
emphasize that there’s only one, and final to say that it’s a constant. Note that final static
primitives with constant initial values (that is, compile-time constants) are named with all
capitals by convention. Also note that i5 cannot be known at compile time, so it is not
capitalized.

Just because something is final doesn’t mean that its value is known at compile-time. This is
demonstrated by initializing i4 and i5 at run-time using randomly generated numbers. This
portion of the example also shows the difference between making a final value static or
non-static. This difference shows up only when the values are initialized at run-time, since
the compile-time values are treated the same by the compiler. (And presumably optimized
out of existence.) The difference is shown in the output from one run:

fd1: i4 = 15, i5 = 9
Creating new FinalData
fd1: i4 = 15, i5 = 9
fd2: i4 = 10, i5 = 9

Note that the values of i4 for fd1 and fd2 are unique, but the value for i5 is not changed by
creating the second FinalData object. That’s because it’s static and is initialized once upon
loading and not each time a new object is created.

The variables v1 through v4 demonstrate the meaning of a final handle. As you can see in
main( ), just because v2 is final doesn’t mean that you can’t change its value. However, you
cannot re-bind v2 to a new object, precisely because it’s final. That’s what final means for a
handle. You can also see the same meaning holds true for an array, which is just another
kind of handle. (There is know way that I know of to make the array handles themselves
final.) Making handles final seems less useful than making primitives final.

Blank finals
Java 1.1 allows the creation of blank finals, which are fields that are declared as final but are
not given an initialization value. In all cases, the blank final must be initialized before it is
used, and the compiler ensures this. However, blank finals provide much more flexibility in
the use of the final keyword since, for example, a final field inside a class can now be
different for each object and yet it retains its immutable quality. Here’s an example:

//: BlankFinal.java
// "Blank" final data members

class Poppet { }

class BlankFinal {
  final int i = 0; // Initialized final
  final int j; // Blank final
  final Poppet p; // Blank final handle
  // Blank finals MUST be initialized
  // in the constructor:
  BlankFinal() {
    j = 1; // Initialize blank final
    p = new Poppet();
  }
  BlankFinal(int x) {



204 Thinking in Java  www.BruceEckel.com

    j = x; // Initialize blank final
    p = new Poppet();
  }
  public static void main(String[] args) {
    BlankFinal bf = new BlankFinal();
  }
} ///:~

You’re forced to perform assignments to finals either with an expression at the point of
definition of the field or in every constructor. This way it’s guaranteed that the final field is
always initialized before use.

Final arguments
Java 1.1 allows you to make arguments final by declaring them as such in the argument
list. This means that inside the method you cannot change what the argument handle points
to:

//: FinalArguments.java
// Using "final" with method arguments

class Gizmo {
  public void spin() {}
}

public class FinalArguments {
  void with(final Gizmo g) {
    //! g = new Gizmo(); // Illegal -- g is final
    g.spin();
  }
  void without(Gizmo g) {
    g = new Gizmo(); // OK -- g not final
    g.spin();
  }
  // void f(final int i) { i++; } // Can't change
  // You can only read from a final primitive:
  int g(final int i) { return i + 1; }
  public static void main(String[] args) {
    FinalArguments bf = new FinalArguments();
    bf.without(null);
    bf.with(null);
  }
} ///:~

Note that you can still assign a null handle to an argument that’s final without the compiler
catching it, just like you can with a non-final argument.

The methods f( ) and g( ) show what happens when primitive arguments are final: you can
only read the argument, but you can't change it.

Final methods
There are two reasons for final methods. The first is to put a “lock” on the method to
prevent any inheriting class from changing its meaning. This is done for design reasons



Chapter 6: Reusing Code & Classes 205

when you want to make sure that a method’s behavior is retained during inheritance and
cannot be overridden.

The second reason for final methods is efficiency. If you make a method final, you are
allowing the compiler to turn any calls to that method into inline calls. When the compiler
sees a final method call it can (at its discretion) skip the normal approach of inserting code
to perform the method call mechanism (push arguments on the stack, hop over to the
method code and execute it, hop back and clean off the stack arguments, and deal with the
return value) and instead replace the method call with a copy of the actual code in the
method body. This eliminates the overhead of the method call. Of course, if a method is big,
then your code begins to bloat and you probably won’t see any performance gains from
inlining since any improvements will be dwarfed by the amount of time spent inside the
method. It is implied that the Java compiler is able to detect these situations and choose
wisely whether to inline a final method. However, it’s better to not trust that the compiler is
able to do this and make a method final only if it’s quite small or if you want to explicitly
prevent overriding.

Any private methods in a class are implicitly final. Because you can’t access a private
method, you can’t override it (the compiler gives an error message if you try). You can add
the final specifier to a private method but it doesn’t give that method any extra meaning.

Final classes
When you say that an entire class is final (by preceding its definition with the final
keyword), you state that you don’t want to inherit from this class or allow anyone else to
do so. In other words, for some reason the design of your class is such that there is never a
need to make any changes, or for safety or security reasons you don’t want subclassing.
Alternatively, you might be dealing with an efficiency issue and you want to make sure that
any activity involved with objects of this class is as efficient as possible.

//: Jurassic.java
// Making an entire class final

class SmallBrain {}

final class Dinosaur {
  int i = 7;
  int j = 1;
  SmallBrain x = new SmallBrain();
  void f() {}
}

//! class Further extends Dinosaur {}
// error: Cannot extend final class 'Dinosaur'

public class Jurassic {
  public static void main(String[] args) {
    Dinosaur n = new Dinosaur();
    n.f();
    n.i = 40;
    n.j++;
  }
} ///:~



206 Thinking in Java  www.BruceEckel.com

Note that the data members can be final or not, as you choose. The same rules apply to
final for data members regardless of whether the class is defined as final. Defining the class
as final simply prevents inheritance – nothing more. However, because it prevents
inheritance all methods in a final class are implicitly final, since there’s no way to override
them. So the compiler has the same efficiency options as it does if you explicitly declare a
method final.

You can add the final specifier to a method in a final class, but it doesn’t add any meaning.

Final caution
It can seem to be sensible to make a method final while you’re designing a class. You might
feel that efficiency is very important when using your class and that no one could possibly
want to override your methods anyway. Sometimes this is true.

But be careful with your assumptions. In general, it’s difficult to anticipate how a class can
be reused, especially a general-purpose class. If you define a method as final you might
prevent the possibility of reusing your class through inheritance in some other
programmer’s project simply because you couldn’t imagine it being used that way.

The standard Java library is a good example of this. In particular, the Vector class is
commonly used and might be even more useful if, in the name of efficiency, all the methods
hadn’t been made final. It’s easily conceivable that you might want to inherit and override
with such a fundamentally useful class, but the designers somehow decided this wasn’t
appropriate. This is ironic for two reasons. First, Stack is inherited from Vector, which says
that a Stack is a Vector, which isn’t really true. Second, many of the most important
methods of Vector, such as addElement( ) and elementAt( ) are synchronized, which as
you will see in Chapter 14 incurs a significant performance overhead that probably wipes
out any gains provided by final. This lends credence to the theory that programmers are
consistently bad at guessing where optimizations should occur. It’s just too bad that such a
clumsy design made it into the standard library where we must all cope with it.

It’s also interesting to note that Hashtable, another important standard library class, does
not have any final methods. As mentioned elsewhere in this book, it’s quite obvious that
some classes were designed by completely different people than others. (Notice the brevity of
the method names in Hashtable compared to those in Vector.) This is precisely the sort of
thing that should not be obvious to consumers of a class library. When things are
inconsistent it just makes more work for the user. Yet another paean to the value of design
and code walkthroughs.

Initialization and
class loading
In many more traditional languages, programs are loaded all at once as part of the startup
process. This is followed by initialization, and then the program begins. The process of
initialization in these languages must be carefully controlled so that the order of
initialization of statics doesn’t cause trouble. C++, for example, has problems if one static
expects another static to be valid before the second one has been initialized.

Java doesn’t have this problem because it takes a different approach to loading. Because
everything in Java is an object, many activities become easier, and this is one of them. As



Chapter 6: Reusing Code & Classes 207

you will learn in the next chapter, the code for each object exists in a separate file. That file
isn’t loaded until the code is needed. In general, you can say that until an object of that class
is constructed, the class code doesn’t get loaded. Since there can be some subtleties with
static methods, you can also say, “Class code is loaded at the point of first use.”

The point of first use is also where the static initialization takes place. All the static objects
and the static code block will be initialized in textual order (that is, the order that you write
them down in the class definition) at the point of loading. The statics, of course, are
initialized only once.

Initialization with inheritance
It’s helpful to look at the whole initialization process, including inheritance, to get a full
picture of what happens. Consider the following code:

//: Beetle.java
// The full process of initialization.

class Insect {
  int i = 9;
  int j;
  Insect() {
    prt("i = " + i + ", j = " + j);
    j = 39;
  }
  static int x1 =
    prt("static Insect.x1 initialized");
  static int prt(String s) {
    System.out.println(s);
    return 47;
  }
}

public class Beetle extends Insect {
  int k = prt("Beetle.k initialized");
  Beetle() {
    prt("k = " + k);
    prt("j = " + j);
  }
  static int x2 =
    prt("static Beetle.x2 initialized");
  static int prt(String s) {
    System.out.println(s);
    return 63;
  }
  public static void main(String[] args) {
    prt("Beetle constructor");
    Beetle b = new Beetle();
  }
} ///:~

The output for this program is:

static Insect.x initialized



208 Thinking in Java  www.BruceEckel.com

static Beetle.x initialized
Beetle constructor
i = 9, j = 0
Beetle.k initialized
k = 63
j = 39

The first thing that happens when you run Java on Beetle is that the loader goes out and
finds that class. In the process of loading it, the loader notices that it has a base class (that’s
what the extends keyword says), which it then loads. This will happen whether or not
you’re going to make an object of that base class. (Try commenting out the object creation to
prove it to yourself.)

If the base class has a base class, that second base class would then be loaded, and so on.
Next, the static initialization in the root base class (in this case, Insect) is performed, and
then the next derived class, and so on. This is important because the derived-class static
initialization might depend on the base class member being initialized properly.

At this point, the necessary classes have all been loaded so the object can be created. First, all
the primitives in this object are set to their default values and the object handles are set to
null. Then the base-class constructor will be called. In this case the call is automatic, but you
can also specify the constructor call (as the first operation in the Beetle( ) constructor) using
super. The base class construction goes through the same process in the same order as the
derived-class constructor. After the base-class constructor completes, the instance variables
are initialized in textual order. Finally, the rest of the body of the constructor is executed.

Summary
Both inheritance and composition allow you to create a new type from existing types.
Typically, however, you use composition to reuse existing types as part of the underlying
implementation of the new type and inheritance when you want to reuse the interface. Since
the derived class has the base-class interface, it can be upcast to the base, which is critical for
polymorphism, as you’ll see in the next chapter.

Despite the strong emphasis on inheritance in object-oriented programming, when you start
a design you should generally prefer composition during the first cut and use inheritance
only when it is clearly necessary. (As you’ll see in the next chapter.) Composition tends to be
more flexible. In addition, by using the added artifice of inheritance with your member type,
you can change the exact type, and thus the behavior, of those member objects at run-time.
Therefore, you can change the behavior of the composed object at run-time.

Although code reuse through composition and inheritance is helpful for rapid project
development, you’ll generally want to redesign your class hierarchy before allowing other
programmers to become dependent on it. Your goal is a hierarchy in which each class has a
specific use and is neither too big (encompassing so much functionality that it’s unwieldy to
reuse) nor annoyingly small (you can’t use it by itself or without adding functionality). Your
finished classes should be easily reused.



Chapter 6: Reusing Code & Classes 209

Exercises
 1.  Create two classes, A and B, with default constructors (empty argument lists) that

announce themselves. Inherit a new class called C from A, and create a member B inside C.
Do not create a constructor for C. Create an object of class C and observe the results.

 2.  Modify Exercise 1 so that A and B have constructors with arguments instead of default
constructors. Write a constructor for C and perform all initialization within C’s
constructor.

 3.  Take the file Cartoon.java and comment out the constructor for the Cartoon class.
Explain what happens.

 4.  Take the file Chess.java and comment out the constructor for the Chess class. Explain
what happens.



211

3

7: Polymorphism
Polymorphism is the third essential feature of an object-oriented
programming language, after data abstraction and inheritance.
It provides another dimension of separation of interface from implementation, to decouple
what from how. Polymorphism allows improved code organization and readability as well as
the creation of extensible programs that can be “grown” not only during the original creation
of the project but also when new features are desired.

Encapsulation creates new data types by combining characteristics and behaviors.
Implementation hiding separates the interface from the implementation by making the
details private. This sort of mechanical organization makes ready sense to someone with a
procedural programming background. But polymorphism deals with decoupling in terms of
types. In the last chapter, you saw how inheritance allows the treatment of an object as its
own type or its base type. This ability is critical because it allows many types (derived from
the same base type) to be treated as if they were one type, and a single piece of code to work
on all those different types equally. The polymorphic method call allows one type to express
its distinction from another, similar type, as long as they’re both derived from the same base
type. This distinction is expressed through differences in behavior of the methods you can
call through the base class.

In this chapter, you’ll learn about polymorphism (also called dynamic binding or late binding
or run-time binding) starting from the basics, with simple examples that strip away
everything but the polymorphic behavior of the program.

Upcasting
In Chapter 6 you saw how an object can be used as its own type or as an object of its base
type. Taking an object handle and treating it as the handle of the base type is called upcasting
because of the way inheritance trees are drawn with the base class at the top.



212 Thinking in Java  www.BruceEckel.com

You also saw a problem arise, which is embodied in the following: (See page 94 if you have
trouble executing this program.)

//: Music.java
// Inheritance & upcasting
package c07;

class Note {
  private int value;
  private Note(int val) { value = val; }
  public static final Note
    middleC = new Note(0),
    cSharp = new Note(1),
    cFlat = new Note(2);
} // Etc.

class Instrument {
  public void play(Note n) {
    System.out.println("Instrument.play()");
  }
}

// Wind objects are instruments
// because they have the same interface:
class Wind extends Instrument {
  // Redefine interface method:
  public void play(Note n) {
    System.out.println("Wind.play()");
  }
}

public class Music {
  public static void tune(Instrument i) {
    // ...
    i.play(Note.middleC);
  }
  public static void main(String[] args) {
    Wind flute = new Wind();
    tune(flute); // Upcasting
  }
} ///:~

The method Music.tune( ) accepts an Instrument handle, but also anything derived from
Instrument. In main( ), you can see this happening as a Wind handle is passed to tune( ),
with no cast necessary. This is acceptable; the interface in Instrument must exist in Wind,
because Wind is inherited from Instrument. Upcasting from Wind to Instrument may
“narrow” that interface, but it cannot make it anything less than the full interface to
Instrument.

Why upcast?
This program might seem strange to you. Why should anyone intentionally forget the type
of an object? This is what happens when you upcast, and it seems like it could be much more



Chapter 7: Polymorphism 213

straightforward if tune( ) simply takes a Wind handle as its argument. This brings up an
essential point: If you did that, you’d need to write a new tune( ) for every type of
Instrument in your system. Suppose we follow this reasoning and add Stringed and Brass
instruments:

//: Music2.java
// Overloading instead of upcasting

class Note2 {
  private int value;
  private Note2(int val) { value = val; }
  public static final Note2
    middleC = new Note2(0),
    cSharp = new Note2(1),
    cFlat = new Note2(2);
} // Etc.

class Instrument2 {
  public void play(Note2 n) {
    System.out.println("Instrument2.play()");
  }
}

class Wind2 extends Instrument2 {
  public void play(Note2 n) {
    System.out.println("Wind2.play()");
  }
}

class Stringed2 extends Instrument2 {
  public void play(Note2 n) {
    System.out.println("Stringed2.play()");
  }
}

class Brass2 extends Instrument2 {
  public void play(Note2 n) {
    System.out.println("Brass2.play()");
  }
}

public class Music2 {
  public static void tune(Wind2 i) {
    i.play(Note2.middleC);
  }
  public static void tune(Stringed2 i) {
    i.play(Note2.middleC);
  }
  public static void tune(Brass2 i) {
    i.play(Note2.middleC);
  }
  public static void main(String[] args) {
    Wind2 flute = new Wind2();
    Stringed2 violin = new Stringed2();



214 Thinking in Java  www.BruceEckel.com

    Brass2 frenchHorn = new Brass2();
    tune(flute); // No upcasting
    tune(violin);
    tune(frenchHorn);
  }
} ///:~

This works, but there’s a major drawback: You must write type-specific methods for each
new Instrument2 class you add. This means more programming in the first place, but it
also means that if you want to add a new method like tune( ) or a new type of Instrument,
you’ve got a lot of work to do. Add the fact that the compiler won’t give you any error
messages if you forget to overload one of your methods and the whole process of working
with types becomes unmanageable.

Wouldn’t it be much nicer if you could just write a single method that takes the base class as
its argument, and not any of the specific derived classes? That is, wouldn’t it be nice if you
could forget that there are derived classes, and write your code to talk only to the base class?

That’s exactly what polymorphism allows you to do. However, most programmers (who
come from a procedural programming background) have a bit of trouble with the way
polymorphism works.

The twist
The difficulty with Music.java can be seen by running the program. The output is
Wind.play( ). This is clearly the desired output, but it doesn’t seem to make sense that it
would work that way. Look at the tune( ) method:

  public static void tune(Instrument i) {
    // ...
    i.play(Note.middleC);
  }

It receives an Instrument handle. So how can the compiler possibly know that this
Instrument handle points to a Wind in this case and not a Brass or Stringed? The compiler
can’t. To get a deeper understanding of the issue, it’s useful to examine the subject of
binding.

Method call binding
Connecting a method call to a method body is called binding. When binding is performed
before the program is run (by the compiler and linker, if there is one), it’s called early
binding. You might not have heard the term before because it has never been an option with
procedural languages. C compilers have only one kind of method call, and that’s early
binding.

The confusing part of the above program revolves around early binding because the compiler
cannot know the correct method to call when it has only an Instrument handle.

The solution is called late binding, which means that the binding occurs at run-time based on
the type of object. Late binding is also called dynamic binding or run-time binding. When a
language implements late binding, there must be some mechanism to determine the type of
the object at run-time and to call the appropriate method. That is, the compiler still doesn’t



Chapter 7: Polymorphism 215

know the object type, but the method-call mechanism finds out and calls the correct method
body. The late-binding mechanism varies from language to language, but you can imagine
that some sort of type information must be installed in the objects.

All method binding in Java uses late binding unless a method has been declared final. This
means that you ordinarily don’t need to make any decisions about whether late binding will
occur – it happens automatically.

Why would you declare a method final? As noted in the last chapter, it prevents anyone
from overriding that method. Perhaps more importantly, it effectively “turns off” dynamic
binding, or rather it tells the compiler that dynamic binding isn’t necessary. This allows the
compiler to generate more efficient code for final method calls.

Producing the right behavior
Once you know that all method binding in Java happens polymorphically via late binding,
you can write your code to talk to the base-class and know that all the derived-class cases
will work correctly using the same code. Or to put it another way, you “send a message to
an object and let the object figure out the right thing to do.”

The classic example in OOP is the “shape” example. This is commonly used because it is easy
to visualize, but unfortunately it can confuse novice programmers into thinking that OOP is
just for graphics programming, which is of course not the case.

The shape example has a base class called Shape and various derived types: Circle, Square,
Triangle, etc. The reason the example works so well is that it’s easy to say “a circle is a type
of shape” and be understood. The inheritance diagram shows the relationships:

The upcast could occur in a statement as simple as:

Shape s = new Circle();

Here, a Circle object is created and the resulting handle is immediately assigned to a Shape,
which would seem to be an error (assigning one type to another) and yet it’s fine because a
Circle is a Shape by inheritance. So the compiler agrees with the statement and doesn’t issue
an error message.

When you call one of the base class methods (that have been overridden in the derived
classes):

Shape
draw()
erase()

Circle
draw()
erase()

Square
draw()
erase()

Line
draw()
erase()

Cast "up" the
inheritance

diagram

Handle of
Circle object



216 Thinking in Java  www.BruceEckel.com

s.draw();

Again, you might expect that Shape’s draw( ) is called because this is, after all, a Shape
handle, so how could the compiler know to do anything else? And yet the proper
Circle.draw( ) is called because of late binding (polymorphism).

The following example puts it a slightly different way:

//: Shapes.java
// Polymorphism in Java

class Shape {
  void draw() {}
  void erase() {}
}

class Circle extends Shape {
  void draw() {
    System.out.println("Circle.draw()");
  }
  void erase() {
    System.out.println("Circle.erase()");
  }
}

class Square extends Shape {
  void draw() {
    System.out.println("Square.draw()");
  }
  void erase() {
    System.out.println("Square.erase()");
  }
}

class Triangle extends Shape {
  void draw() {
    System.out.println("Triangle.draw()");
  }
  void erase() {
    System.out.println("Triangle.erase()");
  }
}

public class Shapes {
  public static Shape randShape() {
    switch((int)(Math.random() * 3)) {
      default: // To quiet the compiler
      case 0: return new Circle();
      case 1: return new Square();
      case 2: return new Triangle();
    }
  }
  public static void main(String[] args) {
    Shape[] s = new Shape[9];



Chapter 7: Polymorphism 217

    // Fill up the array with shapes:
    for(int i = 0; i < s.length; i++)
      s[i] = randShape();
    // Make polymorphic method calls:
    for(int i = 0; i < s.length; i++)
      s[i].draw();
  }
} ///:~

The base class Shape establishes the common interface to anything inherited from Shape –
that is, all shapes can be drawn and erased. The derived classes override these definitions to
provide unique behavior for each specific type of shape.

The main class Shapes contains a static method randShape( ) that produces a handle to a
randomly-selected Shape object each time you call it. Note that the upcasting happens in
each of the return statements, which take a handle to a Circle, Square, or Triangle and
send it out of the method as the return type, Shape. So whenever you call this method you
never get a chance to see what specific type it is, since you always get back a plain Shape
handle.

main( ) contains an array of Shape handles filled through calls to randShape( ). At this
point you know you have Shapes, but you don’t know anything more specific than that
(and neither does the compiler). However, when you step through this array and call
draw( ) for each one, the correct type-specific behavior magically occurs, as you can see
from one output example:

Circle.draw()
Triangle.draw()
Circle.draw()
Circle.draw()
Circle.draw()
Square.draw()
Triangle.draw()
Square.draw()
Square.draw()

Of course, since the shapes are all chosen randomly each time, your runs will have different
results. The point of choosing the shapes randomly is to drive home the understanding that
the compiler can have no special knowledge that allows it to make the correct calls at
compile time. All the calls to draw( ) are made through dynamic binding.

Extensibility
Now let’s return to the musical instrument example. Because of polymorphism, you can add
as many new types as you want to the system without changing the tune( ) method. In a
well-designed OOP program, most or all of your methods will follow the model of tune( )
and communicate only with the base-class interface. Such a program is extensible because
you can add new functionality by inheriting new data types from the common base class.
The methods that manipulate the base-class interface will not need to be changed at all to
accommodate the new classes.

Consider what happens if you take the instrument example and add more methods in the
base class and a number of new classes. Here’s the diagram:



218 Thinking in Java  www.BruceEckel.com

All these new classes work correctly with the old, unchanged tune( ) method. Even if tune( )
is in a separate file and new methods are added to the interface of Instrument, tune( )
works correctly without recompilation. Here is the implementation of the above diagram:

//: Music3.java
// An extensible program
import java.util.*;

class Instrument3 {
  public void play() {
    System.out.println("Instrument3.play()");
  }
  public String what() {
    return "Instrument3";
  }
  public void adjust() {}
}

class Wind3 extends Instrument3 {
  public void play() {
    System.out.println("Wind3.play()");
  }
  public String what() { return "Wind3"; }
  public void adjust() {}
}

class Percussion3 extends Instrument3 {
  public void play() {
    System.out.println("Percussion3.play()");

Instrument

void play( )
String what( )
void adjust( )

Wind

void play( )
String what( )
void adjust( )

Percussion

void play( )
String what( )
void adjust( )

Stringed

void play( )
String what( )
void adjust( )

Woodwind

void play( )
String what( )

Brass

void play( )
void adjust( )



Chapter 7: Polymorphism 219

  }
  public String what() { return "Percussion3"; }
  public void adjust() {}
}

class Stringed3 extends Instrument3 {
  public void play() {
    System.out.println("Stringed3.play()");
  }
  public String what() { return "Stringed3"; }
  public void adjust() {}
}

class Brass3 extends Wind3 {
  public void play() {
    System.out.println("Brass3.play()");
  }
  public void adjust() {
    System.out.println("Brass3.adjust()");
  }
}

class Woodwind3 extends Wind3 {
  public void play() {
    System.out.println("Woodwind3.play()");
  }
  public String what() { return "Woodwind3"; }
}

public class Music3 {
  // Doesn't care about type, so new types
  // added to the system still work right:
  static void tune(Instrument3 i) {
    // ...
    i.play();
  }
  static void tuneAll(Instrument3[] e) {
    for(int i = 0; i < e.length; i++)
      tune(e[i]);
  }
  public static void main(String[] args) {
    Instrument3[] orchestra = new Instrument3[5];
    int i = 0;
    // Upcasting during addition to the array:
    orchestra[i++] = new Wind3();
    orchestra[i++] = new Percussion3();
    orchestra[i++] = new Stringed3();
    orchestra[i++] = new Brass3();
    orchestra[i++] = new Woodwind3();
    tuneAll(orchestra);
  }
} ///:~



220 Thinking in Java  www.BruceEckel.com

The new methods are what( ), which returns a String handle with a description of the class,
and adjust( ), which provides some way to adjust each instrument.

In main( ), when you place something inside the Instrument3 array you automatically
upcast to Instrument3.

You can see that the tune( ) method is blissfully ignorant of all the code changes that have
happened around it, and yet it works correctly. This is exactly what polymorphism is
supposed to provide. Your code changes don’t cause damage to parts of the program that
should not be affected. Put another way, polymorphism is one of the most important
techniques that allow the programmer to “separate the things that change from the things
that stay the same.”

Overriding vs. overloading
Let’s take a different look at the first example in this chapter. In the following program, the
interface of the method play( ) is changed in the process of overriding it, which means that
you haven’t overridden the method, but instead overloaded it. The compiler allows you to
overload methods so it gives no complaint. But the behavior is probably not what you want.
Here’s the example:

//: WindError.java
// Accidentally changing the interface

class NoteX {
  public static final int
    MIDDLE_C = 0, C_SHARP = 1, C_FLAT = 2;
}

class InstrumentX {
  public void play(int NoteX) {
    System.out.println("InstrumentX.play()");
  }
}

class WindX extends InstrumentX {
  // OOPS! Changes the method interface:
  public void play(NoteX n) {
    System.out.println("WindX.play(NoteX n)");
  }
}

public class WindError {
  public static void tune(InstrumentX i) {
    // ...
    i.play(NoteX.MIDDLE_C);
  }
  public static void main(String[] args) {
    WindX flute = new WindX();
    tune(flute); // Not the desired behavior!
  }
} ///:~



Chapter 7: Polymorphism 221

There’s another confusing aspect thrown in here. In InstrumentX, the play( ) method takes
an int that has the identifier NoteX. That is, even though NoteX is a class name, it can also
be used as an identifier without complaint. But in WindX, play( ) takes a NoteX handle that
has an identifier n. (Although you could even say play(NoteX NoteX) without an error.)
Thus it appears that the programmer intended to override play( ) but mistyped the method
a bit. The compiler, however, assumed that an overload and not an override was intended.
Note that if you follow the standard Java naming convention, the argument identifier would
be noteX, which would distinguish it from the class name.

In tune, the InstrumentX i is sent the play( ) message, with one of NoteX’s members
(MIDDLE_C) as an argument. Since NoteX contains int definitions, this means that the int
version of the now-overloaded play( ) method is called, and since that has not been
overridden the base-class version is used.

The output is:

InstrumentX.play()

This certainly doesn’t appear to be a polymorphic method call. Once you understand what’s
happening, you can fix the problem fairly easily, but imagine how difficult it might be to
find the bug if it’s buried in a program of significant size.

Abstract classes
and methods
In all the instrument examples, the methods in the base class Instrument were always
“dummy” methods. If these methods are ever called, you’ve done something wrong. That’s
because the intent of Instrument is to create a common interface for all the classes derived
from it.

The only reason to establish this common interface is so it can be expressed differently for
each different subtype. It establishes a basic form, so you can say what’s in common with all
the derived classes. Another way of saying this is to call Instrument an abstract base class
(or simply an abstract class). You create an abstract class when you want to manipulate a set
of classes through this common interface. All derived-class methods that match the
signature of the base-class declaration will be called using the dynamic binding mechanism.
(However, as seen in the last section, if the method’s name is the same as the base class but
the arguments are different, you’ve got overloading, which probably isn’t what you want.)

If you have an abstract class like Instrument, objects of that class almost always have no
meaning. That is, Instrument is meant to express only the interface, and not a particular
implementation, so creating an Instrument object makes no sense, and you’ll probably
want to prevent the user from doing it. This can be accomplished by making all the methods
in Instrument print error messages, but this delays the information until run-time and
requires reliable exhaustive testing on the user’s part. It’s always better to catch problems at
compile time.

Java provides a mechanism for doing this called the abstract method. This is a method that is
incomplete; it has only a declaration and no method body. Here is the syntax for an abstract
method declaration:

abstract void X();



222 Thinking in Java  www.BruceEckel.com

A class containing abstract methods is called an abstract class. If a class contains one or more
abstract methods, the class must be qualified as abstract. (Otherwise, the compiler gives you
an error message.)

If an abstract class is incomplete, what is the compiler supposed to do when someone tries to
make an object of that class? It cannot safely create an object of an abstract class, so you get
an error message from the compiler. This way the compiler ensures the purity of the
abstract class, and you don’t need to worry about misusing it.

If you inherit from an abstract class and you want to make objects of the new type, you
must provide method definitions for all the abstract methods in the base class. If you don’t
(and you may choose not to), then the derived class is also abstract and the compiler will
force you to qualify that class with the abstract keyword.

It’s possible to declare a class as abstract without including any abstract methods. This is
useful when you’ve got a class in which it doesn’t make sense to have any abstract
methods, and yet you want to prevent any instances of that class.

The Instrument class can easily be turned into an abstract class. Only some of the methods
will be abstract, since making a class abstract doesn’t force you to make all the methods
abstract. Here’s what it looks like:

Here’s the orchestra example modified to use abstract classes and methods:

//: Music4.java
// Abstract classes and methods
import java.util.*;

abstract Instrument

abstract void play();
String what() {/*…*/}
abstract void adjust();

Wind

void play()
String what()
void adjust()

Percussion

void play()
String what()
void adjust()

Stringed

void play()
String what()
void adjust()

Woodwind

void play()
String what()

Brass

void play()
void adjust()

extends extends extends

extends extends



Chapter 7: Polymorphism 223

abstract class Instrument4 {
  int i; // storage allocated for each
  public abstract void play();
  public String what() {
    return "Instrument4";
  }
  public abstract void adjust();
}

class Wind4 extends Instrument4 {
  public void play() {
    System.out.println("Wind4.play()");
  }
  public String what() { return "Wind4"; }
  public void adjust() {}
}

class Percussion4 extends Instrument4 {
  public void play() {
    System.out.println("Percussion4.play()");
  }
  public String what() { return "Percussion4"; }
  public void adjust() {}
}

class Stringed4 extends Instrument4 {
  public void play() {
    System.out.println("Stringed4.play()");
  }
  public String what() { return "Stringed4"; }
  public void adjust() {}
}

class Brass4 extends Wind4 {
  public void play() {
    System.out.println("Brass4.play()");
  }
  public void adjust() {
    System.out.println("Brass4.adjust()");
  }
}

class Woodwind4 extends Wind4 {
  public void play() {
    System.out.println("Woodwind4.play()");
  }
  public String what() { return "Woodwind4"; }
}

public class Music4 {
  // Doesn't care about type, so new types
  // added to the system still work right:
  static void tune(Instrument4 i) {
    // ...



224 Thinking in Java  www.BruceEckel.com

    i.play();
  }
  static void tuneAll(Instrument4[] e) {
    for(int i = 0; i < e.length; i++)
      tune(e[i]);
  }
  public static void main(String[] args) {
    Instrument4[] orchestra = new Instrument4[5];
    int i = 0;
    // Upcasting during addition to the array:
    orchestra[i++] = new Wind4();
    orchestra[i++] = new Percussion4();
    orchestra[i++] = new Stringed4();
    orchestra[i++] = new Brass4();
    orchestra[i++] = new Woodwind4();
    tuneAll(orchestra);
  }
} ///:~

You can see that there’s really no change except in the base class.

It’s helpful to create abstract classes and methods because they make the abstractness of a
class explicit and tell both the user and the compiler how it was intended to be used.

Interfaces
The interface keyword takes the abstract concept one step further. You could think of it as a
“pure” abstract class. It allows the creator to establish the form for a class: method names,
argument lists and return types, but no method bodies. An interface can also contain data
members of primitive types, but these are implicitly static and final. An interface provides
only a form, but no implementation.

An interface says: “This is what all classes that implement this particular interface will look
like.” Thus, any code that uses a particular interface knows what methods might be called
for that interface, and that’s all. So the interface is used to establish a “protocol” between
classes. (Some object-oriented programming languages have a keyword called protocol to do
the same thing.)

To create an interface, use the interface keyword instead of the class keyword. Like a class,
you can add the public keyword before the interface keyword (but only if that interface is
defined in a file of the same name) or leave it off to give “friendly” status.

To make a class that conforms to a particular interface (or group of interfaces) use the
implements keyword. You’re saying “The interface is what it looks like and here’s how it
works.” Other than that, it bears a strong resemblance to inheritance. The diagram for the
instrument example shows this:



Chapter 7: Polymorphism 225

Once you’ve implemented an interface, that implementation becomes an ordinary class that
can be extended in the regular way.

You can choose to explicitly declare the method declarations in an interface as public. But
they are public even if you don’t say it. So when you implement an interface, the methods
from the interface must be defined as public. Otherwise they would default to “friendly”
and you’d be restricting the accessibility of a method during inheritance, which is not
allowed by the Java compiler.

You can see this in the modified version of the Instrument example. Note that every method
in the interface is strictly a declaration, which is the only thing the compiler allows. In
addition, none of the methods in Instrument5 are declared as public, but they’re
automatically public anyway:

//: Music5.java
// Interfaces
import java.util.*;

interface Instrument5 {
  // Compile-time constant:
  int i = 5; // static & final
  // Cannot have method definitions:
  void play(); // Automatically public
  String what();
  void adjust();
}

class Wind5 implements Instrument5 {
  public void play() {
    System.out.println("Wind5.play()");

interface Instrument

void play();
String what();
void adjust();

Wind

void play()
String what()
void adjust()

Percussion

void play()
String what()
void adjust()

Stringed

void play()
String what()
void adjust()

Woodwind

void play()
String what()

Brass

void play()
void adjust()

implements

extends extends

implements implements



226 Thinking in Java  www.BruceEckel.com

  }
  public String what() { return "Wind5"; }
  public void adjust() {}
}

class Percussion5 implements Instrument5 {
  public void play() {
    System.out.println("Percussion5.play()");
  }
  public String what() { return "Percussion5"; }
  public void adjust() {}
}

class Stringed5 implements Instrument5 {
  public void play() {
    System.out.println("Stringed5.play()");
  }
  public String what() { return "Stringed5"; }
  public void adjust() {}
}

class Brass5 extends Wind5 {
  public void play() {
    System.out.println("Brass5.play()");
  }
  public void adjust() {
    System.out.println("Brass5.adjust()");
  }
}

class Woodwind5 extends Wind5 {
  public void play() {
    System.out.println("Woodwind5.play()");
  }
  public String what() { return "Woodwind5"; }
}

public class Music5 {
  // Doesn't care about type, so new types
  // added to the system still work right:
  static void tune(Instrument5 i) {
    // ...
    i.play();
  }
  static void tuneAll(Instrument5[] e) {
    for(int i = 0; i < e.length; i++)
      tune(e[i]);
  }
  public static void main(String[] args) {
    Instrument5[] orchestra = new Instrument5[5];
    int i = 0;
    // Upcasting during addition to the array:
    orchestra[i++] = new Wind5();
    orchestra[i++] = new Percussion5();



Chapter 7: Polymorphism 227

    orchestra[i++] = new Stringed5();
    orchestra[i++] = new Brass5();
    orchestra[i++] = new Woodwind5();
    tuneAll(orchestra);
  }
} ///:~

The rest of the code works the same. It doesn’t matter if you are upcasting to a “regular”
class called Instrument5, an abstract class called Instrument5, or to an interface called
Instrument5. The behavior is the same. In fact, you can see in the tune( ) method that there
isn’t any evidence about whether Instrument5 is a “regular” class, an abstract class or an
interface. This is the intent: Each approach gives the programmer different control over the
way objects are created and used.

“Multiple inheritance” in Java
The interface isn’t simply a “more pure” form of abstract class. It has a higher purpose
than that. Because an interface has no implementation at all – that is, there is no storage
associated with an interface – there’s nothing to prevent many interfaces from being
combined. This is valuable because there are times when you need to say “An x is an a and a
b and a c.” In C++, this act of combining multiple class interfaces is called multiple
inheritance, and it carries some rather sticky baggage because each class can have an
implementation. In Java, you can perform the same act, but only one of the classes can have
an implementation, so the problems seen in C++ do not occur with Java when combining
multiple interfaces:

In a derived class, you aren’t forced to have a base class that is either an abstract or
“concrete” (one with no abstract methods). If you do inherit from a non-interface, you can
inherit from only one. All the rest of the base elements must be interfaces. You place all the
interface names after the implements keyword and separate them with commas. You can
have as many interfaces as you want and each one becomes an independent type that you
can upcast to. The following example shows a concrete class combined with several
interfaces to produce a new class:

//: Adventure.java
// Multiple interfaces
import java.util.*;

interface CanFight {
  void fight();

Abstract or concrete
base class

interface 1

interface 1

interface 1

base class functions       interface 1      interface 2   .…   interface n



228 Thinking in Java  www.BruceEckel.com

}

interface CanSwim {
  void swim();
}

interface CanFly {
  void fly();
}

class ActionCharacter {
  public void fight() {}
}

class Hero extends ActionCharacter
    implements CanFight, CanSwim, CanFly {
  public void swim() {}
  public void fly() {}
}

public class Adventure {
  static void t(CanFight x) { x.fight(); }
  static void u(CanSwim x) { x.swim(); }
  static void v(CanFly x) { x.fly(); }
  static void w(ActionCharacter x) { x.fight(); }
  public static void main(String[] args) {
    Hero i = new Hero();
    t(i); // Treat it as a CanFight
    u(i); // Treat it as a CanSwim
    v(i); // Treat it as a CanFly
    w(i); // Treat it as an ActionCharacter
  }
} ///:~

You can see that Hero combines the concrete class ActionCharacter with the interfaces
CanFight, CanSwim, and CanFly. When you combine a concrete class with interfaces this
way, the concrete class must come first, then the interfaces. (The compiler gives an error
otherwise.)

Note that the signature for fight( ) is the same in the interface CanFight and the class
ActionCharacter, and that fight( ) is not provided with a definition in Hero. The rule for an
interface is that you can inherit from it (as you will see shortly), but then you’ve got
another interface. If you want to create an object of the new type, it must be a class with all
definitions provided. Even though Hero does not explicitly provide a definition for fight( ),
the definition comes along with ActionCharacter so it is automatically provided and it’s
possible to create objects of Hero.

In class Adventure, you can see that there are four methods that take as arguments the
various interfaces and the concrete class. When a Hero object is created, it can be passed to
any of these methods, which means it is being upcast to each interface in turn. Because of
the way interfaces are designed in Java, this works without a hitch and without any
particular effort on the part of the programmer.



Chapter 7: Polymorphism 229

Keep in mind that the core reason for interfaces is shown in the above example: to be able to
upcast to more than one base type. However, a second reason for using interfaces is the same
as using an abstract base class: to prevent the client programmer from making an object of
this class and to establish that it is only an interface. This brings up a question: Should you
use an interface or an abstract class? An interface gives you the benefits of an abstract
class and the benefits of an interface, so if it’s possible to create your base class without any
method definitions or member variables you should always prefer interfaces to abstract
classes. In fact, if you know something is going to be a base class, your first choice should be
to make it an interface, and only if you’re forced to have method definitions or member
variables should you change to an abstract class.

Extending an interface
with inheritance

You can easily add new method declarations to an interface using inheritance, and you can
also combine several interfaces into a new interface with inheritance. In both cases you get
a new interface, as seen in this example:

//: HorrorShow.java
// Extending an interface with inheritance

interface Monster {
  void menace();
}

interface DangerousMonster extends Monster {
  void destroy();
}

interface Lethal {
  void kill();
}

class DragonZilla implements DangerousMonster {
  public void menace() {}
  public void destroy() {}
}

interface Vampire
    extends DangerousMonster, Lethal {
  void drinkBlood();
}

class HorrorShow {
  static void u(Monster b) { b.menace(); }
  static void v(DangerousMonster d) {
    d.menace();
    d.destroy();
  }
  public static void main(String[] args) {
    DragonZilla if2 = new DragonZilla();
    u(if2);



230 Thinking in Java  www.BruceEckel.com

    v(if2);
  }
} ///:~

DangerousMonster is a simple extension to Monster that produces a new interface. This is
implemented in DragonZilla.

The syntax used in Vampire works only when inheriting interfaces. Normally, you can use
extends with only a single class, but since an interface can be made from multiple other
interfaces, extends can refer to multiple base interfaces when building a new interface. As
you can see, the interface names are simply separated with commas.

Grouping constants
Because any fields you put into an interface are automatically static and final, the
interface is a convenient tool for creating groups of constant values, much as you would
with an enum in C or C++. For example:

//: Months.java
// Using interfaces to create groups of constants
package c07;

public interface Months {
  int
    JANUARY = 1, FEBRUARY = 2, MARCH = 3,
    APRIL = 4, MAY = 5, JUNE = 6, JULY = 7,
    AUGUST = 8, SEPTEMBER = 9, OCTOBER = 10,
    NOVEMBER = 11, DECEMBER = 12;
} ///:~

Notice the Java style of using all uppercase letters (with underscores to separate multiple
words in a single identifier) for static final primitives that have constant initializers – that
is, for compile-time constants.

The fields in an interface are automatically public, so it’s unnecessary to specify that.

Now you can use the constants from outside the package by importing c07.* or
c07.Months just as you would with any other package, and referencing the values with
expressions like Months.JANUARY. Of course, what you get is just an int so there isn’t the
extra type safety that C++’s enum has, but this (commonly-used) technique is certainly an
improvement over hard-coding numbers into your programs. (This is often referred to as
using “magic numbers” and it produces very difficult-to-maintain code.)

If you do want extra type safety, you can build a class like this:1

//: Month2.java
// A more robust enumeration system
package c07;

public final class Month2 {
  private String name;

                                                

1 This approach was inspired by an e-mail from Rich Hoffarth.



Chapter 7: Polymorphism 231

  private Month2(String nm) { name = nm; }
  public String toString() { return name; }
  public final static Month2
    JAN = new Month2("January"),
    FEB = new Month2("February"),
    MAR = new Month2("March"),
    APR = new Month2("April"),
    MAY = new Month2("May"),
    JUN = new Month2("June"),
    JUL = new Month2("July"),
    AUG = new Month2("August"),
    SEP = new Month2("September"),
    OCT = new Month2("October"),
    NOV = new Month2("November"),
    DEC = new Month2("December");
  public final static Month2[] month =  {
    JAN, JAN, FEB, MAR, APR, MAY, JUN,
    JUL, AUG, SEP, OCT, NOV, DEC
  };
  public static void main(String[] args) {
    Month2 m = Month2.JAN;
    System.out.println(m);
    m = Month2.month[12];
    System.out.println(m);
    System.out.println(m == Month2.DEC);
    System.out.println(m.equals(Month2.DEC));
  }
} ///:~

The class is called Month2 since there’s already a Month in the standard Java library. It’s a
final class with a private constructor so no one can inherit from it or make any instances of
it. The only instances are the final static ones created in the class itself: JAN, FEB, MAR, etc.
These objects are also used in the array month, which lets you choose months by number
instead of by name. (Notice the extra JAN in the array to provide an offset by one, so that
December is month 12.) In main( ) you can see the type safety: m is a Month2 object so it
can be assigned only to a Month2. The previous example Months.java provided only int
values, so an int variable intended to represent a month could actually be given any integer
value, which wasn’t too safe.

This approach also allows you to use == or equals( ) interchangeably, as shown at the end
of main( ).

Initializing fields in interfaces
Fields defined in interfaces are automatically static and final. These cannot be “blank finals,”
but they can be initialized with non-constant expressions. For example:

//: RandVals.java
// Initializing interface fields with
// non-constant initializers
import java.util.*;

public interface RandVals {
  int rint = (int)(Math.random() * 10);



232 Thinking in Java  www.BruceEckel.com

  long rlong = (long)(Math.random() * 10);
  float rfloat = (float)(Math.random() * 10);
  double rdouble = Math.random() * 10;
} ///:~

Since the fields are static, they are initialized when the class is first loaded, upon first access
of any of the fields. Here’s a simple test:

//: TestRandVals.java

public class TestRandVals {
  public static void main(String[] args) {
    System.out.println(RandVals.rint);
    System.out.println(RandVals.rlong);
    System.out.println(RandVals.rfloat);
    System.out.println(RandVals.rdouble);
  }
} ///:~

The fields, of course, are not part of the interface but instead are stored in the static storage
area for that interface.

Inner classes
In Java 1.1 it’s possible to place a class definition within another class definition. This is
called an inner class. The inner class is a useful feature because it allows you to group classes
that logically belong together and to control the visibility of one within the other. However,
it’s important to understand that inner classes are distinctly different from composition.

Often, while you're learning about them, the need for inner classes isn’t immediately
obvious. At the end of this section, after all of the syntax and semantics of inner classes have
been described, you’ll find an example that should make clear the benefits of inner classes.

You create an inner class just as you’d expect: by placing the class definition inside a
surrounding class: (See page 94 if you have trouble executing this program.)

//: Parcel1.java
// Creating inner classes
package c07.parcel1;

public class Parcel1 {
  class Contents {
    private int i = 11;
    public int value() { return i; }
  }
  class Destination {
    private String label;
    Destination(String whereTo) {
      label = whereTo;
    }
    String readLabel() { return label; }
  }
  // Using inner classes looks just like
  // using any other class, within Parcel1:



Chapter 7: Polymorphism 233

  public void ship(String dest) {
    Contents c = new Contents();
    Destination d = new Destination(dest);
  }
  public static void main(String[] args) {
    Parcel1 p = new Parcel1();
    p.ship("Tanzania");
  }
} ///:~

The inner classes, when used inside ship( ), look just like the use of any other classes. Here,
the only practical difference is that the names are nested within Parcel1. You’ll see in a while
that this isn’t the only difference.

More typically, an outer class will have a method that returns a handle to an inner class, like
this:

//: Parcel2.java
// Returning a handle to an inner class
package c07.parcel2;

public class Parcel2 {
  class Contents {
    private int i = 11;
    public int value() { return i; }
  }
  class Destination {
    private String label;
    Destination(String whereTo) {
      label = whereTo;
    }
    String readLabel() { return label; }
  }
  public Destination to(String s) {
    return new Destination(s);
  }
  public Contents cont() {
    return new Contents();
  }
  public void ship(String dest) {
    Contents c = cont();
    Destination d = to(dest);
  }
  public static void main(String[] args) {
    Parcel2 p = new Parcel2();
    p.ship("Tanzania");
    Parcel2 q = new Parcel2();
    // Defining handles to inner classes:
    Parcel2.Contents c = q.cont();
    Parcel2.Destination d = q.to("Borneo");
  }
} ///:~



234 Thinking in Java  www.BruceEckel.com

If you want to make an object of the inner class anywhere except from within a non-static
method of the outer class, you must specify the type of that object as
OuterClassName.InnerClassName, as seen in main( ).

Inner classes and upcasting
So far, inner classes don’t seem that dramatic. After all, if it’s hiding you’re after, Java
already has a perfectly good hiding mechanism – just allow the class to be “friendly” (visible
only within a package) rather than creating it as an inner class.

However, inner classes really come into their own when you start upcasting to a base class,
and in particular to an interface. (The effect of producing an interface handle from an object
that implements it is essentially the same as upcasting to a base class.) That’s because the
inner class can then be completely unseen and unavailable to anyone, which is convenient
for hiding the implementation. All you get back is a handle to the base class or the interface,
and it’s possible that you can’t even find out the exact type, as shown here:

//: Parcel3.java
// Returning a handle to an inner class
package c07.parcel3;

abstract class Contents {
  abstract public int value();
}

interface Destination {
  String readLabel();
}

public class Parcel3 {
  private class PContents extends Contents {
    private int i = 11;
    public int value() { return i; }
  }
  protected class PDestination
      implements Destination {
    private String label;
    private PDestination(String whereTo) {
      label = whereTo;
    }
    public String readLabel() { return label; }
  }
  public Destination dest(String s) {
    return new PDestination(s);
  }
  public Contents cont() {
    return new PContents();
  }
}

class Test {
  public static void main(String[] args) {
    Parcel3 p = new Parcel3();



Chapter 7: Polymorphism 235

    Contents c = p.cont();
    Destination d = p.dest("Tanzania");
    // Illegal -- can't access private class:
    //! Parcel3.PContents c = p.new PContents();
  }
} ///:~

Now Contents and Destination represent interfaces available to the client programmer. (The
interface, remember, automatically makes all of its members public.) For convenience, these
are placed inside a single file, but ordinarily Contents and Destination would each be public
in their own files.

In Parcel3, something new has been added: the inner class PContents is private so no one
but Parcel3 can access it. PDestination is protected, so no one but Parcel3, classes in the
Parcel3 package (since protected also gives package access; that is, protected is also
“friendly”), and the inheritors of Parcel3 can access PDestination. This means that the
client programmer has restricted knowledge and access to these members. In fact, you can’t
even downcast to a private inner class (or a protected inner class unless you’re an
inheritor), because you can’t access the name, as you can see in class Test. Thus, the private
inner class provides a way for the class designer to completely prevent any type-coding
dependencies and to completely hide details about implementation. In addition, extension of
an interface is useless from the client programmer’s perspective since the client programmer
cannot access any additional methods that aren’t part of the public interface class. This also
provides an opportunity for the Java compiler to generate more efficient code.

Normal (non-inner) classes cannot be made private or protected – only public or “friendly.”

Note that Contents doesn’t need to be an abstract class. You could use an ordinary class
here as well, but the most typical starting point for such a design is an interface.

Inner classes in methods and scopes
What you’ve seen so far encompasses the typical use for inner classes. In general, the code
that you’ll write and read involving inner classes will be “plain” inner classes that are simple
and easy to understand. However, the design for inner classes is quite complete and there are
a number of other, more obscure, ways that you can use them if you choose: inner classes
can be created within a method or even an arbitrary scope. There are two reasons for doing
this:

1. As shown previously, you’re implementing an interface of some kind so that you can
create and return a handle.

2. You’re solving a complicated problem and you want to create a class to aid in your
solution, but you don’t want it publicly available.

In the following examples, the previous code will be modified to use:

1. A class defined within a method

2. A class defined within a scope inside a method

3. An anonymous class implementing an interface

4. An anonymous class extending a class that has a non-default constructor

5. An anonymous class that performs field initialization



236 Thinking in Java  www.BruceEckel.com

6. An anonymous class that performs construction using instance initialization
(anonymous inner classes cannot have constructors)

This will all take place within the package innerscopes. First, the common interfaces from
the previous code will be defined in their own files so they can be used in all the examples:

//: Destination.java
package c07.innerscopes;

interface Destination {
  String readLabel();
} ///:~

The point has been made that Contents could be an abstract class, so here it will be in a
more natural form, as an interface:

//: Contents.java
package c07.innerscopes;

interface Contents {
  int value();
} ///:~

Although it’s an ordinary class with an implementation, Wrapping is also being used as a
common “interface” to its derived classes:

//: Wrapping.java
package c07.innerscopes;

public class Wrapping {
  private int i;
  public Wrapping(int x) { i = x; }
  public int value() { return i; }
} ///:~

You’ll notice above that Wrapping has a constructor that requires an argument, to make
things a bit more interesting.

The first example shows the creation of an entire class within the scope of a method (instead
of the scope of another class):

//: Parcel4.java
// Nesting a class within a method
package c07.innerscopes;

public class Parcel4 {
  public Destination dest(String s) {
    class PDestination
        implements Destination {
      private String label;
      private PDestination(String whereTo) {
        label = whereTo;
      }
      public String readLabel() { return label; }
    }
    return new PDestination(s);



Chapter 7: Polymorphism 237

  }
  public static void main(String[] args) {
    Parcel4 p = new Parcel4();
    Destination d = p.dest("Tanzania");
  }
} ///:~

The class PDestination is part of dest( ) rather than being part of Parcel4. (Also notice that
you could use the class identifier PDestination for an inner class inside each class in the
same subdirectory without a name clash.) Therefore, PDestination cannot be accessed
outside of dest( ). Notice the upcasting that occurs in the return statement – nothing comes
out of dest( ) except a handle to the base class Destination. Of course, the fact that the
name of the class PDestination is placed inside dest( ) doesn’t mean that PDestination is
not a valid object once dest( ) returns.

The next example shows how you can nest an inner class within any arbitrary scope:

//: Parcel5.java
// Nesting a class within a scope
package c07.innerscopes;

public class Parcel5 {
  private void internalTracking(boolean b) {
    if(b) {
      class TrackingSlip {
        private String id;
        TrackingSlip(String s) {
          id = s;
        }
        String getSlip() { return id; }
      }
      TrackingSlip ts = new TrackingSlip("slip");
      String s = ts.getSlip();
    }
    // Can't use it here! Out of scope:
    //! TrackingSlip ts = new TrackingSlip("x");
  }
  public void track() { internalTracking(true); }
  public static void main(String[] args) {
    Parcel5 p = new Parcel5();
    p.track();
  }
} ///:~

The class TrackingSlip is nested inside the scope of an if statement. This does not mean that
the class is conditionally created – it gets compiled along with everything else. However, it’s
not available outside the scope in which it is defined. Other than that, it looks just like an
ordinary class.

The next example looks a little strange:

//: Parcel6.java
// A method that returns an anonymous inner class
package c07.innerscopes;



238 Thinking in Java  www.BruceEckel.com

public class Parcel6 {
  public Contents cont() {
    return new Contents() {
      private int i = 11;
      public int value() { return i; }
    }; // Semicolon required in this case
  }
  public static void main(String[] args) {
    Parcel6 p = new Parcel6();
    Contents c = p.cont();
  }
} ///:~

The cont( ) method combines the creation of the return value with the definition of the class
that represents that return value! In addition, the class is anonymous – it has no name. To
make matters a bit worse, it looks like you’re starting out to create a Contents object:

return new Contents()

but then, before you get to the semicolon, you say, “But wait, I think I’ll slip in a class
definition”:

return new Contents() {
  private int i = 11;
  public int value() { return i; }
};

What this strange syntax means is “create an object of an anonymous class that’s inherited
from Contents.” The handle returned by the new expression is automatically upcast to a
Contents handle. The anonymous inner class syntax is a shorthand for:

class MyContents extends Contents {
  private int i = 11;
  public int value() { return i; }
}
return new MyContents();

In the anonymous inner class, Contents is created using a default constructor. The following
code shows what to do if your base class needs a constructor with an argument:

//: Parcel7.java
// An anonymous inner class that calls the
// base-class constructor
package c07.innerscopes;

public class Parcel7 {
  public Wrapping wrap(int x) {
    // Base constructor call:
    return new Wrapping(x) {
      public int value() {
        return super.value() * 47;
      }
    }; // Semicolon required
  }
  public static void main(String[] args) {



Chapter 7: Polymorphism 239

    Parcel7 p = new Parcel7();
    Wrapping w = p.wrap(10);
  }
} ///:~

That is, you simply pass the appropriate argument to the base-class constructor, seen here as
the x passed in new Wrapping(x). An anonymous class cannot have a constructor where
you would normally call super( ).

In both of the previous examples, the semicolon doesn’t mark the end of the class body (as it
does in C++). Instead, it marks the end of the expression that happens to contain the
anonymous class. Thus, it’s identical to the use of the semicolon everywhere else.

What happens if you need to perform some kind of initialization for an object of an
anonymous inner class? Since it’s anonymous, there’s no name to give the constructor so
you can’t have a constructor. You can, however, perform initialization at the point of
definition of your fields:

//: Parcel8.java
// An anonymous inner class that performs
// initialization. A briefer version
// of Parcel5.java.
package c07.innerscopes;

public class Parcel8 {
  // Argument must be final to use inside
  // anonymous inner class:
  public Destination dest(final String dest) {
    return new Destination() {
      private String label = dest;
      public String readLabel() { return label; }
    };
  }
  public static void main(String[] args) {
    Parcel8 p = new Parcel8();
    Destination d = p.dest("Tanzania");
  }
} ///:~

If you’re defining an anonymous inner class and want to use an object that’s defined outside
the anonymous inner class, the compiler requires that the outside object be final. This is
why the argument to dest( ) is final. If you forget, you’ll get a compile-time error message.

As long as you’re simply assigning a field, the above approach is fine. But what if you need
to perform some constructor-like activity? With Java 1.1 instance initialization, you can, in
effect, create a constructor for an anonymous inner class:

//: Parcel9.java
// Using "instance initialization" to perform
// construction on an anonymous inner class
package c07.innerscopes;

public class Parcel9 {
  public Destination
  dest(final String dest, final float price) {



240 Thinking in Java  www.BruceEckel.com

    return new Destination() {
      private int cost;
      // Instance initialization for each object:
      {
        cost = Math.round(price);
        if(cost > 100)
          System.out.println("Over budget!");
      }
      private String label = dest;
      public String readLabel() { return label; }
    };
  }
  public static void main(String[] args) {
    Parcel9 p = new Parcel9();
    Destination d = p.dest("Tanzania", 101.395F);
  }
} ///:~

Inside the instance initializer you can see code that couldn’t be executed as part of a field
initializer (that is, the if statement). So in effect, an instance initializer is the constructor for
an anonymous inner class. Of course, it’s limited; you can’t overload instance initializers so
you can have only one of these constructors.

The link to the outer class
So far, it appears that inner classes are just a name-hiding and code-organization scheme,
which is helpful but not totally compelling. However, there’s another twist. When you create
an inner class, objects of that inner class have a link to the enclosing object that made them,
and so they can access the members of that enclosing object – without any special
qualifications. In addition, inner classes have access rights to all the elements in the enclosing
class.2 The following example demonstrates this:

//: Sequence.java
// Holds a sequence of Objects

interface Selector {
  boolean end();
  Object current();
  void next();
}

public class Sequence {
  private Object[] o;
  private int next = 0;
  public Sequence(int size) {
    o = new Object[size];
  }
  public void add(Object x) {
    if(next < o.length) {

                                                

2 This is very different from the design of nested classes in C++, which is simply a name-hiding
mechanism. There is no link to an enclosing object and no implied permissions in C++.



Chapter 7: Polymorphism 241

      o[next] = x;
      next++;
    }
  }
  private class SSelector implements Selector {
    int i = 0;
    public boolean end() {
      return i == o.length;
    }
    public Object current() {
      return o[i];
    }
    public void next() {
      if(i < o.length) i++;
    }
  }
  public Selector getSelector() {
    return new SSelector();
  }
  public static void main(String[] args) {
    Sequence s = new Sequence(10);
    for(int i = 0; i < 10; i++)
      s.add(Integer.toString(i));
    Selector sl = s.getSelector();
    while(!sl.end()) {
      System.out.println((String)sl.current());
      sl.next();
    }
  }
} ///:~

The Sequence is simply a fixed-sized array of Object with a class wrapped around it. You
call add( ) to add a new Object to the end of the sequence (if there’s room left). To fetch each
of the objects in a Sequence, there’s an interface called Selector, which allows you to see if
you’re at the end( ), to look at the current( ) Object, and to move to the next( ) Object in
the Sequence. Because Selector is an interface, many other classes can implement the
interface in their own ways, and many methods can take the interface as an argument, in
order to create generic code.

Here, the SSelector is a private class that provides Selector functionality. In main( ), you
can see the creation of a Sequence, followed by the addition of a number of String objects.
Then, a Selector is produced with a call to getSelector( ) and this is used to move through
the Sequence and select each item.

At first, the creation of SSelector looks like just another inner class. But examine it closely.
Note that each of the methods end( ), current( ), and next( ) refer to o, which is a handle
that isn’t part of SSelector, but is instead a private field in the enclosing class. However, the
inner class can access methods and fields from the enclosing class as if they owned them.
This turns out to be very convenient, as you can see in the above example.

So an inner class has access to the members of the enclosing class. How can this happen? The
inner class must keep a reference to the particular object of the enclosing class that was
responsible for creating it. Then when you refer to a member of the enclosing class, that
(hidden) reference is used to select that member. Fortunately, the compiler takes care of all



242 Thinking in Java  www.BruceEckel.com

these details for you, but you can also understand now that an object of an inner class can
be created only in association with an object of the enclosing class. The process of
construction requires the initialization of the handle to the object of the enclosing class, and
the compiler will complain if it cannot access the handle. Most of the time this occurs
without any intervention on the part of the programmer.

static inner classes
To understand the meaning of static when applied to inner classes, you must remember that
the object of the inner class implicitly keeps a handle to the object of the enclosing class that
created it. This is not true, however, when you say an inner class is static. A static inner
class means:

1. You don’t need an outer-class object in order to create an object of a static inner class.

2. You can’t access an outer-class object from an object of a static inner class.

There are some restrictions: static members can be at only the outer level of a class, so inner
classes cannot have static data or static inner classes.

If you don’t need to create an object of the outer class in order to create an object of the
inner class, you can make everything static. For this to work, you must also make the inner
classes static:

//: Parcel10.java
// Static inner classes
package c07.parcel10;

abstract class Contents {
  abstract public int value();
}

interface Destination {
  String readLabel();
}

public class Parcel10 {
  private static class PContents
  extends Contents {
    private int i = 11;
    public int value() { return i; }
  }
  protected static class PDestination
      implements Destination {
    private String label;
    private PDestination(String whereTo) {
      label = whereTo;
    }
    public String readLabel() { return label; }
  }
  public static Destination dest(String s) {
    return new PDestination(s);
  }
  public static Contents cont() {



Chapter 7: Polymorphism 243

    return new PContents();
  }
  public static void main(String[] args) {
    Contents c = cont();
    Destination d = dest("Tanzania");
  }
} ///:~

In main( ), no object of Parcel10 is necessary; instead you use the normal syntax for
selecting a static member to call the methods that return handles to Contents and
Destination.

Normally you can't put any code inside an interface, but a static inner class can be part of
an interface. Since the class is static it doesn't violate the rules for interfaces – the static
inner class is only placed inside the namespace of the interface:

//: IInterface.java
// Static inner classes inside interfaces

class IInterface {
  static class Inner {
    int i, j, k;
    public Inner() {}
    void f() {}
  }
} ///:~

Earlier in the book I suggested putting a main( ) in every class to act as a test bed for that
class. One drawback to this is the amount of extra code you must carry around. If this is a
problem, you can use a static inner class to hold your test code:

//: TestBed.java
// Putting test code in a static inner class

class TestBed {
  TestBed() {}
  void f() { System.out.println("f()"); }
  public static class Tester {
    public static void main(String[] args) {
      TestBed t = new TestBed();
      t.f();
    }
  }
} ///:~

This generates a separate class called TestBed$Tester (to run the program you say java
TestBed$Tester). You can use this class for testing, but you don't need to include it in your
shipping product.

Referring to the outer class object
If you need to produce the handle to the outer class object, you name the outer class
followed by a dot and this. For example, in the class Sequence.SSelector, any of its methods
can produce the stored handle to the outer class Sequence by saying Sequence.this. The



244 Thinking in Java  www.BruceEckel.com

resulting handle is automatically the correct type. (This is known and checked at compile
time, so there is no run-time overhead.)

Sometimes you want to tell some other object to create an object of one of its inner classes.
To do this you must provide a handle to the other outer class object in the new expression,
like this:

//: Parcel11.java
// Creating inner classes
package c07.parcel11;

public class Parcel11 {
  class Contents {
    private int i = 11;
    public int value() { return i; }
  }
  class Destination {
    private String label;
    Destination(String whereTo) {
      label = whereTo;
    }
    String readLabel() { return label; }
  }
  public static void main(String[] args) {
    Parcel11 p = new Parcel11();
    // Must use instance of outer class
    // to create an instances of the inner class:
    Parcel11.Contents c = p.new Contents();
    Parcel11.Destination d =
      p.new Destination("Tanzania");
  }
} ///:~

To create an object of the inner class directly, you don’t follow the same form and refer to
the outer class name Parcel11 as you might expect, but instead you must use an object of
the outer class to make an object of the inner class:

Parcel11.Contents c = p.new Contents();

Thus, it’s not possible to create an object of the inner class unless you already have an object
of the outer class. This is because the object of the inner class is quietly connected to the
object of the outer class that it was made from. However, if you make a static inner class,
then it doesn’t need a handle to the outer class object.

Inheriting from inner classes
Because the inner class constructor must attach to a handle of the enclosing class object,
things are slightly complicated when you inherit from an inner class. The problem is that
the “secret” handle to the enclosing class object must be initialized, and yet in the derived
class there’s no longer a default object to attach to. The answer is to use a syntax provided to
make the association explicit:

//: InheritInner.java
// Inheriting an inner class



Chapter 7: Polymorphism 245

class WithInner {
  class Inner {}
}

public class InheritInner
    extends WithInner.Inner {
  //! InheritInner() {} // Won't compile
  InheritInner(WithInner wi) {
    wi.super();
  }
  public static void main(String[] args) {
    WithInner wi = new WithInner();
    InheritInner ii = new InheritInner(wi);
  }
} ///:~

You can see that InheritInner is extending only the inner class, not the outer one. But when
it comes time to create a constructor, the default one is no good and you can’t just pass a
handle to an enclosing object. In addition, you must use the syntax

enclosingClassHandle.super();

inside the constructor. This provides the necessary handle and the program will then
compile.

Can inner classes be overridden?
What happens when you create an inner class, then inherit from the enclosing class and
redefine the inner class? That is, is it possible to override an inner class? This seems like it
would be a powerful concept, but “overriding” an inner class as if it were another method of
the outer class doesn’t really do anything:

//: BigEgg.java
// An inner class cannot be overriden
// like a method

class Egg {
  protected class Yolk {
    public Yolk() {
      System.out.println("Egg.Yolk()");
    }
  }
  private Yolk y;
  public Egg() {
    System.out.println("New Egg()");
    y = new Yolk();
  }
}

public class BigEgg extends Egg {
  public class Yolk {
    public Yolk() {
      System.out.println("BigEgg.Yolk()");



246 Thinking in Java  www.BruceEckel.com

    }
  }
  public static void main(String[] args) {
    new BigEgg();
  }
} ///:~

The default constructor is synthesized automatically by the compiler, and this calls the base-
class default constructor. You might think that since a BigEgg is being created, the
“overridden” version of Yolk would be used, but this is not the case. The output is:

New Egg()
Egg.Yolk()

This example simply shows that there isn’t any extra inner class magic going on when you
inherit from the outer class. However, it’s still possible to explicitly inherit from the inner
class:

//: BigEgg2.java
// Proper inheritance of an inner class

class Egg2 {
  protected class Yolk {
    public Yolk() {
      System.out.println("Egg2.Yolk()");
    }
    public void f() {
      System.out.println("Egg2.Yolk.f()");
    }
  }
  private Yolk y = new Yolk();
  public Egg2() {
    System.out.println("New Egg2()");
  }
  public void insertYolk(Yolk yy) { y = yy; }
  public void g() { y.f(); }
}

public class BigEgg2 extends Egg2 {
  public class Yolk extends Egg2.Yolk {
    public Yolk() {
      System.out.println("BigEgg2.Yolk()");
    }
    public void f() {
      System.out.println("BigEgg2.Yolk.f()");
    }
  }
  public BigEgg2() { insertYolk(new Yolk()); }
  public static void main(String[] args) {
    Egg2 e2 = new BigEgg2();
    e2.g();
  }
} ///:~



Chapter 7: Polymorphism 247

Now BiggEgg2.Yolk explicitly extends Egg2.Yolk and overrides its methods. The method
insertYolk( ) allows BigEgg2 to upcast one of its own Yolk objects into the y handle in
Egg2, so when g( ) calls y.f( ) the overridden version of f( ) is used. The output is:

Egg2.Yolk()
New Egg2()
Egg2.Yolk()
BigEgg2.Yolk()
BigEgg2.Yolk.f()

The second call to Egg2.Yolk( ) is the base-class constructor call of the BigEgg2.Yolk
constructor. You can see that the overridden version of f( ) is used when g( ) is called.

Inner class identifiers
Since every class produces a .class file that holds all the information about how to create
objects of this type (this information produces a meta-class called the Class object), you
might guess that inner classes must also produce .class files to contain the information for
their Class objects. The names of these files/classes have a strict formula: the name of the
enclosing class, followed by a ‘$’, followed by the name of the inner class. For example, the
.class files created by InheritInner.java include:

InheritInner.class
WithInner$Inner.class
WithInner.class

If inner classes are anonymous, the compiler simply starts generating numbers as inner class
identifiers. If inner classes are nested within inner classes, their names are simply appended
after a ‘$’ and the outer class identifier(s).

Although this scheme of generating internal names is simple and straightforward, it’s also
robust and handles most situations.3 Since it is the standard naming scheme for Java, the
generated files are automatically platform-independent. (Note that the Java compiler is
changing your inner classes in all sorts of other ways in order to make them work.)

Why inner classes: control frameworks
At this point you’ve seen a lot of syntax and semantics describing the way inner classes
work, but this doesn’t answer the question of why they exist. Why did Sun go to so much
trouble to add such a fundamental language feature in Java 1.1? The answer is something
that I will refer to here as a control framework.

An application framework is a class or a set of classes that’s designed to solve a particular
type of problem. To apply an application framework, you inherit from one or more classes
and override some of the methods. The code you write in the overridden methods customizes
the general solution provided by that application framework to solve your specific problem.
The control framework is a particular type of application framework dominated by the need

                                                

3 On the other hand, ‘$’ is a meta-character to the Unix shell and so you’ll sometimes have trouble
when listing the .class files. This is a bit strange coming from Sun, a Unix-based company. My guess is
that they weren’t considering this issue, but instead thought you’d naturally focus on the source-code
files.



248 Thinking in Java  www.BruceEckel.com

to respond to events; a system that primarily responds to events is called an event-driven
system. One of the most important problems in application programming is the graphical
user interface (GUI), which is almost entirely event-driven. As you will see in Chapter 13,
the Java 1.1 AWT is a control framework that elegantly solves the GUI problem using inner
classes.

To see how inner classes allow the simple creation and use of control frameworks, consider a
control framework whose job is to execute events whenever those events are “ready.”
Although “ready” could mean anything, in this case the default will be based on clock time.
What follows is a control framework that contains no specific information about what it’s
controlling. First, here is the interface that describes any control event. It’s an abstract class
instead of an actual interface because the default behavior is control based on time, so some
of the implementation can be included here:

//: Event.java
// The common methods for any control event
package c07.controller;

abstract public class Event {
  private long evtTime;
  public Event(long eventTime) {
    evtTime = eventTime;
  }
  public boolean ready() {
    return System.currentTimeMillis() >= evtTime;
  }
  abstract public void action();
  abstract public String description();
} ///:~

The constructor simply captures the time when you want the Event to run, while ready( )
tells you when it’s time to run it. Of course, ready( ) could be overridden in a derived class
to base the Event on something other than time.

action( ) is the method that’s called when the Event is ready( ), and description( ) gives
textual information about the Event.

The next file contains the actual control framework that manages and fires events. The first
class is really just a “helper” class whose job is to hold Event objects. You could replace it
with any appropriate collection, and in Chapter 8 you’ll discover other collections that will
do the trick without requiring you to write this extra code:

//: Controller.java
// Along with Event, the generic
// framework for all control systems:
package c07.controller;

// This is just a way to hold Event objects.
class EventSet {
  private Event[] events = new Event[100];
  private int index = 0;
  private int next = 0;
  public void add(Event e) {
    if(index >= events.length)
      return; // (In real life, throw exception)



Chapter 7: Polymorphism 249

    events[index++] = e;
  }
  public Event getNext() {
    boolean looped = false;
    int start = next;
    do {
      next = (next + 1) % events.length;
      // See if it has looped to the beginning:
      if(start == next) looped = true;
      // If it loops past start, the list
      // is empty:
      if((next == (start + 1) % events.length)
         && looped)
        return null;
    } while(events[next] == null);
    return events[next];
  }
  public void removeCurrent() {
    events[next] = null;
  }
}

public class Controller {
  private EventSet es = new EventSet();
  public void addEvent(Event c) { es.add(c); }
  public void run() {
    Event e;
    while((e = es.getNext()) != null) {
      if(e.ready()) {
        e.action();
        System.out.println(e.description());
        es.removeCurrent();
      }
    }
  }
} ///:~

EventSet arbitrarily holds 100 Events. (If a “real” collection from Chapter 8 is used here you
don’t need to worry about its maximum size, since it will resize itself). The index is used to
keep track of the next available space, and next is used when you’re looking for the next
Event in the list, to see whether you’ve looped around. This is important during a call to
getNext( ), because Event objects are removed from the list (using removeCurrent( )) once
they’re run, so getNext( ) will encounter holes in the list as it moves through it.

Note that removeCurrent( ) doesn’t just set some flag indicating that the object is no longer
in use. Instead, it sets the handle to null. This is important because if the garbage collector
sees a handle that’s still in use then it can’t clean up the object. If you think your handles
might hang around (as they would here), then it’s a good idea to set them to null to give the
garbage collector permission to clean them up.

Controller is where the actual work goes on. It uses an EventSet to hold its Event objects,
and addEvent( ) allows you to add new events to this list. But the important method is
run( ). This method loops through the EventSet, hunting for an Event object that’s ready( )



250 Thinking in Java  www.BruceEckel.com

to run. For each one it finds ready( ), it calls the action( ) method, prints out the
description( ), and then removes the Event from the list.

Note that so far in this design you know nothing about exactly what an Event does. And
this is the crux of the design; how it “separates the things that change from the things that
stay the same.” Or, to use my term, the “vector of change” is the different actions of the
various kinds of Event objects, and you express different actions by creating different Event
subclasses.

This is where inner classes come into play. They allow two things:

1. To express the entire implementation of a control-framework application in a single
class, thereby encapsulating everything that’s unique about that implementation. Inner
classes are used to express the many different kinds of action( ) necessary to solve the
problem. In addition, the following example uses private inner classes so the
implementation is completely hidden and can be changed with impunity.

2. Inner classes keep this implementation from becoming awkward, since you’re able to
easily access any of the members in the outer class. Without this ability the code might
become unpleasant enough that you’d end up seeking an alternative.

Consider a particular implementation of the control framework designed to control
greenhouse functions.4 Each action is entirely different: turning lights, water, and
thermostats on and off, ringing bells, and restarting the system. But the control framework
is designed to easily isolate this different code. For each type of action you inherit a new
Event inner class, and write the control code inside of action( ).

As is typical with an application framework, the class GreenhouseControls is inherited
from Controller:

//: GreenhouseControls.java
// This produces a specific application of the
// control system, all in a single class. Inner
// classes allow you to encapsulate different
// functionality for each type of event.
package c07.controller;

public class GreenhouseControls
    extends Controller {
  private boolean light = false;
  private boolean water = false;
  private String thermostat = "Day";
  private class LightOn extends Event {
    public LightOn(long eventTime) {
      super(eventTime);
    }
    public void action() {
      // Put hardware control code here to
      // physically turn on the light.
      light = true;

                                                

4 For some reason this has always been a pleasing problem for me to solve; it came from C++ Inside &
Out, but Java allows a much more elegant solution.



Chapter 7: Polymorphism 251

    }
    public String description() {
      return "Light is on";
    }
  }
  private class LightOff extends Event {
    public LightOff(long eventTime) {
      super(eventTime);
    }
    public void action() {
      // Put hardware control code here to
      // physically turn off the light.
      light = false;
    }
    public String description() {
      return "Light is off";
    }
  }
  private class WaterOn extends Event {
    public WaterOn(long eventTime) {
      super(eventTime);
    }
    public void action() {
      // Put hardware control code here
      water = true;
    }
    public String description() {
      return "Greenhouse water is on";
    }
  }
  private class WaterOff extends Event {
    public WaterOff(long eventTime) {
      super(eventTime);
    }
    public void action() {
      // Put hardware control code here
      water = false;
    }
    public String description() {
      return "Greenhouse water is off";
    }
  }
  private class ThermostatNight extends Event {
    public ThermostatNight(long eventTime) {
      super(eventTime);
    }
    public void action() {
      // Put hardware control code here
      thermostat = "Night";
    }
    public String description() {
      return "Thermostat on night setting";
    }
  }



252 Thinking in Java  www.BruceEckel.com

  private class ThermostatDay extends Event {
    public ThermostatDay(long eventTime) {
      super(eventTime);
    }
    public void action() {
      // Put hardware control code here
      thermostat = "Day";
    }
    public String description() {
      return "Thermostat on day setting";
    }
  }
  // An example of an action() that inserts a
  // new one of itself into the event list:
  private int rings;
  private class Bell extends Event {
    public Bell(long eventTime) {
      super(eventTime);
    }
    public void action() {
      // Ring bell every 2 seconds, rings times:
      System.out.println("Bing!");
      if(--rings > 0)
        addEvent(new Bell(
          System.currentTimeMillis() + 2000));
    }
    public String description() {
      return "Ring bell";
    }
  }
  private class Restart extends Event {
    public Restart(long eventTime) {
      super(eventTime);
    }
    public void action() {
      long tm = System.currentTimeMillis();
      // Instead of hard-wiring, you could parse
      // configuration information from a text
      // file here:
      rings = 5;
      addEvent(new ThermostatNight(tm));
      addEvent(new LightOn(tm + 1000));
      addEvent(new LightOff(tm + 2000));
      addEvent(new WaterOn(tm + 3000));
      addEvent(new WaterOff(tm + 8000));
      addEvent(new Bell(tm + 9000));
      addEvent(new ThermostatDay(tm + 10000));
      // Can even add a Restart object!
      addEvent(new Restart(tm + 20000));
    }
    public String description() {
      return "Restarting system";
    }
  }



Chapter 7: Polymorphism 253

  public static void main(String[] args) {
    GreenhouseControls gc =
      new GreenhouseControls();
    long tm = System.currentTimeMillis();
    gc.addEvent(gc.new Restart(tm));
    gc.run();
  }
} ///:~

Note that light, water, thermostat, and rings all belong to the outer class
GreenhouseControls, and yet the inner classes have no problem accessing those fields. Also,
most of the action( ) methods also involve some sort of hardware control, which would
most likely involve calls to non-Java code.

Most of the Event classes look similar, but Bell and Restart are special. Bell rings, and if it
hasn’t yet rung enough times it adds a new Bell object to the event list, so it will ring again
later. Notice how inner classes almost look like multiple inheritance: Bell has all the methods
of Event and it also appears to have all the methods of the outer class GreenhouseControls.

Restart is responsible for initializing the system, so it adds all the appropriate events. Of
course, a more flexible way to accomplish this is to avoid hard-coding the events and instead
read them from a file. (An exercise in Chapter 10 asks you to modify this example to do just
that.) Since Restart( ) is just another Event object, you can also add a Restart object within
Restart.action( ) so that the system regularly restarts itself. And all you need to do in
main( ) is create a GreenhouseControls object and add a Restart object to get it going.

This example should move you a long way toward appreciating the value of inner classes,
especially when used within a control framework. However, in the latter half of Chapter 13
you’ll see how elegantly inner classes are used to describe the actions of a graphical user
interface. By the time you finish that section you should be fully convinced.

Constructors and polymorphism
As usual, constructors are different from other kinds of methods. This is also true when
polymorphism is involved. Even though constructors are not polymorphic (although you
can have a kind of “virtual constructor,” as you will see in Chapter 11), it’s important to
understand the way constructors work in complex hierarchies and with polymorphism. This
understanding will help you avoid unpleasant entanglements.

Order of constructor calls
The order of constructor calls was briefly discussed in Chapter 4, but that was before
inheritance and polymorphism were introduced.

A constructor for the base class is always called in the constructor for a derived class,
chaining upward so that a constructor for every base class is called. This makes sense
because the constructor has a special job: to see that the object is built properly. A derived
class has access to its own members only, and not to those of the base class (whose members
are typically private). Only the base-class constructor has the proper knowledge and access
to initialize its own elements. Therefore, it’s essential that all constructors get called,
otherwise the entire object wouldn’t be constructed properly. That’s why the compiler
enforces a constructor call for every portion of a derived class. It will silently call the default
constructor if you don’t explicitly call a base-class constructor in the derived-class



254 Thinking in Java  www.BruceEckel.com

constructor body. If there is no default constructor, the compiler will complain. (In the case
where a class has no constructors, the compiler will automatically synthesize a default
constructor.)

Let’s take a look at an example that shows the effects of composition, inheritance, and
polymorphism on the order of construction:

//: Sandwich.java
// Order of constructor calls

class Meal {
  Meal() { System.out.println("Meal()"); }
}

class Bread {
  Bread() { System.out.println("Bread()"); }
}

class Cheese {
  Cheese() { System.out.println("Cheese()"); }
}

class Lettuce {
  Lettuce() { System.out.println("Lettuce()"); }
}

class Lunch extends Meal {
  Lunch() { System.out.println("Lunch()");}
}

class PortableLunch extends Lunch {
  PortableLunch() {
    System.out.println("PortableLunch()");
  }
}

class Sandwich extends PortableLunch {
  Bread b = new Bread();
  Cheese c = new Cheese();
  Lettuce l = new Lettuce();
  Sandwich() {
    System.out.println("Sandwich()");
  }
  public static void main(String[] args) {
    new Sandwich();
  }
} ///:~

This example creates a complex class out of other classes, and each class has a constructor
that announces itself. The important class is Sandwich, which reflects three levels of
inheritance (four, if you count the implicit inheritance from Object) and three member
objects. When a Sandwich object is created in main( ), the output is:

Meal()



Chapter 7: Polymorphism 255

Lunch()
PortableLunch()
Bread()
Cheese()
Lettuce()
Sandwich()

This means that the order of constructor calls for a complex object is as follows:

1. The base-class constructor is called. This step is repeated recursively such that the root of
the hierarchy is constructed first, followed by the next-derived class, etc., until the most-
derived class is reached.

2. Member initializers are called in the order of declaration.

3. The body of the derived-class constructor is called.

The order of the constructor calls is important. When you inherit, you know all about the
base class and can access any public and protected members of the base class. This means
that you must be able to assume that all the members of the base class are valid when
you’re in the derived class. In a normal method, construction has already taken place, so all
the members of all parts of the object have been built. Inside the constructor, however, you
must be able to assume that all members that you use have been built. The only way to
guarantee this is for the base-class constructor to be called first. Then when you’re in the
derived-class constructor, all the members you can access in the base class have been
initialized. “Knowing that all members are valid” inside the constructor is also the reason
that, whenever possible, you should initialize all member objects (that is, objects placed in
the class using composition) at their point of definition in the class (e.g.: b, c, and l in the
example above). If you follow this practice, you will help ensure that all base class members
and member objects of the current object have been initialized. Unfortunately, this doesn’t
handle every case, as you will see in the next section.

Inheritance and ffinalize( )
When you use composition to create a new class, you never worry about finalizing the
member objects of that class. Each member is an independent object and thus is garbage
collected and finalized regardless of whether it happens to be a member of your class. With
inheritance, however, you must override finalize( ) in the derived class if you have any
special cleanup that must happen as part of garbage collection. When you override
finalize( ) in an inherited class, it’s important to remember to call the base-class version of
finalize( ), since otherwise the base-class finalization will not happen. The following
example proves this:

//: Frog.java
// Testing finalize with inheritance

class DoBaseFinalization {
  public static boolean flag = false;
}

class Characteristic {
  String s;
  Characteristic(String c) {
    s = c;



256 Thinking in Java  www.BruceEckel.com

    System.out.println(
      "Creating Characteristic " + s);
  }
  protected void finalize() {
    System.out.println(
      "finalizing Characteristic " + s);
  }
}

class LivingCreature {
  Characteristic p =
    new Characteristic("is alive");
  LivingCreature() {
    System.out.println("LivingCreature()");
  }
  protected void finalize() {
    System.out.println(
      "LivingCreature finalize");
    // Call base-class version LAST!
    if(DoBaseFinalization.flag)
      try {
        super.finalize();
      } catch(Throwable t) {}
  }
}

class Animal extends LivingCreature {
  Characteristic p =
    new Characteristic("has heart");
  Animal() {
    System.out.println("Animal()");
  }
  protected void finalize() {
    System.out.println("Animal finalize");
    if(DoBaseFinalization.flag)
      try {
        super.finalize();
      } catch(Throwable t) {}
  }
}

class Amphibian extends Animal {
  Characteristic p =
    new Characteristic("can live in water");
  Amphibian() {
    System.out.println("Amphibian()");
  }
  protected void finalize() {
    System.out.println("Amphibian finalize");
    if(DoBaseFinalization.flag)
      try {
        super.finalize();
      } catch(Throwable t) {}
  }



Chapter 7: Polymorphism 257

}

public class Frog extends Amphibian {
  Frog() {
    System.out.println("Frog()");
  }
  protected void finalize() {
    System.out.println("Frog finalize");
    if(DoBaseFinalization.flag)
      try {
        super.finalize();
      } catch(Throwable t) {}
  }
  public static void main(String[] args) {
    if(args.length != 0 &&
       args[0].equals("finalize"))
       DoBaseFinalization.flag = true;
    else
      System.out.println("not finalizing bases");
    new Frog(); // Instantly becomes garbage
    System.out.println("bye!");
    // Must do this to guarantee that all
    // finalizers will be called:
    System.runFinalizersOnExit(true);
  }
} ///:~

The class DoBaseFinalization simply holds a flag that indicates to each class in the
hierarchy whether to call super.finalize( ). This flag is set based on a command-line
argument, so you can view the behavior with and without base-class finalization.

Each class in the hierarchy also contains a member object of class Characteristic. You will
see that regardless of whether the base class finalizers are called, the Characteristic member
objects are always finalized.

Each overridden finalize( ) must have access to at least protected members since the
finalize( ) method in class Object is protected and the compiler will not allow you to
reduce the access during inheritance. (“Friendly” is less accessible than protected.)

In Frog.main( ), the DoBaseFinalization flag is configured and a single Frog object is
created. Remember that garbage collection and in particular finalization might not happen
for any particular object so to enforce this, System.runFinalizersOnExit(true) adds the
extra overhead to guarantee that finalization takes place. Without base-class finalization, the
output is:

not finalizing bases
Creating Characteristic is alive
LivingCreature()
Creating Characteristic has heart
Animal()
Creating Characteristic can live in water
Amphibian()
Frog()
bye!
Frog finalize



258 Thinking in Java  www.BruceEckel.com

finalizing Characteristic is alive
finalizing Characteristic has heart
finalizing Characteristic can live in water

You can see that, indeed, no finalizers are called for the base classes of Frog. But if you add
the “finalize” argument on the command line, you get:

Creating Characteristic is alive
LivingCreature()
Creating Characteristic has heart
Animal()
Creating Characteristic can live in water
Amphibian()
Frog()
bye!
Frog finalize
Amphibian finalize
Animal finalize
LivingCreature finalize
finalizing Characteristic is alive
finalizing Characteristic has heart
finalizing Characteristic can live in water

Although the order the member objects are finalized is the same order that they are created,
technically the order of finalization of objects is unspecified. With base classes, however, you
have control over the order of finalization. The best order to use is the one that’s shown
here, which is the reverse of the order of initialization. Following the form that’s used in
C++ for destructors, you should perform the derived-class finalization first, then the base-
class finalization. That’s because the derived-class finalization could call some methods in the
base class that require that the base-class components are still alive, so you must not destroy
them prematurely.

Behavior of polymorphic methods
inside constructors

The hierarchy of constructor calls brings up an interesting dilemma. What happens if you’re
inside a constructor and you call a dynamically-bound method of the object being
constructed? Inside an ordinary method you can imagine what will happen – the
dynamically-bound call is resolved at run-time because the object cannot know whether it
belongs to the class the method is in or some class derived from it. For consistency, you
might think this is what should happen inside constructors.

This is not exactly the case. If you call a dynamically-bound method inside a constructor, the
overridden definition for that method is used. However, the effect can be rather unexpected,
and can conceal some difficult-to-find bugs.

Conceptually, the constructor’s job is to bring the object into existence (which is hardly an
ordinary feat). Inside any constructor, the entire object might be only partially formed – you
can know only that the base-class objects have been initialized, but you cannot know which
classes are inherited from you. A dynamically-bound method call, however, reaches
“forward” or “outward” into the inheritance hierarchy. It calls a method in a derived class. If
you do this inside a constructor, you call a method that might manipulate members that
haven’t been initialized yet – a sure recipe for disaster.



Chapter 7: Polymorphism 259

You can see the problem in the following example:

//: PolyConstructors.java
// Constructors and polymorphism
// don't produce what you might expect.

abstract class Glyph {
  abstract void draw();
  Glyph() {
    System.out.println("Glyph() before draw()");
    draw();
    System.out.println("Glyph() after draw()");
  }
}

class RoundGlyph extends Glyph {
  int radius = 1;
  RoundGlyph(int r) {
    radius = r;
    System.out.println(
      "RoundGlyph.RoundGlyph(), radius = "
      + radius);
  }
  void draw() {
    System.out.println(
      "RoundGlyph.draw(), radius = " + radius);
  }
}

public class PolyConstructors {
  public static void main(String[] args) {
    new RoundGlyph(5);
  }
} ///:~

In Glyph, the draw( ) method is abstract, so it is designed to be overridden. Indeed, you are
forced to override it in RoundGlyph. But the Glyph constructor calls this method, and the
call ends up in RoundGlyph.draw( ), which would seem to be the intent. But look at the
output:

Glyph() before draw()
RoundGlyph.draw(), radius = 0
Glyph() after draw()
RoundGlyph.RoundGlyph(), radius = 5

When Glyph’s constructor calls draw( ), the value of radius isn’t even the default initial
value 1. It’s zero. This would probably result in either a dot or nothing at all being drawn on
the screen, and you’d be staring, trying to figure out why the program won’t work.

The order of initialization described in the previous section isn’t quite complete, and that’s
the key to solving the mystery. The actual process of initialization is:

1. The storage allocated for the object is initialized to binary zero before anything else
happens.



260 Thinking in Java  www.BruceEckel.com

2. The base-class constructors are called as described previously. At this point, the
overridden draw( ) method is called, (yes, before the RoundGlyph constructor is called),
which discovers a radius value of zero, due to step 1.

3. Member initializers are called in the order of declaration.

4. The body of the derived-class constructor is called.

There’s an upside to this, which is that everything is at least initialized to zero (or whatever
zero means for that particular data type) and not just left as garbage. This includes object
handles that are embedded inside a class via composition. So if you forget to initialize that
handle you’ll get an exception at run time. Everything else gets zero, which is usually a
telltale value when looking at output.

On the other hand, you should be pretty horrified at the outcome of this program. You’ve
done a perfectly logical thing and yet the behavior is mysteriously wrong, with no
complaints from the compiler. (C++ produces more rational behavior in this situation.) Bugs
like this could easily be buried and take a long time to discover.

As a result, a good guideline for constructors is, “Do as little as possible to set the object into
a good state, and if you can possibly avoid it, don’t call any methods.” The only safe
methods to call inside a constructor are those that are final in the base class. (This also
applies to private methods, which are automatically final.) These cannot be overridden and
thus cannot produce this kind of surprise.

Designing with inheritance
Once you learn about polymorphism, it can seem that everything ought to be inherited
because polymorphism is such a clever tool. This can burden your designs; in fact if you
choose inheritance first when you’re using an existing class to make a new class things can
become needlessly complicated.

A better approach is to choose composition first, when it’s not obvious which one you
should use. Composition does not force a design into an inheritance hierarchy. But
composition is also more flexible since it’s possible to dynamically choose a type (and thus
behavior) when using composition, whereas inheritance requires an exact type to be known
at compile time. The following example illustrates this:

//: Transmogrify.java
// Dynamically changing the behavior of
// an object via composition.

interface Actor {
  void act();
}

class HappyActor implements Actor {
  public void act() {
    System.out.println("HappyActor");
  }
}

class SadActor implements Actor {
  public void act() {



Chapter 7: Polymorphism 261

    System.out.println("SadActor");
  }
}

class Stage {
  Actor a = new HappyActor();
  void change() { a = new SadActor(); }
  void go() { a.act(); }
}

public class Transmogrify {
  public static void main(String[] args) {
    Stage s = new Stage();
    s.go(); // Prints "HappyActor"
    s.change();
    s.go(); // Prints "SadActor"
  }
} ///:~

A Stage object contains a handle to an Actor, which is initialized to a HappyActor object.
This means go( ) produces a particular behavior. But since a handle can be re-bound to a
different object at run time, a handle for a SadActor object can be substituted in a and then
the behavior produced by go( ) changes. Thus you gain dynamic flexibility at run time. In
contrast, you can’t decide to inherit differently at run time; that must be completely
determined at compile time.

A general guideline is “Use inheritance to express differences in behavior, and member
variables to express variations in state.” In the above example, both are used: two different
classes are inherited to express the difference in the act( ) method, and Stage uses
composition to allow its state to be changed. In this case, that change in state happens to
produce a change in behavior.

Pure inheritance vs. extension
When studying inheritance, it would seem that the cleanest way to create an inheritance
hierarchy is to take the “pure” approach. That is, only methods that have been established in
the base class or interface are to be overridden in the derived class, as seen in this diagram:

Shape
draw()
erase()

Circle
draw()
erase()

Square
draw()
erase()

Line
draw()
erase()



262 Thinking in Java  www.BruceEckel.com

This can be termed a pure “is-a” relationship because the interface of a class establishes what
it is. Inheritance guarantees that any derived class will have the interface of the base class
and nothing less. If you follow the above diagram, derived classes will also have no more
than the base class interface.

This can be thought of as pure substitution, because derived class objects can be perfectly
substituted for the base class, and you never need to know any extra information about the
subclasses when you’re using them:

That is, the base class can receive any message you can send to the derived class because the
two have exactly the same interface. All you need to do is upcast from the derived class and
never look back to see what exact type of object you’re dealing with. Everything is handled
through polymorphism.

When you see it this way, it seems like a pure “is-a” relationship is the only sensible way to
do things, and any other design indicates muddled thinking and is by definition broken. This
too is a trap. As soon as you start thinking this way, you’ll turn around and discover that
extending the interface (which, unfortunately, the keyword extends seems to promote) is the
perfect solution to a particular problem. This could be termed an “is-like-a” relationship
because the derived class is like the base class – it has the same fundamental interface – but it
has other features that require additional methods to implement:

“Is a”

Talks to
Shape

Circle, Square,
Line, or new
type of Shape

message



Chapter 7: Polymorphism 263

While this is also a useful and sensible approach (depending on the situation) it has a
drawback. The extended part of the interface in the derived class is not available from the
base class, so once you upcast you can’t call the new methods:

If you’re not upcasting in this case, it won’t bother you, but often you’ll get into a situation
in which you need to rediscover the exact type of the object so you can access the extended
methods of that type. The following sections show how this is done.

Downcasting and run-time
type identification

Since you lose the specific type information via an upcast (moving up the inheritance
hierarchy), it makes sense that to retrieve the type information – that is, to move back down
the inheritance hierarchy – you use a downcast. However, you know an upcast is always
safe; the base class cannot have a bigger interface than the derived class, therefore every
message you send through the base class interface is guaranteed to be accepted. But with a
downcast, you don’t really know that a shape (for example) is actually a circle. It could
instead be a triangle or square or some other type.

Talks to
Useful
object

Useful part

MoreUseful part
message

Useful

void f()
void g()

MoreUseful

void f()
void g()

void u()
void v()
void w()

Assume this
represents a
big interface

Extending the
interface

}

}
“Is like a”



264 Thinking in Java  www.BruceEckel.com

To solve this problem there must be some way to guarantee that a downcast is correct, so
you won’t accidentally cast to the wrong type and then send a message that the object can’t
accept. This would be quite unsafe.

In some languages (like C++) you must perform a special operation in order to get a type-
safe downcast, but in Java every cast is checked! So even though it looks like you’re just
performing an ordinary parenthesized cast, at run time this cast is checked to ensure that it
is in fact the type you think it is. If it isn’t, you get a ClassCastException. This act of
checking types at run time is called run-time type identification (RTTI). The following example
demonstrates the behavior of RTTI:

//: RTTI.java
// Downcasting & Run-Time Type
// Identification (RTTI)
import java.util.*;

class Useful {
  public void f() {}
  public void g() {}
}

class MoreUseful extends Useful {
  public void f() {}
  public void g() {}
  public void u() {}
  public void v() {}
  public void w() {}
}

public class RTTI {
  public static void main(String[] args) {
    Useful[] x = {
      new Useful(),
      new MoreUseful()
    };
    x[0].f();
    x[1].g();
    // Compile-time: method not found in Useful:
    //! x[1].u();

Useful

void f()
void g()

MoreUseful

void f()
void g()

void u()
void v()
void w()

Upcast:
always
safe

Downcast:
must be
checked



Chapter 7: Polymorphism 265

    ((MoreUseful)x[1]).u(); // Downcast/RTTI
    ((MoreUseful)x[0]).u(); // Exception thrown
  }
} ///:~

As in the diagram, MoreUseful extends the interface of Useful. But since it’s inherited, it
can also be upcast to a Useful. You can see this happening in the initialization of the array x
in main( ). Since both objects in the array are of class Useful, you can send the f( ) and g( )
methods to both, and if you try to call u( ) (which exists only in MoreUseful) you’ll get a
compile-time error message.

If you want to access the extended interface of a MoreUseful object, you can try to
downcast. If it’s the correct type, it will be successful. Otherwise, you’ll get a
ClassCastException. You don’t need to write any special code for this exception, since it
indicates a programmer error that could happen anywhere in a program.

There’s more to RTTI than a simple cast. For example, there’s a way to see what type you’re
dealing with before you try to downcast it. All of Chapter 11 is devoted to the study of
different aspects of Java run-time type identification.

Summary
Polymorphism means “different forms.” In object-oriented programming, you have the same
face (the common interface in the base class) and different forms using that face: the
different versions of the dynamically-bound methods.

You’ve seen in this chapter that it’s impossible to understand, or even create, an example of
polymorphism without using data abstraction and inheritance. Polymorphism is a feature
that cannot be viewed in isolation (like a switch statement, for example), but instead works
only in concert, as part of a “big picture” of class relationships. People are often confused by
other, non-object-oriented features of Java, like method overloading, which are sometimes
presented as object-oriented. Don’t be fooled: If it isn’t late binding, it isn’t polymorphism.

To use polymorphism, and thus object-oriented techniques, effectively in your programs you
must expand your view of programming to include not just members and messages of an
individual class, but also the commonality among classes and their relationships with each
other. Although this requires significant effort, it’s a worthy struggle, because the results are
faster program development, better code organization, extensible programs, and easier code
maintenance.

Exercises
 1.  Create an inheritance hierarchy of Rodent: Mouse, Gerbil, Hamster, etc. In the base

class, provide methods that are common to all Rodents, and override these in the derived
classes to perform different behaviors depending on the specific type of Rodent. Create an
array of Rodent, fill it with different specific types of Rodents, and call your base-class
methods to see what happens.

 2.  Change Exercise 1 so that Rodent is an interface.

 3.  Repair the problem in WindError.java.



266 Thinking in Java  www.BruceEckel.com

 4.  In GreenhouseControls.java, add Event inner classes that turn fans on and off.



267

7

8: Holding
your objects

It’s a fairly simple program that has only a fixed quantity of objects with
known lifetimes.
In general, your programs will always be creating new objects based on some criteria that
will be known only at the time the program is running. You won’t know until run-time the
quantity or even the exact type of the objects you need. To solve the general programming
problem, you need to create any number of objects, anytime, anywhere. So you can’t rely on
creating a named handle to hold each one of your objects:

MyObject myHandle;

since you’ll never know how many of these things you’ll actually need.

To solve this rather essential problem, Java has several ways to hold objects (or rather,
handles to objects). The built-in type is the array, which has been discussed before and will
get additional coverage in this chapter. Also, the Java utilities library has some collection
classes (also known as container classes, but that term is used by the AWT so “collection” will
be used here) that provide more sophisticated ways to hold and even manipulate your
objects. This will comprise the remainder of this chapter.

Arrays
Most of the necessary introduction to arrays is in the last section of Chapter 4, which shows
how you define and initialize an array. Holding objects is the focus of this chapter, and an



268 Thinking in Java  www.BruceEckel.com

array is just one way to hold objects. But there are a number of other ways to hold objects,
so what makes an array special?

There are two issues that distinguish arrays from other types of collections: efficiency and
type. The array is the most efficient way that Java provides to store and access a sequence of
objects (actually, object handles). The array is a simple linear sequence, which makes element
access fast, but you pay for this speed: when you create an array object, its size is fixed and
cannot be changed for the lifetime of that array object. You might suggest creating an array
of a particular size and then, if you run out of space, creating a new one and moving all the
handles from the old one to the new one. This is the behavior of the Vector class, which will
be studied later in the chapter. However, because of the overhead of this size flexibility, a
Vector is measurably less efficient than an array.

The vector class in C++ does know the type of objects it holds, but it has a different
drawback when compared with arrays in Java: the C++ vector’s operator[] doesn’t do
bounds checking, so you can run past the end. (It’s possible, however, to ask how big the
vector is, and the at( ) method does perform bounds checking.) In Java, you get bounds
checking regardless of whether you’re using an array or a collection – you’ll get a
RuntimeException if you exceed the bounds. As you’ll learn in Chapter 9, this type of
exception indicates a programmer error and thus you don’t need to check for it in your code.
As an aside, the reason the C++ vector doesn’t check bounds with every access is speed – in
Java you have the constant performance overhead of bounds checking all the time for both
arrays and collections.

The other generic collection classes that will be studied in this chapter, Vector, Stack, and
Hashtable, all deal with objects as if they had no specific type. That is, they treat them as
type Object, the root class of all classes in Java. This works fine from one standpoint: you
need to build only one collection, and any Java object will go into that collection. (Except for
primitives – these can be placed in collections as constants using the Java primitive wrapper
classes, or as changeable values by wrapping in your own class.) This is the second place
where an array is superior to the generic collections: when you create an array, you create it
to hold a specific type. This means that you get compile-time type checking to prevent you
from putting the wrong type in, or mistaking the type that you’re extracting. Of course,
Java will prevent you from sending an inappropriate message to an object, either at compile-
time or at run-time. So it’s not as if it’s riskier one way or the other, it’s just nicer if the
compiler points it out to you, faster at run-time, and there’s less likelihood that the end user
will get surprised by an exception.

For efficiency and type checking it’s always worth trying to use an array if you can.
However, when you’re trying to solve a more general problem arrays can be too restrictive.
After looking at arrays, the rest of this chapter will be devoted to the collection classes
provided by Java.

Arrays are first-class objects
Regardless of what type of array you’re working with, the array identifier is actually a
handle to a true object that’s created on the heap. The heap object can be created either
implicitly, as part of the array initialization syntax, or explicitly with a new expression. Part
of the heap object (in fact, the only field or method you can access) is the read-only length
member that tells you how many elements can be stored in that array object. The ‘[]’ syntax
is the only other access that you have to the array object.

The following example shows the various ways that an array can be initialized, and how the
array handles can be assigned to different array objects. It also shows that arrays of objects



Chapter 8: Holding Your Objects 269

and arrays of primitives are almost identical in their use. The only difference is that arrays
of objects hold handles while arrays of primitives hold the primitive values directly. (See page
94 if you have trouble executing this program.)

//: ArraySize.java
// Initialization & re-assignment of arrays
package c08;

class Weeble {} // A small mythical creature

public class ArraySize {
  public static void main(String[] args) {
    // Arrays of objects:
    Weeble[] a; // Null handle
    Weeble[] b = new Weeble[5]; // Null handles
    Weeble[] c = new Weeble[4];
    for(int i = 0; i < c.length; i++)
      c[i] = new Weeble();
    Weeble[] d = {
      new Weeble(), new Weeble(), new Weeble()
    };
    // Compile error: variable a not initialized:
    //!System.out.println("a.length=" + a.length);
    System.out.println("b.length = " + b.length);
    // The handles inside the array are
    // automatically initialized to null:
    for(int i = 0; i < b.length; i++)
      System.out.println("b[" + i + "]=" + b[i]);
    System.out.println("c.length = " + c.length);
    System.out.println("d.length = " + d.length);
    a = d;
    System.out.println("a.length = " + a.length);
    // Java 1.1 initialization syntax:
    a = new Weeble[] {
      new Weeble(), new Weeble()
    };
    System.out.println("a.length = " + a.length);

    // Arrays of primitives:
    int[] e; // Null handle
    int[] f = new int[5];
    int[] g = new int[4];
    for(int i = 0; i < g.length; i++)
      g[i] = i*i;
    int[] h = { 11, 47, 93 };
    // Compile error: variable e not initialized:
    //!System.out.println("e.length=" + e.length);
    System.out.println("f.length = " + f.length);
    // The primitives inside the array are
    // automatically initialized to zero:
    for(int i = 0; i < f.length; i++)
      System.out.println("f[" + i + "]=" + f[i]);
    System.out.println("g.length = " + g.length);
    System.out.println("h.length = " + h.length);



270 Thinking in Java  www.BruceEckel.com

    e = h;
    System.out.println("e.length = " + e.length);
    // Java 1.1 initialization syntax:
    e = new int[] { 1, 2 };
    System.out.println("e.length = " + e.length);
  }
} ///:~

Here’s the output from the program:

b.length = 5
b[0]=null
b[1]=null
b[2]=null
b[3]=null
b[4]=null
c.length = 4
d.length = 3
a.length = 3
a.length = 2
f.length = 5
f[0]=0
f[1]=0
f[2]=0
f[3]=0
f[4]=0
g.length = 4
h.length = 3
e.length = 3
e.length = 2

The array a is initially just a null handle, and the compiler prevents you from doing
anything with this handle until you’ve properly initialized it. The array b is initialized to
point to an array of Weeble handles, but no actual Weeble objects are ever placed in that
array. However, you can still ask what the size of the array is, since b is pointing to a
legitimate object. This brings up a slight drawback: you can’t find out how many elements
are actually in the array, since length tells you only how many elements can be placed in the
array; that is, the size of the array object, not the number of elements it actually holds.
However, when an array object is created its handles are automatically initialized to null so
you can see whether a particular array slot has an object in it by checking to see whether it’s
null. Similarly, an array of primitives is automatically initialized to zero for numeric types,
null for char, and false for boolean.

Array c shows the creation of the array object followed by the assignment of Weeble objects
to all the slots in the array. Array d shows the “aggregate initialization” syntax that causes
the array object to be created (implicitly with new on the heap, just like for array c) and
initialized with Weeble objects, all in one statement.

The expression

a = d;

shows how you can take a handle that’s attached to one array object and assign it to
another array object, just as you can do with any other type of object handle. Now both a
and d are pointing to the same array object on the heap.



Chapter 8: Holding Your Objects 271

Java 1.1 adds a new array initialization syntax, which could be thought of as a “dynamic
aggregate initialization.” The Java 1.0 aggregate initialization used by d must be used at the
point of d’s definition, but with the Java 1.1 syntax you can create and initialize an array
object anywhere. For example, suppose hide( ) is a method that takes an array of Weeble
objects. You could call it by saying:

hide(d);

but in Java 1.1 you can also dynamically create the array you want to pass as the
argument:

hide(new Weeble[] { new Weeble(), new Weeble() });

This new syntax provides a more convenient way to write code in some situations.

The second part of the above example shows that primitive arrays work just like object
arrays except that primitive arrays hold the primitive values directly.

Collections of primitives
Collection classes can hold only handles to objects. An array, however, can be created to hold
primitives directly, as well as handles to objects. It is possible to use the “wrapper” classes
such as Integer, Double, etc. to place primitive values inside a collection, but as you’ll see
later in this chapter in the WordCount.java example, the wrapper classes for primitives are
only somewhat useful anyway. Whether you put primitives in arrays or wrap them in a
class that’s placed in a collection is a question of efficiency. It’s much more efficient to create
and access an array of primitives than a collection of wrapped primitives.

Of course, if you’re using a primitive type and you need the flexibility of a collection that
automatically expands when more space is needed, the array won’t work and you’re forced
to use a collection of wrapped primitives. You might think that there should be a specialized
type of Vector for each of the primitive data types, but Java doesn’t provide this for you.
Some sort of templatizing mechanism might someday provide a better way for Java to
handle this problem.1

Returning an array
Suppose you’re writing a method and you don’t just want to return one thing, but a whole
bunch of things. Languages like C and C++ make this difficult because you can’t just return
an array, only a pointer to an array. This introduces problems because it becomes messy to
control the lifetime of the array, which easily leads to memory leaks.

Java takes a similar approach, but you just “return an array.” Actually, of course, you’re
returning a handle to an array, but with Java you never worry about responsibility for that
array – it will be around as long as you need it, and the garbage collector will clean it up
when you’re done.

As an example, consider returning an array of String:

//: IceCream.java
// Returning arrays from methods

                                                

1 This is one of the places where C++ is distinctly superior to Java, since C++ supports parameterized
types with the template keyword.



272 Thinking in Java  www.BruceEckel.com

public class IceCream {
  static String[] flav = {
    "Chocolate", "Strawberry",
    "Vanilla Fudge Swirl", "Mint Chip",
    "Mocha Almond Fudge", "Rum Raisin",
    "Praline Cream", "Mud Pie"
  };
  static String[] flavorSet(int n) {
    // Force it to be positive & within bounds:
    n = Math.abs(n) % (flav.length + 1);
    String[] results = new String[n];
    int[] picks = new int[n];
    for(int i = 0; i < picks.length; i++)
      picks[i] = -1;
    for(int i = 0; i < picks.length; i++) {
      retry:
      while(true) {
        int t =
          (int)(Math.random() * flav.length);
        for(int j = 0; j < i; j++)
          if(picks[j] == t) continue retry;
        picks[i] = t;
        results[i] = flav[t];
        break;
      }
    }
    return results;
  }
  public static void main(String[] args) {
    for(int i = 0; i < 20; i++) {
      System.out.println(
        "flavorSet(" + i + ") = ");
      String[] fl = flavorSet(flav.length);
      for(int j = 0; j < fl.length; j++)
        System.out.println("\t" + fl[j]);
    }
  }
} ///:~

The method flavorSet( ) creates an array of String called results. The size of this array is n,
determined by the argument you pass into the method. Then it proceeds to choose flavors
randomly from the array flav and place them into results, which it finally returns.
Returning an array is just like returning any other object – it’s a handle. It’s not important
that the array was created within flavorSet( ), or that the array was created anyplace else,
for that matter. The garbage collector takes care of cleaning up the array when you’re done
with it, and the array will persist for as long as you need it.

As an aside, notice that when flavorSet( ) chooses flavors randomly, it ensures that a
random choice hasn’t been picked before. This is performed in a seemingly infinite while
loop that keeps making random choices until it finds one that’s not already in the picks
array. (Of course, a String comparison could also have been performed to see if the random
choice was already in the results array, but String comparisons are inefficient.) If it’s
successful it adds the entry and breaks out to go find the next one (i gets incremented). But



Chapter 8: Holding Your Objects 273

if t is a number that’s already in picks, then a labeled continue is used to jump back two
levels, which forces a new t to be selected. It’s particularly convincing to watch this happen
with a debugger.

main( ) prints out 20 full sets of flavors, so you can see that flavorSet( ) chooses the flavors
in a random order each time. It’s easiest to see this if you redirect the output into a file. And
while you’re looking at the file, remember, you’re not really hungry. (You just want the ice
cream, you don’t need it.)

Collections
To summarize what we’ve seen so far, your first, most efficient choice to hold a group of
objects should be an array, and you’re forced into this choice if you want to hold a group of
primitives. In the remainder of the chapter we’ll look at the more general case, when you
don’t know at the time you’re writing the program how many objects you’re going to need,
or if you need a more sophisticated way to store your objects. Java provides four types of
collection classes to solve this problem: Vector, BitSet, Stack, and Hashtable. Although
compared to other languages that provide collections this is a fairly meager supply, you can
nonetheless solve a surprising number of problems using these tools.

Among their other characteristics – Stack, for example, implements a LIFO (last-in, first-out)
sequence, and Hashtable is an associative array that lets you associate any object with any
other object – the Java collection classes will automatically resize themselves. Thus, you can
put in any number of objects and you don’t need to worry about how big to make the
collection while you’re writing the program.

Disadvantage: unknown type
The “disadvantage” to using the Java collections is that you lose type information when you
put an object into a collection. This happens because, when the collection was written, the
programmer of that collection had no idea what specific type you wanted to put in the
collection, and making the collection hold only your type would prevent it from being a
general-purpose tool. So instead, the collection holds handles to objects of type Object,
which is of course every object in Java, since it’s the root of all the classes. (Of course, this
doesn’t include primitive types, since they aren’t inherited from anything.) This is a great
solution, except for these reasons:

1. Since the type information is thrown away when you put an object handle into a
collection, any type of object can be put into your collection, even if you mean it to hold
only, say, cats. Someone could just as easily put a dog into the collection.

2. Since the type information is lost, the only thing the collection knows it holds is a handle
to an Object. You must perform a cast to the correct type before you use it.

On the up side, Java won’t let you misuse the objects that you put into a collection. If you
throw a dog into a collection of cats, then go through and try to treat everything in the
collection as a cat, you’ll get an exception when you get to the dog. In the same vein, if you
try to cast the dog handle that you pull out of the cat collection into a cat, you’ll get an
exception at run-time.

Here’s an example:

//: CatsAndDogs.java



274 Thinking in Java  www.BruceEckel.com

// Simple collection example (Vector)
import java.util.*;

class Cat {
  private int catNumber;
  Cat(int i) {
    catNumber = i;
  }
  void print() {
    System.out.println("Cat #" + catNumber);
  }
}

class Dog {
  private int dogNumber;
  Dog(int i) {
    dogNumber = i;
  }
  void print() {
    System.out.println("Dog #" + dogNumber);
  }
}

public class CatsAndDogs {
  public static void main(String[] args) {
    Vector cats = new Vector();
    for(int i = 0; i < 7; i++)
      cats.addElement(new Cat(i));
    // Not a problem to add a dog to cats:
    cats.addElement(new Dog(7));
    for(int i = 0; i < cats.size(); i++)
      ((Cat)cats.elementAt(i)).print();
    // Dog is detected only at run-time
  }
} ///:~

You can see that using a Vector is straightforward: create one, put objects in using
addElement( ), and later get them out with elementAt( ). (Note that Vector has a method
size( ) to let you know how many elements have been added so you don’t inadvertently run
off the end and cause an exception.)

The classes Cat and Dog are distinct – they have nothing in common except that they are
Objects. (If you don’t explicitly say what class you’re inheriting from, you automatically
inherit from Object.) The Vector class, which comes from java.util, holds Objects, so not
only can you put Cat objects into this collection using the Vector method addElement( ),
but you can also add Dog objects without complaint at either compile-time or run-time.
When you go to fetch out what you think are Cat objects using the Vector method
elementAt( ), you get back a handle to an Object that you must cast to a Cat. Then you
need to surround the entire expression with parentheses to force the evaluation of the cast
before calling the print( ) method for Cat, otherwise you’ll get a syntax error. Then, at run-
time, when you try to cast the Dog object to a Cat, you’ll get an exception.

This is more than just an annoyance. It’s something that can create some difficult-to-find
bugs. If one part (or several parts) of a program inserts objects into a collection, and you



Chapter 8: Holding Your Objects 275

discover only in a separate part of the program through an exception that a bad object was
placed in the collection, then you must find out where the bad insert occurred. You do this
by code inspection, which is about the worst debugging tool you have. On the upside, it’s
convenient to start with some standardized collection classes for programming, despite the
scarcity and awkwardness.

Sometimes it works right anyway
It turns out that in some cases things seem to work correctly without casting back to your
original type. The first case is quite special: the String class has some extra help from the
compiler to make it work smoothly. Whenever the compiler expects a String object and it
hasn’t got one, it will automatically call the toString( ) method that’s defined in Object and
can be overridden by any Java class. This method produces the desired String object, which
is then used wherever it was wanted.

Thus, all you need to do to make objects of your class print out is to override the toString( )
method, as shown in the following example:

//: WorksAnyway.java
// In special cases, things just seem
// to work correctly.
import java.util.*;

class Mouse {
  private int mouseNumber;
  Mouse(int i) {
    mouseNumber = i;
  }
  // Magic method:
  public String toString() {
    return "This is Mouse #" + mouseNumber;
  }
  void print(String msg) {
    if(msg != null) System.out.println(msg);
    System.out.println(
      "Mouse number " + mouseNumber);
  }
}

class MouseTrap {
  static void caughtYa(Object m) {
    Mouse mouse = (Mouse)m; // Cast from Object
    mouse.print("Caught one!");
  }
}

public class WorksAnyway {
  public static void main(String[] args) {
    Vector mice = new Vector();
    for(int i = 0; i < 3; i++)
      mice.addElement(new Mouse(i));
    for(int i = 0; i < mice.size(); i++) {
      // No cast necessary, automatic call
      // to Object.toString():



276 Thinking in Java  www.BruceEckel.com

      System.out.println(
        "Free mouse: " + mice.elementAt(i));
      MouseTrap.caughtYa(mice.elementAt(i));
    }
  }
} ///:~

You can see the redefinition of toString( ) in Mouse. In the second for loop in main( ) you
find the statement:

System.out.println("Free mouse: " + mice.elementAt(i));

After the ‘+’ sign the compiler expects to see a String object. elementAt( ) produces an
Object, so to get the desired String the compiler implicitly calls toString( ). Unfortunately,
you can work this kind of magic only with String; it isn’t available for any other type.

A second approach to hiding the cast has been placed inside Mousetrap. The caughtYa( )
method accepts not a Mouse, but an Object, which it then casts to a Mouse. This is quite
presumptuous, of course, since by accepting an Object anything could be passed to the
method. However, if the cast is incorrect – if you passed the wrong type – you’ll get an
exception at run-time. This is not as good as compile-time checking but it’s still robust. Note
that in the use of this method:

MouseTrap.caughtYa(mice.elementAt(i));

no cast is necessary.

Making a type-conscious VVector
You might not want to give up on this issue just yet. A more ironclad solution is to create a
new class using the Vector, such that it will accept only your type and produce only your
type:

//: GopherVector.java
// A type-conscious Vector
import java.util.*;

class Gopher {
  private int gopherNumber;
  Gopher(int i) {
    gopherNumber = i;
  }
  void print(String msg) {
    if(msg != null) System.out.println(msg);
    System.out.println(
      "Gopher number " + gopherNumber);
  }
}

class GopherTrap {
  static void caughtYa(Gopher g) {
    g.print("Caught one!");
  }
}



Chapter 8: Holding Your Objects 277

class GopherVector {
  private Vector v = new Vector();
  public void addElement(Gopher m) {
    v.addElement(m);
  }
  public Gopher elementAt(int index) {
    return (Gopher)v.elementAt(index);
  }
  public int size() { return v.size(); }
  public static void main(String[] args) {
    GopherVector gophers = new GopherVector();
    for(int i = 0; i < 3; i++)
      gophers.addElement(new Gopher(i));
    for(int i = 0; i < gophers.size(); i++)
      GopherTrap.caughtYa(gophers.elementAt(i));
  }
} ///:~

This is similar to the previous example, except that the new GopherVector class has a
private member of type Vector (inheriting from Vector tends to be frustrating, for reasons
you’ll see later), and methods just like Vector. However, it doesn’t accept and produce
generic Objects, only Gopher objects.

Because a GopherVector will accept only a Gopher, if you were to say:

gophers.addElement(new Pigeon());

you would get an error message at compile time. This approach, while more tedious from a
coding standpoint, will tell you immediately if you’re using a type improperly.

Note that no cast is necessary when using elementAt( ) – it’s always a Gopher.

Parameterized types
This kind of problem isn’t isolated – there are numerous cases in which you need to create
new types based on other types, and in which it is useful to have specific type information at
compile-time. This is the concept of a parameterized type. In C++, this is directly supported
by the language in templates. At one point, Java had reserved the keyword generic to
someday support parameterized types, but it’s uncertain if this will ever occur.

Enumerators (iterators)
In any collection class, you must have a way to put things in and a way to get things out.
After all, that’s the primary job of a collection – to hold things. In the Vector, addElement( )
is the way that you insert objects, and elementAt( ) is one way to get things out. Vector is
quite flexible – you can select anything at any time, and select multiple elements at once
using different indexes.

If you want to start thinking at a higher level, there’s a drawback: you need to know the
exact type of the collection in order to use it. This might not seem bad at first, but what if
you start out using a Vector, and later on in your program you decide, for efficiency, that
you want to change to a List (which is part of the Java 1.2 collections library)? Or you’d like
to write a piece of code that doesn’t know or care what type of collection it’s working with.



278 Thinking in Java  www.BruceEckel.com

The concept of an iterator can be used to achieve this next level of abstraction. This is an
object whose job is to move through a sequence of objects and select each object in that
sequence without the client programmer knowing or caring about the underlying structure
of that sequence. In addition, an iterator is usually what’s called a “light-weight” object; that
is, one that’s cheap to create. For that reason, you’ll often find seemingly strange constraints
for iterators; for example, some iterators can move in only one direction.

The Java Enumeration2 is an example of an iterator with these kinds of constraints. There’s
not much you can do with one except:

1. Ask a collection to hand you an Enumeration using a method called elements( ). This
Enumeration will be ready to return the first element in the sequence on your first call
to its nextElement( ) method.

2. Get the next object in the sequence with nextElement( ).

3. See if there are any more objects in the sequence with hasMoreElements( ).

That’s all. It’s a simple implementation of an iterator, but still powerful. To see how it
works, let’s revisit the CatsAndDogs.java program from earlier in the chapter. In the
original version, the method elementAt( ) was used to select each element, but in the
following modified version an enumeration is used:

//: CatsAndDogs2.java
// Simple collection with Enumeration
import java.util.*;

class Cat2 {
  private int catNumber;
  Cat2(int i) {
    catNumber = i;
  }
  void print() {
    System.out.println("Cat number " +catNumber);
  }
}

class Dog2 {
  private int dogNumber;
  Dog2(int i) {
    dogNumber = i;
  }
  void print() {
    System.out.println("Dog number " +dogNumber);
  }
}

public class CatsAndDogs2 {
  public static void main(String[] args) {

                                                

2 The term iterator is common in C++ and elsewhere in OOP, so it’s difficult to know why the Java
team used a strange name. The collections library in Java 1.2 fixes this as well as many other
problems.



Chapter 8: Holding Your Objects 279

    Vector cats = new Vector();
    for(int i = 0; i < 7; i++)
      cats.addElement(new Cat2(i));
    // Not a problem to add a dog to cats:
    cats.addElement(new Dog2(7));
    Enumeration e = cats.elements();
    while(e.hasMoreElements())
      ((Cat2)e.nextElement()).print();
    // Dog is detected only at run-time
  }
} ///:~

You can see that the only change is in the last few lines. Instead of:

    for(int i = 0; i < cats.size(); i++)
      ((Cat)cats.elementAt(i)).print();

an Enumeration is used to step through the sequence:

while(e.hasMoreElements())
      ((Cat2)e.nextElement()).print();

With the Enumeration, you don’t need to worry about the number of elements in the
collection. That’s taken care of for you by hasMoreElements( ) and nextElement( ).

As another example, consider the creation of a general-purpose printing method:

//: HamsterMaze.java
// Using an Enumeration
import java.util.*;

class Hamster {
  private int hamsterNumber;
  Hamster(int i) {
    hamsterNumber = i;
  }
  public String toString() {
    return "This is Hamster #" + hamsterNumber;
  }
}

class Printer {
  static void printAll(Enumeration e) {
    while(e.hasMoreElements())
      System.out.println(
        e.nextElement().toString());
  }
}

public class HamsterMaze {
  public static void main(String[] args) {
    Vector v = new Vector();
    for(int i = 0; i < 3; i++)
      v.addElement(new Hamster(i));
    Printer.printAll(v.elements());



280 Thinking in Java  www.BruceEckel.com

  }
} ///:~

Look closely at the printing method:

static void printAll(Enumeration e) {
  while(e.hasMoreElements())
    System.out.println(
      e.nextElement().toString());
}

Note that there’s no information about the type of sequence. All you have is an
Enumeration, and that’s all you need to know about the sequence: that you can get the
next object, and that you can know when you’re at the end. This idea of taking a collection
of objects and passing through it to perform an operation on each one is powerful and will
be seen throughout this book.

This particular example is even more generic, since it uses the ubiquitous toString( ) method
(ubiquitous only because it’s part of the Object class). An alternative way to call print
(although probably slightly less efficient, if you could even notice the difference) is:

System.out.println("" + e.nextElement());

which uses the “automatic conversion to String” that’s wired into Java. When the compiler
sees a String, followed by a ‘+’, it expects another String to follow and calls toString( )
automatically. (In Java 1.1, the first String is unnecessary; any object will be converted to a
String.) You can also perform a cast, which has the effect of calling toString( ):

System.out.println((String)e.nextElement());

In general, however, you’ll want to do something more than call Object methods, so you’ll
run up against the type-casting issue again. You must assume you’ve gotten an
Enumeration to a sequence of the particular type you’re interested in, and cast the resulting
objects to that type (getting a run-time exception if you’re wrong).

Types of collections
The standard Java 1.0 and 1.1 library comes with a bare minimum set of collection classes,
but they’re probably enough to get by with for many of your programming projects. (As
you’ll see at the end of this chapter, Java 1.2 provides a radically redesigned and filled-out
library of collections.)

Vector
The Vector is quite simple to use, as you’ve seen so far. Although most of the time you’ll just
use addElement( ) to insert objects, elementAt( ) to get them out one at a time, and
elements( ) to get an Enumeration to the sequence, there’s also a set of other methods that
can be useful. As usual with the Java libraries, we won’t use or talk about them all here, but
be sure to look them up in the electronic documentation to get a feel for what they can do.

Crashing Java
The Java standard collections contain a toString( ) method so they can produce a String
representation of themselves, including the objects they hold. Inside of Vector, for example,



Chapter 8: Holding Your Objects 281

the toString( ) steps through the elements of the Vector and calls toString( ) for each one.
Suppose you’d like to print out the address of your class. It seems to make sense to simply
refer to this (in particular, C++ programmers are prone to this approach):

//: CrashJava.java
// One way to crash Java
import java.util.*;

public class CrashJava {
  public String toString() {
    return "CrashJava address: " + this + "\n";
  }
  public static void main(String[] args) {
    Vector v = new Vector();
    for(int i = 0; i < 10; i++)
      v.addElement(new CrashJava());
    System.out.println(v);
  }
} ///:~

It turns out that if you simply create a CrashJava object and print it out, you’ll get an
endless sequence of exceptions. However, if you place the CrashJava objects in a Vector and
print out that Vector as shown here, it can’t handle it and you don’t even get an exception;
Java just crashes. (But at least it didn’t bring down my operating system.) This was tested
with Java 1.1.

What’s happening is automatic type conversion for Strings. When you say:

"CrashJava address: " + this

The compiler sees a String followed by a ‘+’ and something that’s not a String, so it tries to
convert this to a String. It does this conversion by calling toString( ), which produces a
recursive call. When this occurs inside a Vector, it appears that the stack overflows without
the exception-handling mechanism getting a chance to respond.

If you really do want to print the address of the object in this case, the solution is to call the
Object toString( ) method, which does just that. So instead of saying this, you’d say
super.toString( ). (This only works if you're directly inheriting from Object or if none of
your parent classes have overridden the toString( ) method).

BitSet
A BitSet is really a Vector of bits, and it is used if you want to efficiently store a lot of on-
off information. It’s efficient only from the standpoint of size; if you’re looking for efficient
access, it is slightly slower than using an array of some native type.

In addition, the minimum size of the BitSet is that of a long: 64 bits. This implies that if
you’re storing anything smaller, like 8 bits, a BitSet will be wasteful, so you’re better off
creating your own class to hold your flags.

In a normal Vector, the collection will expand as you add more elements. The BitSet does
this as well – sort of. That is, sometimes it works and sometimes it doesn’t, which makes it
appear that the Java version 1.0 implementation of BitSet is just badly done. (It is fixed in
Java 1.1.) The following example shows how the BitSet works and demonstrates the version
1.0 bug:



282 Thinking in Java  www.BruceEckel.com

//: Bits.java
// Demonstration of BitSet
import java.util.*;

public class Bits {
  public static void main(String[] args) {
    Random rand = new Random();
    // Take the LSB of nextInt():
    byte bt = (byte)rand.nextInt();
    BitSet bb = new BitSet();
    for(int i = 7; i >=0; i--)
      if(((1 << i) &  bt) != 0)
        bb.set(i);
      else
        bb.clear(i);
    System.out.println("byte value: " + bt);
    printBitSet(bb);

    short st = (short)rand.nextInt();
    BitSet bs = new BitSet();
    for(int i = 15; i >=0; i--)
      if(((1 << i) &  st) != 0)
        bs.set(i);
      else
        bs.clear(i);
    System.out.println("short value: " + st);
    printBitSet(bs);

    int it = rand.nextInt();
    BitSet bi = new BitSet();
    for(int i = 31; i >=0; i--)
      if(((1 << i) &  it) != 0)
        bi.set(i);
      else
        bi.clear(i);
    System.out.println("int value: " + it);
    printBitSet(bi);

    // Test bitsets >= 64 bits:
    BitSet b127 = new BitSet();
    b127.set(127);
    System.out.println("set bit 127: " + b127);
    BitSet b255 = new BitSet(65);
    b255.set(255);
    System.out.println("set bit 255: " + b255);
    BitSet b1023 = new BitSet(512);
// Without the following, an exception is thrown
// in the Java 1.0 implementation of BitSet:
//    b1023.set(1023);
    b1023.set(1024);
    System.out.println("set bit 1023: " + b1023);
  }
  static void printBitSet(BitSet b) {
    System.out.println("bits: " + b);



Chapter 8: Holding Your Objects 283

    String bbits = new String();
    for(int j = 0; j < b.size() ; j++)
      bbits += (b.get(j) ? "1" : "0");
    System.out.println("bit pattern: " + bbits);
  }
} ///:~

The random number generator is used to create a random byte, short, and int, and each one
is transformed into a corresponding bit pattern in a BitSet. This works fine because a BitSet
is 64 bits, so none of these cause it to increase in size. But in Java 1.0, when the BitSet is
greater than 64 bits, some strange behavior occurs. If you set a bit that’s just one greater
than the BitSet’s currently-allocated storage, it will expand nicely. But if you try to set bits
at higher locations than that without first just touching the boundary, you’ll get an
exception, since the BitSet won’t expand properly in Java 1.0. The example shows a BitSet
of 512 bits being created. The constructor allocates storage for twice that number of bits.
Then if you try to set bit 1024 or greater without first setting bit 1023, you’ll throw an
exception in Java 1.0. Fortunately, this is fixed in Java 1.1, but avoid using the BitSet if you
write code for Java 1.0.

Stack
A Stack is sometimes referred to as a “last-in, first-out” (LIFO) collection. That is, whatever
you “push” on the Stack last is the first item you can “pop” out. Like all of the other
collections in Java, what you push and pop are Objects, so you must cast what you pop.

What’s rather odd is that instead of using a Vector as a building block to create a Stack,
Stack is inherited from Vector. So it has all of the characteristics and behaviors of a Vector
plus some extra Stack behaviors. It’s difficult to know whether the designers explicitly
decided that this was an especially useful way to do things, or whether it was just a naïve
design.

Here’s a simple demonstration of Stack that reads each line from an array and pushes it as a
String:

//: Stacks.java
// Demonstration of Stack Class
import java.util.*;

public class Stacks {
  static String[] months = {
    "January", "February", "March", "April",
    "May", "June", "July", "August", "September",
    "October", "November", "December" };
  public static void main(String[] args) {
    Stack stk = new Stack();
    for(int i = 0; i < months.length; i++)
      stk.push(months[i] + " ");
    System.out.println("stk = " + stk);
    // Treating a stack as a Vector:
    stk.addElement("The last line");
    System.out.println(
      "element 5 = " + stk.elementAt(5));
    System.out.println("popping elements:");
    while(!stk.empty())



284 Thinking in Java  www.BruceEckel.com

      System.out.println(stk.pop());
  }
} ///:~

Each line in the months array is inserted into the Stack with push( ), and later fetched from
the top of the stack with a pop( ). To make a point, Vector operations are also performed on
the Stack object. This is possible because, by virtue of inheritance, a Stack is a Vector. Thus,
all operations that can be performed on a Vector can also be performed on a Stack, such as
elementAt( ).

Hashtable
A Vector allows you to select from a sequence of objects using a number, so in a sense it
associates numbers to objects. But what if you’d like to select from a sequence of objects
using some other criterion? A Stack is an example: its selection criterion is “the last thing
pushed on the stack.” A powerful twist on this idea of “selecting from a sequence” is
alternately termed a map, a dictionary, or an associative array. Conceptually, it seems like a
vector, but instead of looking up objects using a number, you look them up using another
object! This is often a key process in a program.

The concept shows up in Java as the abstract class Dictionary. The interface for this class is
straightforward: size( ) tells you how many elements are within, isEmpty( ) is true if there
are no elements, put(Object key, Object value) adds a value (the thing you want), and
associates it with a key (the thing you look it up with). get(Object key) produces the value
given the corresponding key, and remove(Object key) removes the key-value pair from the
list. There are enumerations: keys( ) produces an Enumeration of the keys, and elements( )
produces an Enumeration of all the values. That’s all there is to a Dictionary.

A Dictionary isn’t terribly difficult to implement. Here’s a simple approach, which uses two
Vectors, one for keys and one for values:

//: AssocArray.java
// Simple version of a Dictionary
import java.util.*;

public class AssocArray extends Dictionary {
  private Vector keys = new Vector();
  private Vector values = new Vector();
  public int size() { return keys.size(); }
  public boolean isEmpty() {
    return keys.isEmpty();
  }
  public Object put(Object key, Object value) {
    keys.addElement(key);
    values.addElement(value);
    return key;
  }
  public Object get(Object key) {
    int index = keys.indexOf(key);
    // indexOf() Returns -1 if key not found:
    if(index == -1) return null;
    return values.elementAt(index);
  }
  public Object remove(Object key) {



Chapter 8: Holding Your Objects 285

    int index = keys.indexOf(key);
    if(index == -1) return null;
    keys.removeElementAt(index);
    Object returnval = values.elementAt(index);
    values.removeElementAt(index);
    return returnval;
  }
  public Enumeration keys() {
    return keys.elements();
  }
  public Enumeration elements() {
    return values.elements();
  }
  // Test it:
  public static void main(String[] args) {
    AssocArray aa = new AssocArray();
    for(char c = 'a'; c <= 'z'; c++)
      aa.put(String.valueOf(c),
             String.valueOf(c)
             .toUpperCase());
    char[] ca = { 'a', 'e', 'i', 'o', 'u' };
    for(int i = 0; i < ca.length; i++)
      System.out.println("Uppercase: " +
             aa.get(String.valueOf(ca[i])));
  }
} ///:~

The first thing you see in the definition of AssocArray is that it extends Dictionary. This
means that AssocArray is a type of Dictionary, so you can make the same requests of it that
you can a Dictionary. If you make your own Dictionary, as is done here, all you need to do
is fill in all the methods that are in Dictionary. (And you must override all the methods
because all of them – with the exception of the constructor – are abstract.)

The Vectors keys and values are linked by a common index number. That is, if you call
put( ) with a key of “roof” and a value of “blue” (assuming you’re associating the various
parts of a house with the colors they are to be painted) and there are already 100 elements in
the AssocArray, then “roof” will be the 101 element of keys and “blue” will be the 101
element of values. And if you look at get( ), when you pass “roof” in as the key, it produces
the index number with keys.indexOf( ), and then uses that index number to produce the
value in the associated values vector.

The test in main( ) is simple; it’s just a map of lowercase characters to uppercase characters,
which could obviously be done in a number of more efficient ways. But it shows that
AssocArray is functional.

The standard Java library contains only one embodiment of a Dictionary, called
Hashtable.3 Java’s Hashtable has the same basic interface as AssocArray (since they both
inherit Dictionary), but it differs in one distinct way: efficiency. If you look at what must be
done for a get( ), it seems pretty slow to search through a Vector for the key. This is where
Hashtable speeds things up. Instead of the tedious linear search for the key, it uses a special

                                                

3 If you plan to use RMI (described in Chapter 15), you should be aware that there’s a problem when
putting remote objects into a Hashtable. (See Core Java, by Cornell & Horstmann, Prentice-Hall 1997).



286 Thinking in Java  www.BruceEckel.com

value called a hash code. The hash code is a way to take some information in the object in
question and turn it into a “relatively unique” int for that object. All objects have a hash
code, and hashCode( ) is a method in the root class Object. A Hashtable takes the
hashCode( ) of the object and uses it to quickly hunt for the key. This results in a dramatic
performance improvement.4 The way that a Hashtable works is beyond the scope of this
book5 – all you need to know is that Hashtable is a fast Dictionary, and that a Dictionary
is a useful tool.

As an example of the use of a Hashtable, consider a program to check the randomness of
Java’s Math.random( ) method. Ideally, it would produce a perfect distribution of random
numbers, but to test this you need to generate a bunch of random numbers and count the
ones that fall in the various ranges. A Hashtable is perfect for this, since it associates objects
with objects (in this case, the values produced by Math.random( ) with the number of times
those values appear):

//: Statistics.java
// Simple demonstration of Hashtable
import java.util.*;

class Counter {
  int i = 1;
  public String toString() {
    return Integer.toString(i);
  }
}

class Statistics {
  public static void main(String[] args) {
    Hashtable ht = new Hashtable();
    for(int i = 0; i < 10000; i++) {
      // Produce a number between 0 and 20:
      Integer r =
        new Integer((int)(Math.random() * 20));
      if(ht.containsKey(r))
        ((Counter)ht.get(r)).i++;
      else
        ht.put(r, new Counter());
    }
    System.out.println(ht);
  }
} ///:~

                                                

4 If these speedups still don’t meet your performance needs, you can further accelerate table lookup by
writing your own hash table routine. This avoids delays due to casting to and from Objects and
synchronization built into the Java Class Library hash table routine. To reach even higher levels of
performance, speed enthusiasts can use Donald Knuth’s The Art of Computer Programming, Volume 3:
Sorting and Searching, Second Edition to replace overflow bucket lists with arrays that have two
additional benefits: they can be optimized for disk storage characteristics and they can save most of the
time of creating and garbage collecting individual records.

5 The best reference I know of is Practical Algorithms for Programmers, by Andrew Binstock and John
Rex, Addison-Wesley 1995.



Chapter 8: Holding Your Objects 287

In main( ), each time a random number is generated it is wrapped inside an Integer object
so that handle can be used with the Hashtable. (You can’t use a primitive with a collection,
only an object handle.) The containsKey( ) method checks to see if this key is already in the
collection. (That is, has the number been found already?) If so, the get( ) methods gets the
associated value for the key, which in this case is a Counter object. The value i inside the
counter is then incremented to indicate that one more of this particular random number has
been found.

If the key has not been found yet, the method put( ) will place a new key-value pair into the
Hashtable. Since Counter automatically initializes its variable i to one when it’s created, it
indicates the first occurrence of this particular random number.

To display the Hashtable, it is simply printed out. The Hashtable toString( ) method moves
through all the key-value pairs and calls the toString( ) for each one. The Integer
toString( ) is pre-defined, and you can see the toString( ) for Counter. The output from one
run (with some line breaks added) is:

{19=526, 18=533, 17=460, 16=513, 15=521, 14=495,
 13=512, 12=483, 11=488, 10=487, 9=514, 8=523,
 7=497, 6=487, 5=480, 4=489, 3=509, 2=503, 1=475,
 0=505}

You might wonder at the necessity of the class Counter, which seems like it doesn’t even
have the functionality of the wrapper class Integer. Why not use int or Integer? Well, you
can’t use an int because all of the collections can hold only Object handles. After seeing
collections the wrapper classes might begin to make a little more sense to you, since you
can’t put any of the primitive types in collections. However, the only thing you can do with
the Java wrappers is to initialize them to a particular value and read that value. That is,
there’s no way to change a value once a wrapper object has been created. This makes the
Integer wrapper immediately useless to solve our problem, so we’re forced to create a new
class that does satisfy the need.

Creating “key” classes
In the previous example, a standard library class (Integer) was used as a key for the
Hashtable. It worked fine as a key, because it has all the necessary wiring to make it work
correctly as a key. But a common pitfall occurs when using Hashtables when you create
your own classes to be used as keys. For example, consider a weather predicting system that
matches Groundhog objects to Prediction objects. It seems fairly straightforward: you
create the two classes and use Groundhog as the key and Prediction as the value:

//: SpringDetector.java
// Looks plausible, but doesn't work right.
import java.util.*;

class Groundhog {
  int ghNumber;
  Groundhog(int n) { ghNumber = n; }
}

class Prediction {
  boolean shadow = Math.random() > 0.5;
  public String toString() {
    if(shadow)
      return "Six more weeks of Winter!";



288 Thinking in Java  www.BruceEckel.com

    else
      return "Early Spring!";
  }
}

public class SpringDetector {
  public static void main(String[] args) {
    Hashtable ht = new Hashtable();
    for(int i = 0; i < 10; i++)
      ht.put(new Groundhog(i), new Prediction());
    System.out.println("ht = " + ht + "\n");
    System.out.println(
      "Looking up prediction for groundhog #3:");
    Groundhog gh = new Groundhog(3);
    if(ht.containsKey(gh))
      System.out.println((Prediction)ht.get(gh));
  }
} ///:~

Each Groundhog is given an identity number, so you can look up a Prediction in the
Hashtable by saying “Give me the Prediction associated with Groundhog number 3.” The
Prediction class contains a boolean that is initialized using Math.random( ), and a
toString( ) that interprets the result for you. In main( ), a Hashtable is filled with
Groundhogs and their associated Predictions. The Hashtable is printed so you can see that
it has been filled. Then a Groundhog with an identity number of 3 is used to look up the
prediction for Groundhog #3.

It seems simple enough, but it doesn’t work. The problem is that Groundhog is inherited
from the common root class Object (which is what happens if you don’t specify a base class,
thus all classes are ultimately inherited from Object). It is Object’s hashCode( ) method that
is used to generate the hash code for each object, and by default it just uses the address of its
object. Thus, the first instance of Groundhog(3) does not produce a hash code equal to the
hash code for the second instance of Groundhog(3) that we tried to use as a lookup.

You might think that all you need to do is write an appropriate override for hashCode( ).
But it still won’t work until you’ve done one more thing: override the equals( ) that is also
part of Object. This method is used by the Hashtable when trying to determine if your key
is equal to any of the keys in the table. Again, the default Object.equals( ) simply compares
object addresses, so one Groundhog(3) is not equal to another Groundhog(3).

Thus, to use your own classes as keys in a Hashtable, you must override both hashCode( )
and equals( ), as shown in the following solution to the problem above:

//: SpringDetector2.java
// If you create a class that's used as a key in
// a Hashtable, you must override hashCode()
// and equals().
import java.util.*;

class Groundhog2 {
  int ghNumber;
  Groundhog2(int n) { ghNumber = n; }
  public int hashCode() { return ghNumber; }
  public boolean equals(Object o) {
    if ((o != null) && (o instanceof Groundhog2))



Chapter 8: Holding Your Objects 289

      return
        ghNumber == ((Groundhog2)o).ghNumber;
    else return false;
  }
}

public class SpringDetector2 {
  public static void main(String[] args) {
    Hashtable ht = new Hashtable();
    for(int i = 0; i < 10; i++)
      ht.put(new Groundhog2(i),new Prediction());
    System.out.println("ht = " + ht + "\n");
    System.out.println(
      "Looking up prediction for groundhog #3:");
    Groundhog2 gh = new Groundhog2(3);
    if(ht.containsKey(gh))
      System.out.println((Prediction)ht.get(gh));
  }
} ///:~

Note that this uses the Prediction class from the previous example, so SpringDetector.java
must be compiled first or you’ll get a compile-time error when you try to compile
SpringDetector2.java.

Groundhog2.hashCode( ) returns the ground hog number as an identifier. (In this example,
the programmer is responsible for ensuring that no two ground hogs exist with the same ID
number.) The hashCode( ) is not required to return a unique identifier, but the equals( )
method must be able to strictly determine whether two objects are equivalent.

The equals( ) method does two sanity checks: to see if the object is null, and if not, whether
it is an instance of Groundhog2 (using the instanceof keyword, which is fully explained in
Chapter 11). It should be a Groundhog2 to even continue executing equals( ). The
comparison, as you can see, is based on the actual ghNumbers. This time, when you run the
program, you’ll see it produces the correct output. (Many of the Java library classes override
the hashcode( ) and equals( ) methods to be based upon their contents.)

Properties: a type of HHashtable
In the first example in this book, a type of Hashtable was used called Properties. In that
example, the lines:

Properties p = System.getProperties();
p.list(System.out);

called the static method getProperties( ) to get a special Properties object that described the
system characteristics. The method list( ) is a method of Properties that sends the contents
to any stream output that you choose. There’s also a save( ) method to allow you to write
your property list to a file in a way that it can be retrieved later with the load( ) method.

Although the Properties class is inherited from Hashtable, it also contains a second
Hashtable that acts to hold the list of “default” properties. So if a property isn’t found in the
primary list, the defaults will be searched.



290 Thinking in Java  www.BruceEckel.com

The Properties class is also available for use in your programs (an example is
ClassScanner.java in Chapter 17). You can find more complete details in the Java library
documentation.

Enumerators revisited
We can now demonstrate the true power of the Enumeration: the ability to separate the
operation of traversing a sequence from the underlying structure of that sequence. In the
following example, the class PrintData uses an Enumeration to move through a sequence
and call the toString( ) method for every object. Two different types of collections are
created, a Vector and a Hashtable, and they are each filled with, respectively, Mouse and
Hamster objects. (These classes are defined earlier in the chapter; notice you must have
compiled HamsterMaze.java and WorksAnyway.java for the following program to
compile.) Because an Enumeration hides the structure of the underlying collection,
PrintData doesn’t know or care what kind of collection the Enumeration comes from:

//: Enumerators2.java
// Revisiting Enumerations
import java.util.*;

class PrintData {
  static void print(Enumeration e) {
    while(e.hasMoreElements())
      System.out.println(
        e.nextElement().toString());
  }
}

class Enumerators2 {
  public static void main(String[] args) {
    Vector v = new Vector();
    for(int i = 0; i < 5; i++)
      v.addElement(new Mouse(i));

    Hashtable h = new Hashtable();
    for(int i = 0; i < 5; i++)
      h.put(new Integer(i), new Hamster(i));

    System.out.println("Vector");
    PrintData.print(v.elements());
    System.out.println("Hashtable");
    PrintData.print(h.elements());
  }
} ///:~

Note that PrintData.print( ) takes advantage of the fact that the objects in these collections
are of class Object so it can call toString( ). It’s more likely that in your problem, you must
make the assumption that your Enumeration is walking through a collection of some
specific type. For example, you might assume that everything in the collection is a Shape
with a draw( ) method. Then you must downcast from the Object that
Enumeration.nextElement() returns to produce a Shape.



Chapter 8: Holding Your Objects 291

Sorting
One of the things missing in the Java 1.0 and 1.1 libraries is algorithmic operations, even
simple sorting. So it makes sense to create a Vector that sorts itself using the classic
Quicksort.

A problem with writing generic sorting code is that sorting must perform comparisons based
on the actual type of the object. Of course, one approach is to write a different sorting
method for every different type, but you should be able to recognize that this does not
produce code that is easily re-used for new types.

A primary goal of programming design is to “separate things that change from things that
stay the same,” and here, the code that stays the same is the general sort algorithm, but the
thing that changes from one use to the next is the way objects are compared. So instead of
hard-wiring the comparison code into many different sort routines, the technique of the
callback will be used. With a callback, the part of the code that varies from case to case is
encapsulated inside its own class, and the part of the code that’s always the same will call
back to the code that changes. That way you can make different objects to express different
ways of comparison and feed them to the same sorting code.

The following interface describes how to compare two objects, and thus encapsulates “the
things that change” for this particular problem:

//: Compare.java
// Interface for sorting callback:
package c08;

interface Compare {
  boolean lessThan(Object lhs, Object rhs);
  boolean lessThanOrEqual(Object lhs, Object rhs);
} ///:~

For both methods, the lhs represents the “left hand” object and the rhs represents the “right
hand” object in the comparison.

A subclass of Vector can be created that implements the Quicksort using Compare. The
algorithm, which is known for its speed, will not be explained here. For details, see Practical
Algorithms for Programmers, by Binstock & Rex, Addison-Wesley 1995.

//: SortVector.java
// A generic sorting vector
package c08;
import java.util.*;

public class SortVector extends Vector {
  private Compare compare; // To hold the callback
  public SortVector(Compare comp) {
    compare = comp;
  }
  public void sort() {
    quickSort(0, size() - 1);
  }
  private void quickSort(int left, int right) {
    if(right > left) {



292 Thinking in Java  www.BruceEckel.com

      Object o1 = elementAt(right);
      int i = left - 1;
      int j = right;
      while(true) {
        while(compare.lessThan(
              elementAt(++i), o1))
          ;
        while(j > 0)
          if(compare.lessThanOrEqual(
             elementAt(--j), o1))
            break; // out of while
        if(i >= j) break;
        swap(i, j);
      }
      swap(i , right);
      quickSort(left, i-1);
      quickSort(i+1, right);
    }
  }
  private void swap(int loc1, int loc2) {
    Object tmp = elementAt(loc1);
    setElementAt(elementAt(loc2), loc1);
    setElementAt(tmp, loc2);
  }
} ///:~

You can now see the reason for the term “callback,” since the quickSort( ) method “calls
back” to the methods in Compare. You can also see how this technique has produced
generic, reusable code.

To use the SortVector, you must create a class that implements Compare for the kind of
objects that you’re sorting. This is a place where an inner class is not essential, but it can
make sense for code organization. Here’s an example for String objects:

//: StringSortTest.java
// Testing the generic sorting Vector
package c08;
import java.util.*;

public class StringSortTest {
  static class StringCompare implements Compare {
    public boolean lessThan(Object l, Object r) {
      return ((String)l).toLowerCase().compareTo(
        ((String)r).toLowerCase()) < 0;
    }
    public boolean
    lessThanOrEqual(Object l, Object r) {
      return ((String)l).toLowerCase().compareTo(
        ((String)r).toLowerCase()) <= 0;
    }
  }
  public static void main(String[] args) {
    SortVector sv =
      new SortVector(new StringCompare());



Chapter 8: Holding Your Objects 293

    sv.addElement("d");
    sv.addElement("A");
    sv.addElement("C");
    sv.addElement("c");
    sv.addElement("b");
    sv.addElement("B");
    sv.addElement("D");
    sv.addElement("a");
    sv.sort();
    Enumeration e = sv.elements();
    while(e.hasMoreElements())
      System.out.println(e.nextElement());
  }
} ///:~

The inner class is static because it does not need a link to an outer class in order for it to
function.

You can see how, once the framework is set up, it’s easy to reuse a design like this – you
simply write the class that encapsulates “the things that change” and hand an object to the
SortVector.

The comparison forces the strings to lower case, so that the capital A’s end up next to the
small a’s and not in some entirely different place. This example shows, however, a slight
deficiency in this approach, since the test code above puts the uppercase and lowercase single
letters of the same letter in the order that they appear: A a b B c C d D. This is not usually
much of a problem, because you’re usually working with longer strings and in that
situation the effect doesn’t show up. (The Java 1.2 collections provide sorting functionality
that solves this problem.)

Inheritance (extends) is used here to create a new type of Vector – that is, SortVector is a
Vector with some added functionality. The use of inheritance here is powerful but it presents
problems. It turns out that some methods are final (described in Chapter 7), so you cannot
override them. If you want to create a sorted Vector that accepts and produces only String
objects you run into a wall, since addElement( ) and elementAt( ) are final, and these are
precisely the methods you’d need to override so they accept and produce only String objects.
No luck there.

On the other hand, consider composition: the placing of an object inside a new class. Rather
than rewrite the above code to accomplish this, we can simply use a SortVector inside the
new class. In this case, the inner class to implement the interface Compare will be created
anonymously:

//: StrSortVector.java
// Automatically sorted Vector that
// accepts and produces only Strings
package c08;
import java.util.*;

public class StrSortVector {
  private SortVector v = new SortVector(
    // Anonymous inner class:
    new Compare() {
      public boolean
      lessThan(Object l, Object r) {



294 Thinking in Java  www.BruceEckel.com

        return
          ((String)l).toLowerCase().compareTo(
          ((String)r).toLowerCase()) < 0;
      }
      public boolean
      lessThanOrEqual(Object l, Object r) {
        return
          ((String)l).toLowerCase().compareTo(
          ((String)r).toLowerCase()) <= 0;
      }
    }
  );
  private boolean sorted = false;
  public void addElement(String s) {
    v.addElement(s);
    sorted = false;
  }
  public String elementAt(int index) {
    if(!sorted) {
      v.sort();
      sorted = true;
    }
    return (String)v.elementAt(index);
  }
  public Enumeration elements() {
    if(!sorted) {
      v.sort();
      sorted = true;
    }
    return v.elements();
  }
  // Test it:
  public static void main(String[] args) {
    StrSortVector sv = new StrSortVector();
    sv.addElement("d");
    sv.addElement("A");
    sv.addElement("C");
    sv.addElement("c");
    sv.addElement("b");
    sv.addElement("B");
    sv.addElement("D");
    sv.addElement("a");
    Enumeration e = sv.elements();
    while(e.hasMoreElements())
      System.out.println(e.nextElement());
  }
} ///:~

This quickly reuses the code from SortVector to create the desired functionality. However,
not all of the public methods from SortVector and Vector appear in StrSortVector. When
reusing code this way, you can make a definition in the new class for each one in the
contained class, or you can start with just a few and periodically go back and add more
when you need them. Eventually the new class design will settle down.



Chapter 8: Holding Your Objects 295

The advantage to this approach is that it will take only String objects and produce only
String objects, and the checking happens at compile time instead of run time. Of course,
that’s only true for addElement( ) and elementAt( ); elements( ) still produces an
Enumeration that is untyped at compile time. Type checking for the Enumeration and in
StrSortVector still happens, of course, it just happens at run-time by throwing exceptions if
you do something wrong. It’s a trade-off: do you find out about something for sure at
compile time or probably at run-time? (That is, “probably not while you’re testing the code”
and “probably when the program user tries something you didn’t test for.”) Given the
choices and the hassle, it’s easier to use inheritance and just grit your teeth while casting –
again, if parameterized types are ever added to Java, they will solve this problem.

You can see there’s a flag called sorted in this class. You could sort the vector every time
addElement( ) is called, and constantly keep it in a sorted state. But usually people add a lot
of elements to a Vector before beginning to read it. So sorting after every addElement( )
would be less efficient than waiting until someone wants to read the vector and then sorting
it, which is what is done here. The technique of delaying a process until it is absolutely
necessary is called lazy evaluation. (There is an analogous technique called lazy initialization
which waits until a field value is necessary before initializing it.)

The generic collection library
You’ve seen in this chapter that the standard Java library has some fairly useful collections,
but far from a complete set. In addition, algorithms like sorting are not supported at all. One
of the strengths of C++ is its libraries, in particular the Standard Template Library (STL) that
provides a fairly full set of collections as well as many algorithms like sorting and searching
that work with those collections. Based on this model, the ObjectSpace company was
inspired to create the Generic Collection Library for Java (formerly called the Java Generic
Library, but the abbreviation JGL is still used – the old name infringed on Sun’s copyright),
which follows the design of the STL as much as possible (given the differences between the
two languages). The JGL seems to fulfill many, if not all, of the needs for a collection library,
or as far as one could go in this direction without C++’s template mechanism. The JGL
includes linked lists, sets, queues, maps, stacks, sequences, and iterators that are far more
functional than Enumeration, as well as a full set of algorithms such as searching and
sorting. ObjectSpace also made, in some cases, more intelligent design decisions than the Sun
library designers. For example, the methods in the JGL collections are not final so it’s easy to
inherit and override those methods.

The JGL has been included in some vendors’ Java distributions and ObjectSpace has made the
JGL freely available for all uses, including commercial use, at http://www.ObjectSpace.com.
The online documentation that comes in the JGL package is quite good and should be
adequate to get you started.

The new collections
To me, collection classes are one of the most powerful tools for raw programming. You
might have gathered that I’m somewhat disappointed in the collections provided in Java
through version 1.1. As a result, it’s a tremendous pleasure to see that collections were given
proper attention in Java 1.2, and thoroughly redesigned (by Joshua Bloch at Sun). I consider
the new collections to be one of the two major features in Java 1.2 (the other is the Swing
library, covered in Chapter 13) because they significantly increase your programming
muscle and help bring Java in line with more mature programming systems.



296 Thinking in Java  www.BruceEckel.com

Some of the redesign makes things tighter and more sensible. For example, many names are
shorter, cleaner, and easier to understand, as well as to type. Some names are changed to
conform to accepted terminology: a particular favorite of mine is “iterator” instead of
“enumeration.”

The redesign also fills out the functionality of the collections library. You can now have the
behavior of linked lists, queues, and dequeues (double-ended queues, pronounced “decks”).

The design of a collections library is difficult (true of most library design problems). In C++,
the STL covered the bases with many different classes. This was better than what was
available prior to the STL (nothing), but it didn’t translate well into Java. The result was a
rather confusing morass of classes. On the other extreme, I’ve seen a collections library that
consists of a single class, “collection,” which acts like a Vector and a Hashtable at the same
time. The designers of the new collections library wanted to strike a balance: the full
functionality that you expect from a mature collections library, but easier to learn and use
than the STL and other similar collections libraries. The result can seem a bit odd in places.
Unlike some of the decisions made in the early Java libraries, these oddities were not
accidents, but carefully considered decisions based on tradeoffs in complexity. It might take
you a little while to get comfortable with some aspects of the library, but I think you’ll find
yourself rapidly acquiring and using these new tools.

The new collections library takes the issue of “holding your objects” and divides it into two
distinct concepts:

1. Collection: a group of individual elements, often with some rule applied to them. A List
must hold the elements in a particular sequence, and a Set cannot have any duplicate
elements. (A bag, which is not implemented in the new collections library since Lists
provide you with that functionality, has no such rules.)

2. Map: a group of key-value object pairs (what you’ve seen up until now as a Hashtable).
At first glance, this might seem like it ought to be a Collection of pairs, but when you
try to implement it that way the design gets awkward, so it’s clearer to make it a
separate concept. On the other hand, it’s convenient to look at portions of a Map by
creating a Collection to represent that portion. Thus, a Map can return a Set of its keys,
a List of its values, or a List of its pairs. Maps, like arrays, can easily be expanded to
multiple dimensions without adding new concepts: you simply make a Map whose
values are Maps (and the values of those Maps can be Maps, etc.).

Collections and Maps may be implemented in many different ways, according to your
programming needs. It’s helpful to look at a diagram of the new collections:



Chapter 8: Holding Your Objects 297

This diagram can be a bit overwhelming at first, but throughout the rest of this chapter
you’ll see that there are really only three collection components: Map, List, and Set, and
only two or three implementations of each one6 (with, typically, a preferred version). When
you see this, the new collections should not seem so daunting.

The dashed boxes represent interfaces, the dotted boxes represent abstract classes, and the
solid boxes are regular (concrete) classes. The dashed arrows indicate that a particular class is
implementing an interface (or in the case of an abstract class, partially implementing that
interface). The double-line arrows show that a class can produce objects of the class the
arrow is pointing to. For example, any Collection can produce an Iterator, while a List can
produce a ListIterator (as well as an ordinary Iterator, since List is inherited from
Collection).

The interfaces that are concerned with holding objects are Collection, List, Set, and Map.
Typically, you’ll write the bulk of your code to talk to these interfaces, and the only place
where you’ll specify the precise type you’re using is at the point of creation. So you can
create a List like this:

                                                

6 This chapter was written while Java 1.2 was still in beta, so the diagram does not show
the TreeSet class that was added later.

Collection

List Set

AbstractCollection

AbstractList AbstractSet

AbstractSequentialList

LinkedList
ArrayList

Vector

Stack

ArraySet HashSet

Map

AbstractMap

ArrayMap

Hashtable

TreeMap

HashMap

Iterator

ListIterator

Comparable Comparator

Collections

Array

Utilities

(Legacy)

(Legacy)

(Legacy)

Produces Produces



298 Thinking in Java  www.BruceEckel.com

List x = new LinkedList();

Of course, you can also decide to make x a LinkedList (instead of a generic List) and carry
the precise type information around with x. The beauty (and the intent) of using the
interface is that if you decide you want to change your implementation, all you need to do
is change it at the point of creation, like this:

List x = new ArrayList();

The rest of your code can remain untouched.

In the class hierarchy, you can see a number of classes whose names begin with “Abstract,”
and these can seem a bit confusing at first. They are simply tools that partially implement a
particular interface. If you were making your own Set, for example, you wouldn’t start
with the Set interface and implement all the methods, instead you’d inherit from
AbstractSet and do the minimal necessary work to make your new class. However, the new
collections library contains enough functionality to satisfy your needs virtually all the time.
So for our purposes, you can ignore any class that begins with “Abstract.”

Therefore, when you look at the diagram, you’re really concerned with only those
interfaces at the top of the diagram and the concrete classes (those with solid boxes around
them). You’ll typically make an object of a concrete class, upcast it to the corresponding
interface, and then use the interface throughout the rest of your code. Here’s a simple
example, which fills a Collection with String objects and then prints each element in the
Collection:

//: SimpleCollection.java
// A simple example using the new Collections
package c08.newcollections;
import java.util.*;

public class SimpleCollection {
  public static void main(String[] args) {
    Collection c = new ArrayList();
    for(int i = 0; i < 10; i++)
      c.add(Integer.toString(i));
    Iterator it = c.iterator();
    while(it.hasNext())
      System.out.println(it.next());
  }
} ///:~

All the code examples for the new collections libraries will be placed in the subdirectory
newcollections, so you’ll be reminded that these work only with Java 1.2. As a result, you
must invoke the program by saying:

java c08.newcollections.SimpleCollection

with a similar syntax for the rest of the programs in the package.

You can see that the new collections are part of the java.util library, so you don’t need to
add any extra import statements to use them.

The first line in main( ) creates an ArrayList object and then upcasts it to a Collection.
Since this example uses only the Collection methods, any object of a class inherited from



Chapter 8: Holding Your Objects 299

Collection would work, but ArrayList is the typical workhorse Collection and takes the
place of Vector.

The add( ) method, as its name suggests, puts a new element in the Collection. However,
the documentation carefully states that add( ) “ensures that this Collection contains the
specified element.” This is to allow for the meaning of Set, which adds the element only if it
isn’t already there. With an ArrayList, or any sort of List, add( ) always means “put it in.”

All Collections can produce an Iterator via their iterator( ) method. An Iterator is just like
an Enumeration, which it replaces, except:

1. It uses a name (iterator) that is historically understood and accepted in the OOP
community.

2. It uses shorter method names than Enumeration: hasNext( ) instead of
hasMoreElements( ), and next( ) instead of nextElement( ).

3. It adds a new method, remove( ), which removes the last element produced by the
Iterator. So you can call remove( ) only once for every time you call next( ).

In SimpleCollection.java, you can see that an Iterator is created and used to traverse the
Collection, printing each element.

Using CCollections
The following table shows everything you can do with a Collection, and thus, everything
you can do with a Set or a List. (List also has additional functionality.) Maps are not
inherited from Collection, and will be treated separately.

boolean add(Object) *Ensures that the Collection contains the
argument. Returns false if it doesn’t add the
argument.

boolean
addAll(Collection)

*Adds all the elements in the argument.
Returns true if any elements were added.

void clear( ) *Removes all the elements in the Collection.
boolean
contains(Object)

True if the Collection contains the
argument.

boolean
containsAll(Collection)

True if the Collection contains all the
elements in the argument.

boolean isEmpty( ) True if the Collection has no elements.
Iterator iterator( ) Returns an Iterator that you can use to

move through the elements in the
Collection.

boolean
remove(Object)

*If the argument is in the Collection, one
instance of that element is removed.
Returns true if a removal occurred.

boolean
removeAll(Collection)

*Removes all the elements that are
contained in the argument. Returns true if
any removals occurred.

boolean
retainAll(Collection)

*Retains only elements that are contained in
the argument (an “intersection” from set
theory). Returns true if any changes
occurred.



300 Thinking in Java  www.BruceEckel.com

int size( ) Returns the number of elements in the
Collection.

Object[] toArray( ) Returns an array containing all the
elements in the Collection.
*This is an “optional” method, which
means it might not be implemented by a
particular Collection. If not, that method
throws an UnsupportedOperationException.
Exceptions will be covered in Chapter 9.

The following example demonstrates all of these methods. Again, these work with anything
that inherits from Collection; an ArrayList is used as a kind of “least-common
denominator”:

//: Collection1.java
// Things you can do with all Collections
package c08.newcollections;
import java.util.*;

public class Collection1 {
  // Fill with 'size' elements, start
  // counting at 'start':
  public static Collection
  fill(Collection c, int start, int size) {
    for(int i = start; i < start + size; i++)
      c.add(Integer.toString(i));
    return c;
  }
  // Default to a "start" of 0:
  public static Collection
  fill(Collection c, int size) {
    return fill(c, 0, size);
  }
  // Default to 10 elements:
  public static Collection fill(Collection c) {
    return fill(c, 0, 10);
  }
  // Create & upcast to Collection:
  public static Collection newCollection() {
    return fill(new ArrayList());
    // ArrayList is used for simplicity, but it's
    // only seen as a generic Collection
    // everywhere else in the program.
  }
  // Fill a Collection with a range of values:
  public static Collection
  newCollection(int start, int size) {
    return fill(new ArrayList(), start, size);
  }
  // Moving through a List with an iterator:
  public static void print(Collection c) {
    for(Iterator x = c.iterator(); x.hasNext();)



Chapter 8: Holding Your Objects 301

      System.out.print(x.next() + " ");
    System.out.println();
  }
  public static void main(String[] args) {
    Collection c = newCollection();
    c.add("ten");
    c.add("eleven");
    print(c);
    // Find max and min elements; this means
    // different things depending on the way
    // the Comparable interface is implemented:
    System.out.println("Collections.max(c) = " +
      Collections.max(c));
    System.out.println("Collections.min(c) = " +
      Collections.min(c));
    // Add a Collection to another Collection
    c.addAll(newCollection());
    print(c);
    c.remove("3"); // Removes the first one
    print(c);
    c.remove("3"); // Removes the second one
    print(c);
    // Remove all components that are in the
    // argument collection:
    c.removeAll(newCollection());
    print(c);
    c.addAll(newCollection());
    print(c);
    // Is an element in this Collection?
    System.out.println(
      "c.contains(\"4\") = " + c.contains("4"));
    // Is a Collection in this Collection?
    System.out.println(
      "c.containsAll(newCollection()) = " +
      c.containsAll(newCollection()));
    Collection c2 = newCollection(5, 3);
    // Keep all the elements that are in both
    // c and c2 (an intersection of sets):
    c.retainAll(c2);
    print(c);
    // Throw away all the elements in c that
    // also appear in c2:
    c.removeAll(c2);
    System.out.println("c.isEmpty() = " +
      c.isEmpty());
    c = newCollection();
    print(c);
    c.clear(); // Remove all elements
    System.out.println("after c.clear():");
    print(c);
  }
} ///:~



302 Thinking in Java  www.BruceEckel.com

The first methods provide a way to fill any Collection with test data, in this case just ints
converted to Strings. The second method will be used frequently throughout the rest of this
chapter.

The two versions of newCollection( ) create ArrayLists containing different sets of data and
return them as Collection objects, so it’s clear that nothing other than the Collection
interface is being used.

The print( ) method will also be used throughout the rest of this section. Since it moves
through a Collection using an Iterator, which any Collection can produce, it will work
with Lists and Sets and any Collection that a Map produces.

main( ) uses simple exercises to show all of the methods in Collection.

The following sections compare the various implementations of List, Set, and Map and
indicate in each case (with an asterisk) which one should be your default choice. You’ll notice
that the legacy classes Vector, Stack, and Hashtable are not included because in all cases
there are preferred classes within the new collections.

Using LLists
List
(interface)

Order is the most important feature of a List; it
promises to maintain elements in a particular
sequence. List adds a number of methods to
Collection that allow insertion and removal of
elements in the middle of a List. (This is recommended
only for a LinkedList.) A List will produce a
ListIterator, and using this you can traverse the List
in both directions, as well as insert and remove
elements in the middle of the list (again, recommended
only for a LinkedList).

ArrayList* A List backed by an array. Use instead of Vector as a
general-purpose object holder. Allows rapid random
access to elements, but is slow when inserting and
removing elements from the middle of a list.
ListIterator should be used only for back-and-forth
traversal of an ArrayList, but not for inserting and
removing elements, which is expensive compared to
LinkedList.

LinkedList Provides optimal sequential access, with inexpensive
insertions and deletions from the middle of the list.
Relatively slow for random access. (Use ArrayList
instead.) Also has addFirst( ), addLast( ), getFirst( ),
getLast( ), removeFirst( ), and removeLast( ) (which
are not defined in any interfaces or base classes) to
allow it to be used as a stack, a queue, and a dequeue.

The methods in the following example each cover a different group of activities: things that
every list can do (basicTest( )), moving around with an Iterator (iterMotion( )) versus
changing things with an Iterator (iterManipulation( )), seeing the effects of List
manipulation (testVisual( )), and operations available only to LinkedLists.

//: List1.java
// Things you can do with Lists



Chapter 8: Holding Your Objects 303

package c08.newcollections;
import java.util.*;

public class List1 {
  // Wrap Collection1.fill() for convenience:
  public static List fill(List a) {
    return (List)Collection1.fill(a);
  }
  // You can use an Iterator, just as with a
  // Collection, but you can also use random
  // access with get():
  public static void print(List a) {
    for(int i = 0; i < a.size(); i++)
      System.out.print(a.get(i) + " ");
    System.out.println();
  }
  static boolean b;
  static Object o;
  static int i;
  static Iterator it;
  static ListIterator lit;
  public static void basicTest(List a) {
    a.add(1, "x"); // Add at location 1
    a.add("x"); // Add at end
    // Add a collection:
    a.addAll(fill(new ArrayList()));
    // Add a collection starting at location 3:
    a.addAll(3, fill(new ArrayList()));
    b = a.contains("1"); // Is it in there?
    // Is the entire collection in there?
    b = a.containsAll(fill(new ArrayList()));
    // Lists allow random access, which is cheap
    // for ArrayList, expensive for LinkedList:
    o = a.get(1); // Get object at location 1
    i = a.indexOf("1"); // Tell index of object
    // indexOf, starting search at location 2:
    i = a.indexOf("1", 2);
    b = a.isEmpty(); // Any elements inside?
    it = a.iterator(); // Ordinary Iterator
    lit = a.listIterator(); // ListIterator
    lit = a.listIterator(3); // Start at loc 3
    i = a.lastIndexOf("1"); // Last match
    i = a.lastIndexOf("1", 2); // ...after loc 2
    a.remove(1); // Remove location 1
    a.remove("3"); // Remove this object
    a.set(1, "y"); // Set location 1 to "y"
    // Make an array from the List:
    Object[] array = a.toArray();
    // Keep everything that's in the argument
    // (the intersection of the two sets):
    a.retainAll(fill(new ArrayList()));
    // Remove elements in this range:
    a.removeRange(0, 2);
    // Remove everything that's in the argument:



304 Thinking in Java  www.BruceEckel.com

    a.removeAll(fill(new ArrayList()));
    i = a.size(); // How big is it?
    a.clear(); // Remove all elements
  }
  public static void iterMotion(List a) {
    ListIterator it = a.listIterator();
    b = it.hasNext();
    b = it.hasPrevious();
    o = it.next();
    i = it.nextIndex();
    o = it.previous();
    i = it.previousIndex();
  }
  public static void iterManipulation(List a) {
    ListIterator it = a.listIterator();
    it.add("47");
    // Must move to an element after add():
    it.next();
    // Remove the element that was just produced:
    it.remove();
    // Must move to an element after remove():
    it.next();
    // Change the element that was just produced:
    it.set("47");
  }
  public static void testVisual(List a) {
    print(a);
    List b = new ArrayList();
    fill(b);
    System.out.print("b = ");
    print(b);
    a.addAll(b);
    a.addAll(fill(new ArrayList()));
    print(a);
    // Shrink the list by removing all the
    // elements beyond the first 1/2 of the list
    System.out.println(a.size());
    System.out.println(a.size()/2);
    a.removeRange(a.size()/2, a.size()/2 + 2);
    print(a);
    // Insert, remove, and replace elements
    // using a ListIterator:
    ListIterator x = a.listIterator(a.size()/2);
    x.add("one");
    print(a);
    System.out.println(x.next());
    x.remove();
    System.out.println(x.next());
    x.set("47");
    print(a);
    // Traverse the list backwards:
    x = a.listIterator(a.size());
    while(x.hasPrevious())
      System.out.print(x.previous() + " ");



Chapter 8: Holding Your Objects 305

    System.out.println();
    System.out.println("testVisual finished");
  }
  // There are some things that only
  // LinkedLists can do:
  public static void testLinkedList() {
    LinkedList ll = new LinkedList();
    Collection1.fill(ll, 5);
    print(ll);
    // Treat it like a stack, pushing:
    ll.addFirst("one");
    ll.addFirst("two");
    print(ll);
    // Like "peeking" at the top of a stack:
    System.out.println(ll.getFirst());
    // Like popping a stack:
    System.out.println(ll.removeFirst());
    System.out.println(ll.removeFirst());
    // Treat it like a queue, pulling elements
    // off the tail end:
    System.out.println(ll.removeLast());
    // With the above operations, it's a dequeue!
    print(ll);
  }
  public static void main(String args[]) {
    // Make and fill a new list each time:
    basicTest(fill(new LinkedList()));
    basicTest(fill(new ArrayList()));
    iterMotion(fill(new LinkedList()));
    iterMotion(fill(new ArrayList()));
    iterManipulation(fill(new LinkedList()));
    iterManipulation(fill(new ArrayList()));
    testVisual(fill(new LinkedList()));
    testLinkedList();
  }
} ///:~

In basicTest( ) and iterMotion( ) the calls are simply made to show the proper syntax, and
while the return value is captured, it is not used. In some cases, the return value isn’t
captured since it isn’t typically used. You should look up the full usage of each of these
methods in your online documentation before you use them.

Using SSets
Set has exactly the same interface as Collection, so there isn’t any extra functionality as
there is with the two different Lists. Instead, the Set is exactly a Collection, it just has
different behavior. (This is the ideal use of inheritance and polymorphism: to express
different behavior.) A Set allows only one instance of each object value to exist (what
constitutes the “value” of an object is more complex, as you shall see).

Set
(interface)

Each element that you add to the Set must be unique;
otherwise the Set doesn’t add the duplicate element.
Objects added to a Set must define equals( ) to establish



306 Thinking in Java  www.BruceEckel.com

object uniqueness. Set has exactly the same interface as
Collection. A Set does not guarantee it will maintain its
elements in any particular order.

HashSet* For all Sets except very small ones. Objects must also
define hashCode( ).

ArraySet A Set backed by an array. Designed for very small Sets,
especially those that are frequently created and
destroyed. For small Sets, creation and iteration is
substantially cheaper than for HashSet. Performance
gets quite bad when the Set is large. HashCode( ) is not
required.

TreeSet An ordered Set backed by a red-black tree.7 This way,
you can extract an ordered sequence from a Set.

The following example does not show everything you can do with a Set, since the interface is
the same as Collection and so was exercised in the previous example. Instead, this
demonstrates the behavior that makes a Set unique:

//: Set1.java
// Things you can do with Sets
package c08.newcollections;
import java.util.*;

public class Set1 {
  public static void testVisual(Set a) {
    Collection1.fill(a);
    Collection1.fill(a);
    Collection1.fill(a);
    Collection1.print(a); // No duplicates!
    // Add another set to this one:
    a.addAll(a);
    a.add("one");
    a.add("one");
    a.add("one");
    Collection1.print(a);
    // Look something up:
    System.out.println("a.contains(\"one\"): " +
      a.contains("one"));
  }
  public static void main(String[] args) {
    testVisual(new HashSet());
    testVisual(new ArraySet());
  }
} ///:~

Duplicate values are added to the Set, but when it is printed you’ll see the Set has accepted
only one instance of each value.

                                                

7 At the time of this writing, TreeSet had only been announced and was not yet implemented, so there
are no examples here that use TreeSet.



Chapter 8: Holding Your Objects 307

When you run this program you’ll notice that the order maintained by the HashSet is
different from ArraySet, since each has a different way of storing elements so they can be
located later. (ArraySet keeps them sorted, while HashSet uses a hashing function, which is
designed specifically for rapid lookups.) When creating your own types, be aware that a Set
needs a way to maintain a storage order, just as with the “groundhog” examples shown
earlier in this chapter. Here’s an example:

//: Set2.java
// Putting your own type in a Set
package c08.newcollections;
import java.util.*;

class MyType {
  private int i;
  public MyType(int n) { i = n;}
  public boolean equals(Object o) {
    if ((o != null) && (o instanceof MyType))
      return
        i == ((MyType)o).i;
    else return false;
  }
  // Required for HashSet, not for ArraySet:
  public int hashCode() { return i; }
  public String toString() { return i + " "; }
}

public class Set2 {
  public static Set fill(Set a, int size) {
    for(int i = 0; i < size; i++)
      a.add(new MyType(i));
    return a;
  }
  public static Set fill(Set a) {
    return fill(a, 10);
  }
  public static void test(Set a) {
    fill(a);
    fill(a); // Try to add duplicates
    fill(a);
    a.addAll(fill(new ArraySet()));
    Collection1.print(a);
  }
  public static void main(String[] args) {
    test(new HashSet());
    test(new ArraySet());
  }
} ///:~

The definitions for equals( ) and hashCode( ) follow the form given in the “groundhog”
examples. You must define an equals( ) in both cases, but the hashCode( ) is necessary only
if the class will be placed in a HashSet (which is likely, since that should generally be your
first choice as a Set implementation).



308 Thinking in Java  www.BruceEckel.com

Using MMaps
Map
(interface)

Maintains key-value associations (pairs), so you can
look up a value using a key.

HashMap* Implementation based on a hash table. (Use this instead
of Hashtable.) Provides constant-time performance for
inserting and locating pairs. Performance can be
adjusted via constructors that allow you to set the
capacity and load factor of the hash table.

ArrayMap Map backed by an ArrayList. Gives precise control
over the order of iteration. Designed for very small
Maps, especially those that are frequently created and
destroyed. For very small Maps, creation and iteration
is substantially cheaper than for HashMap.
Performance gets very bad when the Map is large.

TreeMap Implementation based on a red-black tree. When you
view the keys or the pairs, they will be in sorted order
(determined by Comparable or Comparator, discussed
later). The point of a TreeMap is that you get the
results in sorted order. TreeMap is the only Map with
the subMap( ) method, which allows you to return a
portion of the tree.

The following example contains two sets of test data and a fill( ) method that allows you to
fill any map with any two-dimensional array of Objects. These tools will be used in other
Map examples, as well.

//: Map1.java
// Things you can do with Maps
package c08.newcollections;
import java.util.*;

public class Map1 {
  public final static String[][] testData1 = {
    { "Happy", "Cheerful disposition" },
    { "Sleepy", "Prefers dark, quiet places" },
    { "Grumpy", "Needs to work on attitude" },
    { "Doc", "Fantasizes about advanced degree"},
    { "Dopey", "'A' for effort" },
    { "Sneezy", "Struggles with allergies" },
    { "Bashful", "Needs self-esteem workshop"},
  };
  public final static String[][] testData2 = {
    { "Belligerent", "Disruptive influence" },
    { "Lazy", "Motivational problems" },
    { "Comatose", "Excellent behavior" }
  };
  public static Map fill(Map m, Object[][] o) {
    for(int i = 0; i < o.length; i++)
      m.put(o[i][0], o[i][1]);
    return m;
  }
  // Producing a Set of the keys:



Chapter 8: Holding Your Objects 309

  public static void printKeys(Map m) {
    System.out.print("Size = " + m.size() +", ");
    System.out.print("Keys: ");
    Collection1.print(m.keySet());
  }
  // Producing a Collection of the values:
  public static void printValues(Map m) {
    System.out.print("Values: ");
    Collection1.print(m.values());
  }
  // Iterating through Map.Entry objects (pairs):
  public static void print(Map m) {
    Collection entries = m.entries();
    Iterator it = entries.iterator();
    while(it.hasNext()) {
      Map.Entry e = (Map.Entry)it.next();
      System.out.println("Key = " + e.getKey() +
        ", Value = " + e.getValue());
    }
  }
  public static void test(Map m) {
    fill(m, testData1);
    // Map has 'Set' behavior for keys:
    fill(m, testData1);
    printKeys(m);
    printValues(m);
    print(m);
    String key = testData1[4][0];
    String value = testData1[4][1];
    System.out.println("m.containsKey(\"" + key +
      "\"): " + m.containsKey(key));
    System.out.println("m.get(\"" + key + "\"): "
      + m.get(key));
    System.out.println("m.containsValue(\""
      + value + "\"): " +
      m.containsValue(value));
    Map m2 = fill(new ArrayMap(), testData2);
    m.putAll(m2);
    printKeys(m);
    m.remove(testData2[0][0]);
    printKeys(m);
    m.clear();
    System.out.println("m.isEmpty(): "
      + m.isEmpty());
    fill(m, testData1);
    // Operations on the Set change the Map:
    m.keySet().removeAll(m.keySet());
    System.out.println("m.isEmpty(): "
      + m.isEmpty());
  }
  public static void main(String args[]) {
    System.out.println("Testing ArrayMap");
    test(new ArrayMap());
    System.out.println("Testing HashMap");



310 Thinking in Java  www.BruceEckel.com

    test(new HashMap());
    System.out.println("Testing TreeMap");
    test(new TreeMap());
  }
} ///:~

The printKeys( ), printValues( ), and print( ) methods are not only useful utilities, they
also demonstrate the production of Collection views of a Map. The keySet( ) method
produces a Set backed by the keys in the Map; here, it is treated as only a Collection.
Similar treatment is given to values( ), which produces a List containing all the values in the
Map. (Note that keys must be unique, while values can contain duplicates.) Since these
Collections are backed by the Map, any changes in a Collection will be reflected in the
associated Map.

The print( ) method grabs the Iterator produced by entries and uses it to print both the key
and value for each pair. The rest of the program provides simple examples of each Map
operation, and tests each type of Map.

When creating your own class to use as a key in a Map, you must deal with the same issues
discussed previously for Sets.

Choosing an implementation
From the diagram on page 297 you can see that there are really only three collection
components: Map, List, and Set, and only two or three implementations of each interface. If
you need to use the functionality offered by a particular interface, how do you decide which
particular implementation to use?

To understand the answer, you must be aware that each different implementation has its
own features, strengths, and weaknesses. For example, you can see in the diagram that the
“feature” of Hashtable, Vector, and Stack is that they are legacy classes, so that existing
code doesn’t break. On the other hand, it’s best if you don’t use those for new (Java 1.2)
code.

The distinction between the other collections often comes down to what they are ”backed
by;” that is, the data structures that physically implement your desired interface. This
means that, for example, ArrayList, LinkedList, and Vector (which is roughly equivalent to
ArrayList) all implement the List interface so your program will produce the same results
regardless of the one you use. However, ArrayList (and Vector) is backed by an array, while
the LinkedList is implemented in the usual way for a doubly-linked list, as individual objects
each containing data along with handles to the previous and next elements in the list.
Because of this, if you want to do many insertions and removals in the middle of a list a
LinkedList is the appropriate choice. (LinkedList also has additional functionality that is
established in AbstractSequentialList.) If not, an ArrayList is probably faster.

As another example, a Set can be implemented as either an ArraySet or a HashSet. An
ArraySet is backed by an ArrayList and is designed to support only small numbers of
elements, especially in situations in which you’re creating and destroying a lot of Set objects.
However, if you’re going to have larger quantities in your Set, the performance of ArraySet
will get very bad, very quickly. When you’re writing a program that needs a Set, you
should choose HashSet by default, and change to ArraySet only in special cases where
performance improvements are indicated and necessary.



Chapter 8: Holding Your Objects 311

Choosing between LLists
The most convincing way to see the differences between the implementations of List is with
a performance test. The following code establishes an inner base class to use as a test
framework, then creates an anonymous inner class for each different test. Each of these
inner classes is called by the test( ) method. This approach allows you to easily add and
remove new kinds of tests.

//: ListPerformance.java
// Demonstrates performance differences in Lists
package c08.newcollections;
import java.util.*;

public class ListPerformance {
  private static final int REPS = 100;
  private abstract static class Tester {
    String name;
    int size; // Test quantity
    Tester(String name, int size) {
      this.name = name;
      this.size = size;
    }
    abstract void test(List a);
  }
  private static Tester[] tests = {
    new Tester("get", 300) {
      void test(List a) {
        for(int i = 0; i < REPS; i++) {
          for(int j = 0; j < a.size(); j++)
            a.get(j);
        }
      }
    },
    new Tester("iteration", 300) {
      void test(List a) {
        for(int i = 0; i < REPS; i++) {
          Iterator it = a.iterator();
          while(it.hasNext())
            it.next();
        }
      }
    },
    new Tester("insert", 1000) {
      void test(List a) {
        int half = a.size()/2;
        String s = "test";
        ListIterator it = a.listIterator(half);
        for(int i = 0; i < size * 10; i++)
          it.add(s);
      }
    },
    new Tester("remove", 5000) {
      void test(List a) {
        ListIterator it = a.listIterator(3);



312 Thinking in Java  www.BruceEckel.com

        while(it.hasNext()) {
          it.next();
          it.remove();
        }
      }
    },
  };
  public static void test(List a) {
    // A trick to print out the class name:
    System.out.println("Testing " +
      a.getClass().getName());
    for(int i = 0; i < tests.length; i++) {
      Collection1.fill(a, tests[i].size);
      System.out.print(tests[i].name);
      long t1 = System.currentTimeMillis();
      tests[i].test(a);
      long t2 = System.currentTimeMillis();
      System.out.println(": " + (t2 - t1));
    }
  }
  public static void main(String[] args) {
    test(new ArrayList());
    test(new LinkedList());
  }
} ///:~

The inner class Tester is abstract, to provide a base class for the specific tests. It contains a
String to be printed when the test starts, a size parameter to be used by the test for quantity
of elements or repetitions of tests, a constructor to initialize the fields, and an abstract
method test( ) that does the work. All the different types of tests are collected in one place,
the array tests, which is initialized with different anonymous inner classes that inherit from
Tester. To add or remove tests, simply add or remove an inner class definition from the
array, and everything else happens automatically.

The List that’s handed to test( ) is first filled with elements, then each test in the tests array
is timed. The results will vary from machine to machine; they are intended to give only an
order of magnitude comparison between the performance of the different collections. Here is
a summary of one run:

Type Get Iteration Insert Remove
ArrayList 110 270 1920 4780
LinkedList 1870 7580 170 110

You can see that random accesses (get( )) and iterations are cheap for ArrayLists and
expensive for LinkedLists. On the other hand, insertions and removals from the middle of a
list are significantly cheaper for a LinkedList than for an ArrayList. The best approach is
probably to choose an ArrayList as your default and to change to a LinkedList if you
discover performance problems because of many insertions and removals from the middle of
the list.



Chapter 8: Holding Your Objects 313

Choosing between SSets
You can choose between an ArraySet and a HashSet, depending on the size of the Set (if
you need to produce an ordered sequence from a Set, use TreeSet8). The following test
program gives an indication of this tradeoff:

//: SetPerformance.java
// Demonstrates performance differences in Sets
package c08.newcollections;
import java.util.*;

public class SetPerformance {
  private static final int REPS = 100;
  private abstract static class Tester {
    String name;
    Tester(String name) { this.name = name; }
    abstract void test(Set s, int size);
  }
  private static Tester[] tests = {
    new Tester("add") {
      void test(Set s, int size) {
        for(int i = 0; i < REPS; i++) {
          s.clear();
          Collection1.fill(s, size);
        }
      }
    },
    new Tester("contains") {
      void test(Set s, int size) {
        for(int i = 0; i < REPS; i++)
          for(int j = 0; j < size; j++)
            s.contains(Integer.toString(j));
      }
    },
    new Tester("iteration") {
      void test(Set s, int size) {
        for(int i = 0; i < REPS * 10; i++) {
          Iterator it = s.iterator();
          while(it.hasNext())
            it.next();
        }
      }
    },
  };
  public static void test(Set s, int size) {
    // A trick to print out the class name:
    System.out.println("Testing " +
      s.getClass().getName() + " size " + size);
    Collection1.fill(s, size);

                                                

8 TreeSet was not available at the time of this writing, but you can easily add a test for it into this
example.



314 Thinking in Java  www.BruceEckel.com

    for(int i = 0; i < tests.length; i++) {
      System.out.print(tests[i].name);
      long t1 = System.currentTimeMillis();
      tests[i].test(s, size);
      long t2 = System.currentTimeMillis();
      System.out.println(": " +
        ((double)(t2 - t1)/(double)size));
    }
  }
  public static void main(String[] args) {
    // Small:
    test(new ArraySet(), 10);
    test(new HashSet(), 10);
    // Medium:
    test(new ArraySet(), 100);
    test(new HashSet(), 100);
    // Large:
    test(new HashSet(), 1000);
    test(new ArraySet(), 500);
  }
} ///:~

The last test of ArraySet is only 500 elements instead of 1000 because it is so slow.

Type Test size Add Contains Iteration
10 5.0 6.0 11.0

ArraySet 100 24.2 23.1 4.9
500 100.18 97.12 4.5
10 5.0 6.0 16.0

HashSet 100 5.5 5.0 6.0
1000 6.1 6.09 5.77

HashSet is clearly superior to ArraySet for add( ) and contains( ), and the performance is
effectively independent of size. You’ll virtually never want to use an ArraySet for regular
programming.

Choosing between MMaps
When choosing between implementations of Map, the size of the Map is what most strongly
affects performance, and the following test program gives an indication of this tradeoff:

//: MapPerformance.java
// Demonstrates performance differences in Maps
package c08.newcollections;
import java.util.*;

public class MapPerformance {
  private static final int REPS = 100;
  public static Map fill(Map m, int size) {
    for(int i = 0; i < size; i++) {
      String x = Integer.toString(i);
      m.put(x, x);
    }
    return m;



Chapter 8: Holding Your Objects 315

  }
  private abstract static class Tester {
    String name;
    Tester(String name) { this.name = name; }
    abstract void test(Map m, int size);
  }
  private static Tester[] tests = {
    new Tester("put") {
      void test(Map m, int size) {
        for(int i = 0; i < REPS; i++) {
          m.clear();
          fill(m, size);
        }
      }
    },
    new Tester("get") {
      void test(Map m, int size) {
        for(int i = 0; i < REPS; i++)
          for(int j = 0; j < size; j++)
            m.get(Integer.toString(j));
      }
    },
    new Tester("iteration") {
      void test(Map m, int size) {
        for(int i = 0; i < REPS * 10; i++) {
          Iterator it = m.entries().iterator();
          while(it.hasNext())
            it.next();
        }
      }
    },
  };
  public static void test(Map m, int size) {
    // A trick to print out the class name:
    System.out.println("Testing " +
      m.getClass().getName() + " size " + size);
    fill(m, size);
    for(int i = 0; i < tests.length; i++) {
      System.out.print(tests[i].name);
      long t1 = System.currentTimeMillis();
      tests[i].test(m, size);
      long t2 = System.currentTimeMillis();
      System.out.println(": " +
        ((double)(t2 - t1)/(double)size));
    }
  }
  public static void main(String[] args) {
    // Small:
    test(new ArrayMap(), 10);
    test(new HashMap(), 10);
    test(new TreeMap(), 10);
    // Medium:
    test(new ArrayMap(), 100);
    test(new HashMap(), 100);



316 Thinking in Java  www.BruceEckel.com

    test(new TreeMap(), 100);
    // Large:
    test(new HashMap(), 1000);
    // You might want to comment these out since
    // they can take a while to run:
    test(new ArrayMap(), 500);
    test(new TreeMap(), 500);
  }
} ///:~

Because the size of the map is the issue, you’ll see that the timing tests divide the time by the
size to normalize each measurement. Here is one set of results. (Yours will probably be
different.)

Type Test size Put Get Iteration
10 22.0 44.0 17.0

ArrayMap 100 68.7 118.6 8.8
500 155.22 259.36 4.84
10 17.0 16.0 11.0

TreeMap 100 18.1 70.3 8.3
500 11.22 148.4 4.62
10 11.0 11.0 33.0

HashMap 100 9.9 10.4 12.1
1000 13.18 10.65 5.77

Even for size 10, the ArrayMap performance is worse than HashMap – except for iteration,
which is not usually what you’re concerned about when using a Map. (get( ) is generally
the place where you’ll spend most of your time.) The TreeMap has respectable put( ) and
iteration times, but the get( ) is not so good. Why would you use a TreeMap if it has good
put( ) and iteration times? So you could use it not as a Map, but as a way to create an
ordered list. The behavior of a tree is such that it’s always in order and doesn’t have to be
specially sorted. (The way it is ordered will be discussed later.) Once you fill a TreeMap, you
can call keySet( ) to get a Set view of the keys, then toArray( ) to produce an array of those
keys. You can then use the static method Array.binarySearch( ) (discussed later) to rapidly
find objects in your sorted array. Of course, you would probably only do this if, for some
reason, the behavior of a HashMap was unacceptable, since HashMap is designed to rapidly
find things. In the end, when you’re using a Map your first choice should be HashMap, and
only rarely will you need to investigate the alternatives.

There is another performance issue that the above table does not address, and that is speed
of creation. The following program tests creation speed for different types of Map:

//: MapCreation.java
// Demonstrates time differences in Map creation
package c08.newcollections;
import java.util.*;

public class MapCreation {
  public static void main(String[] args) {
    final long REPS = 100000;
    long t1 = System.currentTimeMillis();
    System.out.print("ArrayMap");
    for(long i = 0; i < REPS; i++)
      new ArrayMap();



Chapter 8: Holding Your Objects 317

    long t2 = System.currentTimeMillis();
    System.out.println(": " + (t2 - t1));
    t1 = System.currentTimeMillis();
    System.out.print("TreeMap");
    for(long i = 0; i < REPS; i++)
      new TreeMap();
    t2 = System.currentTimeMillis();
    System.out.println(": " + (t2 - t1));
    t1 = System.currentTimeMillis();
    System.out.print("HashMap");
    for(long i = 0; i < REPS; i++)
      new HashMap();
    t2 = System.currentTimeMillis();
    System.out.println(": " + (t2 - t1));
  }
} ///:~

At the time this program was written, the creation speed of TreeMap was dramatically
faster than the other two types. (Although you should try it, since there was talk of
performance improvements to ArrayMap.) This, along with the acceptable and consistent
put( ) performance of TreeMap, suggests a possible strategy if you’re creating many Maps,
and only later in your program doing many lookups: Create and fill TreeMaps, and when
you start looking things up, convert the important TreeMaps into HashMaps using the
HashMap(Map) constructor. Again, you should only worry about this sort of thing after
it’s been proven that you have a performance bottleneck. (“First make it work, then make it
fast – if you must.”)

Unsupported operations
It’s possible to turn an array into a List with the static Arrays.toList( ) method:

//: Unsupported.java
// Sometimes methods defined in the Collection
// interfaces don't work!
package c08.newcollections;
import java.util.*;

public class Unsupported {
  private static String[] s = {
    "one", "two", "three", "four", "five",
    "six", "seven", "eight", "nine", "ten",
  };
  static List a = Arrays.toList(s);
  static List a2 = Arrays.toList(
    new String[] { s[3], s[4], s[5] });
  public static void main(String[] args) {
    Collection1.print(a); // Iteration
    System.out.println(
      "a.contains(" + s[0] + ") = " +
      a.contains(s[0]));
    System.out.println(
      "a.containsAll(a2) = " +
      a.containsAll(a2));



318 Thinking in Java  www.BruceEckel.com

    System.out.println("a.isEmpty() = " +
      a.isEmpty());
    System.out.println(
      "a.indexOf(" + s[5] + ") = " +
      a.indexOf(s[5]));
    // Traverse backwards:
    ListIterator lit = a.listIterator(a.size());
    while(lit.hasPrevious())
      System.out.print(lit.previous());
    System.out.println();
    // Set the elements to different values:
    for(int i = 0; i < a.size(); i++)
      a.set(i, "47");
    Collection1.print(a);
    // Compiles, but won't run:
    lit.add("X"); // Unsupported operation
    a.clear(); // Unsupported
    a.add("eleven"); // Unsupported
    a.addAll(a2); // Unsupported
    a.retainAll(a2); // Unsupported
    a.remove(s[0]); // Unsupported
    a.removeAll(a2); // Unsupported
  }
} ///:~

You’ll discover that only a portion of the Collection and List interfaces are actually
implemented. The rest of the methods cause the unwelcome appearance of something called
an UnsupportedOperationException. You’ll learn all about exceptions in the next chapter,
but the short story is that the Collection interface, as well as some of the other interfaces
in the new collections library, contain “optional” methods, which might or might not be
“supported” in the concrete class that implements that interface. Calling an unsupported
method causes an UnsupportedOperationException to indicate a programming error.

“What?!?” you say, incredulous. “The whole point of interfaces and base classes is that they
promise these methods will do something meaningful! This breaks that promise – it says
that not only will calling some methods not perform a meaningful behavior, they will stop
the program! Type safety was just thrown out the window!” It’s not quite that bad. With a
Collection, List, Set, or Map, the compiler still restricts you to calling only the methods in
that interface, so it’s not like Smalltalk (in which you can call any method for any object,
and find out only when you run the program whether your call does anything). In addition,
most methods that take a Collection as an argument only read from that Collection –all the
“read” methods of Collection are not optional.

This approach prevents an explosion of interfaces in the design. Other designs for collection
libraries always seem to end up with a confusing plethora of interfaces to describe each of
the variations on the main theme and are thus difficult to learn. It’s not even possible to
capture all of the special cases in interfaces, because someone can always invent a new
interface. The “unsupported operation” approach achieves an important goal of the new
collections library: it is simple to learn and use. For this approach to work, however:

1. The UnsupportedOperationException must be a rare event. That is, for most classes all
operations should work, and only in special cases should an operation be unsupported.
This is true in the new collections library, since the classes you’ll use 99 percent of the
time – ArrayList, LinkedList, HashSet, and HashMap, as well as the other concrete



Chapter 8: Holding Your Objects 319

implementations – support all of the operations. The design does provide a “back door” if
you want to create a new Collection without providing meaningful definitions for all
the methods in the Collection interface, and yet still fit it into the existing library.

2. When an operation is unsupported, there should be reasonable likelihood that an
UnsupportedOperationException will appear at implementation time, rather than
after you’ve shipped the product to the customer. After all, it indicates a programming
error: you’ve used a class incorrectly. This point is less certain, and is where the
experimental nature of this design comes into play. Only over time will we find out how
well it works.

In the example above, Arrays.toList( ) produces a List that is backed by a fixed-size array.
Therefore it makes sense that the only supported operations are the ones that don’t change
the size of the array. If, on the other hand, a new interface were required to express this
different kind of behavior (called, perhaps, “FixedSizeList”), it would throw open the door to
complexity and soon you wouldn’t know where to start when trying to use the library.

The documentation for a method that takes a Collection, List, Set, or Map as an argument
should specify which of the optional methods must be implemented. For example, sorting
requires the set( ) and Iterator.set( ) methods but not add( ) and remove( ).

Sorting and searching
Java 1.2 adds utilities to perform sorting and searching for arrays or Lists. These utilities
are static methods of two new classes: Arrays for sorting and searching arrays, and
Collections for sorting and searching Lists.

Arrays
The Arrays class has an overloaded sort( ) and binarySearch( ) for arrays of all the
primitive types, as well as for String and Object. Here’s an example that shows sorting and
searching an array of byte (all the other primitives look the same) and an array of String:

//: Array1.java
// Testing the sorting & searching in Arrays
package c08.newcollections;
import java.util.*;

public class Array1 {
  static Random r = new Random();
  static String ssource =
    "ABCDEFGHIJKLMNOPQRSTUVWXYZ" +
    "abcdefghijklmnopqrstuvwxyz";
  static char[] src = ssource.toCharArray();
  // Create a random String
  public static String randString(int length) {
    char[] buf = new char[length];
    int rnd;
    for(int i = 0; i < length; i++) {
      rnd = Math.abs(r.nextInt()) % src.length;
      buf[i] = src[rnd];
    }
    return new String(buf);
  }



320 Thinking in Java  www.BruceEckel.com

  // Create a random array of Strings:
  public static
  String[] randStrings(int length, int size) {
    String[] s = new String[size];
    for(int i = 0; i < size; i++)
      s[i] = randString(length);
    return s;
  }
  public static void print(byte[] b) {
    for(int i = 0; i < b.length; i++)
      System.out.print(b[i] + " ");
    System.out.println();
  }
  public static void print(String[] s) {
    for(int i = 0; i < s.length; i++)
      System.out.print(s[i] + " ");
    System.out.println();
  }
  public static void main(String[] args) {
    byte[] b = new byte[15];
    r.nextBytes(b); // Fill with random bytes
    print(b);
    Arrays.sort(b);
    print(b);
    int loc = Arrays.binarySearch(b, b[10]);
    System.out.println("Location of " + b[10] +
      " = " + loc);
    // Test String sort & search:
    String[] s = randStrings(4, 10);
    print(s);
    Arrays.sort(s);
    print(s);
    loc = Arrays.binarySearch(s, s[4]);
    System.out.println("Location of " + s[4] +
      " = " + loc);
  }
} ///:~

The first part of the class contains utilities to generate random String objects using an array
of characters from which random letters can be selected. randString( ) returns a string of
any length, and randStrings( ) creates an array of random Strings, given the length of each
String and the desired size of the array. The two print( ) methods simplify the display of the
sample arrays. In main( ), Random.nextBytes( ) fills the array argument with randomly-
selected bytes. (There are no corresponding Random methods to create arrays of the other
primitive data types.) Once you have an array, you can see that it’s only a single method call
to perform a sort( ) or binarySearch( ). There’s an important warning concerning
binarySearch( ): If you do not call sort( ) before you perform a binarySearch( ),
unpredictable behavior can occur, including infinite loops.

Sorting and searching with Strings looks the same, but when you run the program you’ll
notice something interesting: the sorting is lexicographic, so uppercase letters precede
lowercase letters in the character set. Thus, all the capital letters are at the beginning of the
list, followed by the lowercase letters, so ‘Z’ precedes ‘a’. It turns out that even telephone
books are typically sorted this way.



Chapter 8: Holding Your Objects 321

Comparable and Comparator
What if this isn’t what you want? For example, the index in this book would not be too
useful if you had to look in two places for everything that begins with ‘A’ or ‘a’.

When you want to sort an array of Object, there’s a problem. What determines the ordering
of two Objects? Unfortunately, the original Java designers didn’t consider this an important
problem, or it would have been defined in the root class Object. As a result, ordering must
be imposed on Objects from the outside, and the new collections library provides a standard
way to do this (which is almost as good as defining it in Object).

There is a sort( ) for arrays of Object (and String, of course, is an Object) that takes a
second argument: an object that implements the Comparator interface (part of the new
collections library) and performs comparisons with its single compare( ) method. This
method takes the two objects to be compared as its arguments and returns a negative integer
if the first argument is less than the second, zero if they’re equal, and a positive integer if the
first argument is greater than the second. With this knowledge, the String portion of the
example above can be re-implemented to perform an alphabetic sort:

//: AlphaComp.java
// Using Comparator to perform an alphabetic sort
package c08.newcollections;
import java.util.*;

public class AlphaComp implements Comparator {
  public int compare(Object o1, Object o2) {
    // Assume it's used only for Strings...
    String s1 = ((String)o1).toLowerCase();
    String s2 = ((String)o2).toLowerCase();
    return s1.compareTo(s2);
  }
  public static void main(String[] args) {
    String[] s = Array1.randStrings(4, 10);
    Array1.print(s);
    AlphaComp ac = new AlphaComp();
    Arrays.sort(s, ac);
    Array1.print(s);
    // Must use the Comparator to search, also:
    int loc = Arrays.binarySearch(s, s[3], ac);
    System.out.println("Location of " + s[3] +
     " = " + loc);
  }
} ///:~

By casting to String, the compare( ) method implicitly tests to ensure that it is used only
with String objects – the run-time system will catch any discrepancies. After forcing both
Strings to lower case, the String.compareTo( ) method produces the desired results.

When you use your own Comparator to perform a sort( ), you must use that same
Comparator when using binarySearch( ).

The Arrays class has another sort( ) method that takes a single argument: an array of
Object, but with no Comparator. This sort( ) method must also have some way to compare
two Objects. It uses the natural comparison method that is imparted to a class by
implementing the Comparable interface. This interface has a single method,



322 Thinking in Java  www.BruceEckel.com

compareTo( ), which compares the object to its argument and returns negative, zero, or
positive depending on whether it is less than, equal to, or greater than the argument. A
simple example demonstrates this:

//: CompClass.java
// A class that implements Comparable
package c08.newcollections;
import java.util.*;

public class CompClass implements Comparable {
  private int i;
  public CompClass(int ii) { i = ii; }
  public int compareTo(Object o) {
    // Implicitly tests for correct type:
    int argi = ((CompClass)o).i;
    if(i == argi) return 0;
    if(i < argi) return -1;
    return 1;
  }
  public static void print(Object[] a) {
    for(int i = 0; i < a.length; i++)
      System.out.print(a[i] + " ");
    System.out.println();
  }
  public String toString() { return i + ""; }
  public static void main(String[] args) {
    CompClass[] a = new CompClass[20];
    for(int i = 0; i < a.length; i++)
      a[i] = new CompClass(
        (int)(Math.random() *100));
    print(a);
    Arrays.sort(a);
    print(a);
    int loc = Arrays.binarySearch(a, a[3]);
    System.out.println("Location of " + a[3] +
     " = " + loc);
  }
} ///:~

Of course, your compareTo( ) method can be as complex as necessary.

Lists
A List can be sorted and searched in the same fashion as an array. The static methods to sort
and search a List are contained in the class Collections, but they have similar signatures as
the ones in Arrays: sort(List) to sort a List of objects that implement Comparable,
binarySearch(List, Object) to find an object in the list, sort(List, Comparator) to sort a
List using a Comparator, and binarySearch(List, Object, Comparator) to find an object in



Chapter 8: Holding Your Objects 323

that list.9 This example uses the previously-defined CompClass and AlphaComp to
demonstrate the sorting tools in Collections:

//: ListSort.java
// Sorting and searching Lists with 'Collections'
package c08.newcollections;
import java.util.*;

public class ListSort {
  public static void main(String[] args) {
    final int SZ = 20;
    // Using "natural comparison method":
    List a = new ArrayList();
    for(int i = 0; i < SZ; i++)
      a.add(new CompClass(
        (int)(Math.random() *100)));
    Collection1.print(a);
    Collections.sort(a);
    Collection1.print(a);
    Object find = a.get(SZ/2);
    int loc = Collections.binarySearch(a, find);
    System.out.println("Location of " + find +
     " = " + loc);
    // Using a Comparator:
    List b = new ArrayList();
    for(int i = 0; i < SZ; i++)
      b.add(Array1.randString(4));
    Collection1.print(b);
    AlphaComp ac = new AlphaComp();
    Collections.sort(b, ac);
    Collection1.print(b);
    find = b.get(SZ/2);
    // Must use the Comparator to search, also:
    loc = Collections.binarySearch(b, find, ac);
    System.out.println("Location of " + find +
     " = " + loc);
  }
} ///:~

The use of these methods is identical to the ones in Arrays, but you’re using a List instead of
an array.

The TreeMap must also order its objects according to Comparable or Comparator.

Utilities
There are a number of other useful utilities in the Collections class:

                                                

9 At the time of this writing, a Collections.stableSort( ) had been announced, to perform a merge
sort, but it was unavailable for testing.



324 Thinking in Java  www.BruceEckel.com

enumeration(Collection) Produces an old-style
Enumeration for the argument.

max(Collection)
min(Collection)

Produces the maximum or
minimum element in the argument
using the natural comparison
method of the objects in the
Collection.

max(Collection, Comparator)
min(Collection, Comparator)

Produces the maximum or
minimum element in the
Collection using the Comparator.

nCopies(int n, Object o) Returns an immutable List of size
n whose handles all point to o.

subList(List, int min, int max) Returns a new List backed by the
specified argument List that is a
window into that argument with
indexes starting at min and
stopping just before max.

Note that min( ) and max( ) work with Collection objects, not with Lists, so you don’t need
to worry about whether the Collection should be sorted or not. (As mentioned earlier, you
do need to sort( ) a List or an array before performing a binarySearch( ).)

Making a CCollection or MMap unmodifiable
Often it is convenient to create a read-only version of a Collection or Map. The Collections
class allows you to do this by passing the original container into a method that hands back a
read-only version. There are four variations on this method, one each for Collection (if you
don’t want to treat a Collection as a more specific type), List, Set, and Map. This example
shows the proper way to build read-only versions of each:

//: ReadOnly.java
// Using the Collections.unmodifiable methods
package c08.newcollections;
import java.util.*;

public class ReadOnly {
  public static void main(String[] args) {
    Collection c = new ArrayList();
    Collection1.fill(c); // Insert useful data
    c = Collections.unmodifiableCollection(c);
    Collection1.print(c); // Reading is OK
    //! c.add("one"); // Can't change it

    List a = new ArrayList();
    Collection1.fill(a);
    a = Collections.unmodifiableList(a);
    ListIterator lit = a.listIterator();
    System.out.println(lit.next()); // Reading OK
    //! lit.add("one"); // Can't change it

    Set s = new HashSet();
    Collection1.fill(s);



Chapter 8: Holding Your Objects 325

    s = Collections.unmodifiableSet(s);
    Collection1.print(s); // Reading OK
    //! s.add("one"); // Can't change it

    Map m = new HashMap();
    Map1.fill(m, Map1.testData1);
    m = Collections.unmodifiableMap(m);
    Map1.print(m); // Reading OK
    //! m.put("Ralph", "Howdy!");
  }
} ///:~

In each case, you must fill the container with meaningful data before you make it read-only.
Once it is loaded, the best approach is to replace the existing handle with the handle that is
produced by the “unmodifiable” call. That way, you don’t run the risk of accidentally
changing the contents once you’ve made it unmodifiable. On the other hand, this tool also
allows you to keep a modifiable container as private within a class and to return a read-
only handle to that container from a method call. So you can change it from within the class
but everyone else can only read it.

Calling the “unmodifiable” method for a particular type does not cause compile-time
checking, but once the transformation has occurred, any calls to methods that modify the
contents of a particular container will produce an UnsupportedOperationException.

Synchronizing a CCollection or MMap
The synchronized keyword is an important part of the subject of multithreading, a more
complicated topic that will not be introduced until Chapter 14. Here, I shall note only that
the Collections class contains a way to automatically synchronize an entire container. The
syntax is similar to the “unmodifiable” methods:

//: Synchronization.java
// Using the Collections.synchronized methods
package c08.newcollections;
import java.util.*;

public class Synchronization {
  public static void main(String[] args) {
    Collection c =
      Collections.synchronizedCollection(
        new ArrayList());
    List list = Collections.synchronizedList(
      new ArrayList());
    Set s = Collections.synchronizedSet(
      new HashSet());
    Map m = Collections.synchronizedMap(
      new HashMap());
  }
} ///:~

In this case, you immediately pass the new container through the appropriate
“synchronized” method; that way there’s no chance of accidentally exposing the
unsynchronized version.



326 Thinking in Java  www.BruceEckel.com

The new collections also have a mechanism to prevent more than one process from
modifying the contents of a container. The problem occurs if you’re iterating through a
container and some other process steps in and inserts, removes, or changes an object in that
container. Maybe you’ve already passed that object, maybe it’s ahead of you, maybe the size
of the container shrinks after you call size( ) – there are many scenarios for disaster. The
new collections library incorporates a fail fast mechanism that looks for any changes to the
container other than the ones your process is personally responsible for. If it detects that
someone else is modifying the container, it immediately produces a
ConcurrentModificationException. This is the “fail-fast” aspect – it doesn’t try to detect a
problem later on using a more complex algorithm.

Summary
To review the collections provided in the standard Java (1.0 and 1.1) library (BitSet is not
included here since it’s more of a special-purpose class):

1. An array associates numerical indices to objects. It holds objects of a known type so you
don’t have to cast the result when you’re looking up an object. It can be
multidimensional, and it can hold primitives. However, its size cannot be changed once
you create it.

2. A Vector also associates numerical indices to objects – you can think of arrays and
Vectors as random-access collections. The Vector automatically resizes itself as you add
more elements. But a Vector can hold only Object handles, so it won’t hold primitives
and you must always cast the result when you pull an Object handle out of a collection.

3. A Hashtable is a type of Dictionary, which is a way to associate, not numbers, but
objects with other objects. A Hashtable also supports random access to objects, in fact,
its whole design is focused around rapid access.

4. A Stack is a last-in, first-out (LIFO) queue.

If you’re familiar with data structures, you might wonder why there’s not a larger set of
collections. From a functionality standpoint, do you really need a larger set of collections?
With a Hashtable, you can put things in and find them quickly, and with an Enumeration,
you can iterate through the sequence and perform an operation on every element in the
sequence. That’s a powerful tool, and maybe it should be enough.

But a Hashtable has no concept of order. Vectors and arrays give you a linear order, but it’s
expensive to insert an element into the middle of either one. In addition, queues, dequeues,
priority queues, and trees are about ordering the elements, not just putting them in and later
finding them or moving through them linearly. These data structures are also useful, and
that’s why they were included in Standard C++. For this reason, you should consider the
collections in the standard Java library only as a starting point, and, if you must use Java
1.0 or 1.1, use the JGL when your needs go beyond that.

If you can use Java 1.2 you should use only the new collections, which are likely to satisfy
all your needs. Note that the bulk of this book was created using Java 1.1, so you’ll see that
the collections used through the rest of the book are the ones that are available only in Java
1.1: Vector and Hashtable. This is a somewhat painful restriction at times, but it provides
better backward compatibility with older Java code. If you’re writing new code in Java 1.2,
the new collections will serve you much better.



Chapter 8: Holding Your Objects 327

Exercises
 1.  Create a new class called Gerbil with an int gerbilNumber that’s initialized in the

constructor (similar to the Mouse example in this chapter). Give it a method called hop( )
that prints out which gerbil number this is and that it’s hopping. Create a Vector and add
a bunch of Gerbil objects to the Vector. Now use the elementAt( ) method to move
through the Vector and call hop( ) for each Gerbil.

 2.  Modify Exercise 1 so you use an Enumeration to move through the Vector while calling
hop( ).

 3.  In AssocArray.java, change the example so it uses a Hashtable instead of an AssocArray.

 4.  Take the Gerbil class in Exercise 1 and put it into a Hashtable instead, associating the
name of the Gerbil as a String (the key) for each Gerbil (the value) you put in the table.
Get an Enumeration for the keys( ) and use it to move through the Hashtable, looking
up the Gerbil for each key and printing out the key and telling the gerbil to hop( ).

 5.  Change Exercise 1 in Chapter 7 to use a Vector to hold the Rodents and an Enumeration
to move through the sequence of Rodents. Remember that a Vector holds only Objects so
you must use a cast (i.e.: RTTI) when accessing individual Rodents.

 6.  (Intermediate) In Chapter 7, locate the GreenhouseControls.java example, which consists
of three files. In Controller.java, the class EventSet is just a collection. Change the code to
use a Stack instead of an EventSet. This will require more than just replacing EventSet
with Stack; you’ll also need to use an Enumeration to cycle through the set of events.
You’ll probably find it easier if at times you treat the collection as a Stack and at other
times as a Vector.

 7.  (Challenging). Find the source code for Vector in the Java source code library that comes
with all Java distributions. Copy this code and make a special version called intVector that
holds only ints. Consider what it would take to make a special version of Vector for all the
primitive types. Now consider what happens if you want to make a linked list class that
works with all the primitive types. If parameterized types are ever implemented in Java,
they will provide a way to do this work for you automatically (as well as many other
benefits).



329

e

9: Error handling
with exceptions

The basic philosophy of Java is that “badly-formed code will not be run.”
As with C++, the ideal time to catch the error is at compile time, before you even try to run
the program. However, not all errors can be detected at compile time. The rest of the
problems must be handled at run-time through some formality that allows the originator of
the error to pass appropriate information to a recipient who will know how to handle the
difficulty properly.

In C and other earlier languages, there could be several of these formalities, and they were
generally established by convention and not as part of the programming language. Typically,
you returned a special value or set a flag, and the recipient was supposed to look at the value
or the flag and determine that something was amiss. However, as the years passed, it was
discovered that programmers who use a library tend to think of themselves as invincible, as
in, “Yes, errors might happen to others but not in my code.” So, not too surprisingly, they
wouldn’t check for the error conditions (and sometimes the error conditions were too silly to
check for1). If you were thorough enough to check for an error every time you called a
method, your code could turn into an unreadable nightmare. Because programmers could
still coax systems out of these languages they were resistant to admitting the truth: This
approach to handling errors was a major limitation to creating large, robust, maintainable
programs.

The solution is to take the casual nature out of error handling and to enforce formality. This
actually has a long history, since implementations of exception handling go back to operating

                                                

1 The C programmer can look up the return value of printf( ) for an example of this.



330 Thinking in Java  www.BruceEckel.com

systems in the 1960s and even to BASIC’s on error goto. But C++ exception handling was
based on Ada, and Java’s is based primarily on C++ (although it looks even more like Object
Pascal).

The word “exception” is meant in the sense of “I take exception to that.” At the point where
the problem occurs you might not know what to do with it, but you do know that you
can’t just continue on merrily; you must stop and somebody, somewhere, must figure out
what to do. But you don’t have enough information in the current context to fix the
problem. So you hand the problem out to a higher context where someone is qualified to
make the proper decision (much like a chain of command).

The other rather significant benefit of exceptions is that they clean up error handling code.
Instead of checking for a particular error and dealing with it at multiple places in your
program, you no longer need to check at the point of the method call (since the exception
will guarantee that someone catches it). And, you need to handle the problem in only one
place, the so-called exception handler. This saves you code and it separates the code that
describes what you want to do from the code that is executed when things go awry. In
general, reading, writing, and debugging code becomes much clearer with exceptions than
when using the old way.

Because exception handling is enforced by the Java compiler, there are only so many
examples that can be written in this book without learning about exception handling. This
chapter introduces you to the code you need to write to properly handle the exceptions, and
the way you can generate your own exceptions if one of your methods gets into trouble.

Basic exceptions
An exceptional condition is a problem that prevents the continuation of the method or scope
that you’re in. It’s important to distinguish an exceptional condition from a normal
problem, in which you have enough information in the current context to somehow cope
with the difficulty. With an exceptional condition, you cannot continue processing because
you don’t have the information necessary to deal with the problem in the current context. All
you can do is jump out of the current context and relegate that problem to a higher context.
This is what happens when you throw an exception.

A simple example is a divide. If you’re about to divide by zero, it’s worth checking to make
sure you don’t go ahead and perform the divide. But what does it mean that the
denominator is zero? Maybe you know, in the context of the problem you’re trying to solve
in that particular method, how to deal with a zero denominator. But if it’s an unexpected
value, you can’t deal with it and so must throw an exception rather than continuing along
that path.

When you throw an exception, several things happen. First, the exception object is created in
the same way that any Java object is created: on the heap, with new. Then the current path
of execution (the one you couldn’t continue, remember) is stopped and the handle for the
exception object is ejected from the current context. At this point the exception-handling
mechanism takes over and begins to look for an appropriate place to continue executing the
program. This appropriate place is the exception handler, whose job is to recover from the
problem so the program can either try another tack or simply continue.

As a simple example of throwing an exception, consider an object handle called t. It’s possible
that you might be passed a handle that hasn’t been initialized, so you might want to check
before trying to call a method using that object handle. You can send information about the



Chapter 9: Error Handling with Exceptions 331

error into a larger context by creating an object representing your information and
“throwing” it out of your current context. This is called throwing an exception. Here’s what it
looks like:

if(t == null)
  throw new NullPointerException();

This throws the exception, which allows you – in the current context – to abdicate
responsibility for thinking about the issue further. It’s just magically handled somewhere
else. Precisely where will be shown shortly.

Exception arguments
Like any object in Java, you always create exceptions on the heap using new and a
constructor gets called. There are two constructors in all the standard exceptions; the first is
the default constructor, and the second takes a string argument so you can place pertinent
information in the exception:

if(t == null)
  throw new NullPointerException("t = null");

This string can later be extracted using various methods, as will be shown later.

The keyword throw causes a number of relatively magical things to happen. First it executes
the new-expression to create an object that isn’t there under normal program execution, and
of course, the constructor is called for that object. Then the object is, in effect, “returned”
from the method, even though that object type isn’t normally what the method is designed
to return. A simplistic way to think about exception handling is as an alternate return
mechanism, although you get into trouble if you take that analogy too far. You can also exit
from ordinary scopes by throwing an exception. But a value is returned, and the method or
scope exits.

Any similarity to an ordinary return from a method ends here, because where you return is
someplace completely different from where you return for a normal method call. (You end
up in an appropriate exception handler that might be miles away – many levels lower on the
call stack – from where the exception was thrown.)

In addition, you can throw any type of Throwable object that you want. Typically, you’ll
throw a different class of exception for each different type of error. The idea is to store the
information in the exception object and in the type of exception object chosen, so someone in
the bigger context can figure out what to do with your exception. (Often, the only
information is the type of exception object, and nothing meaningful is stored within the
exception object.)

Catching an exception
If a method throws an exception, it must assume that exception is caught and dealt with.
One of the advantages of Java exception handling is that it allows you to concentrate on the
problem you’re trying to solve in one place, and then deal with the errors from that code in
another place.



332 Thinking in Java  www.BruceEckel.com

To see how an exception is caught, you must first understand the concept of a guarded
region, which is a section of code that might produce exceptions, and is followed by the code
to handle those exceptions.

The ttry block
If you’re inside a method and you throw an exception (or another method you call within
this method throws an exception), that method will exit in the process of throwing. If you
don’t want a throw to leave a method, you can set up a special block within that method to
capture the exception. This is called the try block because you “try” your various method
calls there. The try block is an ordinary scope, preceded by the keyword try:

try {
  // Code that might generate exceptions
}

If you were checking for errors carefully in a programming language that didn’t support
exception handling, you’d have to surround every method call with setup and error testing
code, even if you call the same method several times. With exception handling, you put
everything in a try block and capture all the exceptions in one place. This means your code is
a lot easier to write and easier to read because the goal of the code is not confused with the
error checking.

Exception handlers
Of course, the thrown exception must end up someplace. This “place” is the exception
handler, and there’s one for every exception type you want to catch. Exception handlers
immediately follow the try block and are denoted by the keyword catch:

try {
  // Code that might generate exceptions
} catch(Type1 id1) {
  // Handle exceptions of Type1
} catch(Type2 id2) {
  // Handle exceptions of Type2
} catch(Type3 id3) {
  // Handle exceptions of Type3
}

// etc...

Each catch clause (exception handler) is like a little method that takes one and only one
argument of a particular type. The identifier (id1, id2, and so on) can be used inside the
handler, just like a method argument. Sometimes you never use the identifier because the
type of the exception gives you enough information to deal with the exception, but the
identifier must still be there.

The handlers must appear directly after the try block. If an exception is thrown, the
exception-handling mechanism goes hunting for the first handler with an argument that
matches the type of the exception. Then it enters that catch clause, and the exception is
considered handled. (The search for handlers stops once the catch clause is finished.) Only the
matching catch clause executes; it’s not like a switch statement in which you need a break
after each case to prevent the remaining ones from executing.



Chapter 9: Error Handling with Exceptions 333

Note that, within the try block, a number of different method calls might generate the same
exception, but you need only one handler.

Termination vs. resumption
There are two basic models in exception-handling theory. In termination (which is what Java
and C++ support), you assume the error is so critical there’s no way to get back to where
the exception occurred. Whoever threw the exception decided that there was no way to
salvage the situation, and they don’t want to come back.

The alternative is called resumption. It means that the exception handler is expected to do
something to rectify the situation, and then the faulting method is retried, presuming
success the second time. If you want resumption, it means you still hope to continue
execution after the exception is handled. In this case, your exception is more like a method
call – which is how you should set up situations in Java in which you want resumption-like
behavior. (That is, don’t throw an exception; call a method that fixes the problem.)
Alternatively, place your try block inside a while loop that keeps reentering the try block
until the result is satisfactory.

Historically, programmers using operating systems that supported resumptive exception
handling eventually ended up using termination-like code and skipping resumption. So
although resumption sounds attractive at first, it seems it isn’t quite so useful in practice.
The dominant reason is probably the coupling that results: your handler must often be aware
of where the exception is thrown from and contain non-generic code specific to the throwing
location. This makes the code difficult to write and maintain, especially for large systems
where the exception can be generated from many points.

The exception specification
In Java, you’re required to inform the client programmer, who calls your method, of the
exceptions that might be thrown from your method. This is civilized because the caller can
know exactly what code to write to catch all potential exceptions. Of course, if source code is
available, the client programmer could hunt through and look for throw statements, but
often a library doesn’t come with sources. To prevent this from being a problem, Java
provides syntax (and forces you to use that syntax) to allow you to politely tell the client
programmer what exceptions this method throws, so the client programmer can handle
them. This is the exception specification and it’s part of the method declaration, appearing
after the argument list.

The exception specification uses an additional keyword, throws, followed by a list of all the
potential exception types. So your method definition might look like this:

void f() throws tooBig, tooSmall, divZero { //...

If you say

void f() { // ...

it means that no exceptions are thrown from the method. (Except for the exceptions of type
RuntimeException, which can reasonably be thrown anywhere – this will be described
later.)

You can’t lie about an exception specification – if your method causes exceptions and doesn’t
handle them, the compiler will detect this and tell you that you must either handle the
exception or indicate with an exception specification that it may be thrown from your



334 Thinking in Java  www.BruceEckel.com

method. By enforcing exception specifications from top to bottom, Java guarantees that
exception correctness can be ensured at compile time.2

There is one place you can lie: you can claim to throw an exception that you don’t. The
compiler takes your word for it and forces the users of your method to treat it as if it really
does throw that exception. This has the beneficial effect of being a placeholder for that
exception, so you can actually start throwing the exception later without requiring changes
to existing code.

Catching any exception
It is possible to create a handler that catches any type of exception. You do this by catching
the base-class exception type Exception (there are other types of base exceptions, but
Exception is the base that’s pertinent to virtually all programming activities):

catch(Exception e) {
  System.out.println("caught an exception");
}

This will catch any exception, so if you use it you’ll want to put it at the end of your list of
handlers to avoid pre-empting any exception handlers that might otherwise follow it.

Since the Exception class is the base of all the exception classes that are important to the
programmer, you don’t get much specific information about the exception, but you can call
the methods that come from its base type Throwable:

String getMessage( )
Gets the detail message.

String toString( )
Returns a short description of the Throwable, including the detail message if there is one.

void printStackTrace( )
void printStackTrace(PrintStream)
Prints the Throwable and the Throwable’s call stack trace. The call stack shows the sequence
of method calls that brought you to the point at which the exception was thrown.

The first version prints to standard error, the second prints to a stream of your choice. If
you’re working under Windows, you can’t redirect standard error so you might want to use
the second version and send the results to System.out; that way the output can be
redirected any way you want.

In addition, you get some other methods from Throwable’s base type Object (everybody’s
base type). The one that might come in handy for exceptions is getClass( ), which returns an
object representing the class of this object. You can in turn query this Class object for its
name with getName( ) or toString( ). You can also do more sophisticated things with Class
objects that aren’t necessary in exception handling. Class objects will be studied later in the
book.

Here’s an example that shows the use of the Exception methods: (See page 94 if you have
trouble executing this program.)

                                                

2 This is a significant improvement over C++ exception handling, which doesn’t catch violations of
exception specifications until run time, when it’s not very useful.



Chapter 9: Error Handling with Exceptions 335

//: ExceptionMethods.java
// Demonstrating the Exception Methods
package c09;

public class ExceptionMethods {
  public static void main(String[] args) {
    try {
      throw new Exception("Here's my Exception");
    } catch(Exception e) {
      System.out.println("Caught Exception");
      System.out.println(
        "e.getMessage(): " + e.getMessage());
      System.out.println(
        "e.toString(): " + e.toString());
      System.out.println("e.printStackTrace():");
      e.printStackTrace();
    }
  }
} ///:~

The output for this program is:

Caught Exception
e.getMessage(): Here's my Exception
e.toString(): java.lang.Exception: Here's my Exception
e.printStackTrace():
java.lang.Exception: Here's my Exception
        at ExceptionMethods.main

You can see that the methods provide successively more information – each is effectively a
superset of the previous one.

Rethrowing an exception
Sometimes you’ll want to rethrow the exception that you just caught, particularly when
you use Exception to catch any exception. Since you already have the handle to the current
exception, you can simply re-throw that handle:

catch(Exception e) {
  System.out.println("An exception was thrown");
  throw e;
}

Rethrowing an exception causes the exception to go to the exception handlers in the next-
higher context. Any further catch clauses for the same try block are still ignored. In
addition, everything about the exception object is preserved, so the handler at the higher
context that catches the specific exception type can extract all the information from that
object.

If you simply re-throw the current exception, the information that you print about that
exception in printStackTrace( ) will pertain to the exception’s origin, not the place where
you re-throw it. If you want to install new stack trace information, you can do so by calling
fillInStackTrace( ), which returns an exception object that it creates by stuffing the current
stack information into the old exception object. Here’s what it looks like:



336 Thinking in Java  www.BruceEckel.com

//: Rethrowing.java
// Demonstrating fillInStackTrace()

public class Rethrowing {
  public static void f() throws Exception {
    System.out.println(
      "originating the exception in f()");
    throw new Exception("thrown from f()");
  }
  public static void g() throws Throwable {
    try {
      f();
    } catch(Exception e) {
      System.out.println(
        "Inside g(), e.printStackTrace()");
      e.printStackTrace();
      throw e; // 17
      // throw e.fillInStackTrace(); // 18
    }
  }
  public static void
  main(String[] args) throws Throwable {
    try {
      g();
    } catch(Exception e) {
      System.out.println(
        "Caught in main, e.printStackTrace()");
      e.printStackTrace();
    }
  }
} ///:~

The important line numbers are marked inside of comments. With line 17 un-commented (as
shown), the output is:

originating the exception in f()
Inside g(), e.printStackTrace()
java.lang.Exception: thrown from f()
        at Rethrowing.f(Rethrowing.java:8)
        at Rethrowing.g(Rethrowing.java:12)
        at Rethrowing.main(Rethrowing.java:24)
Caught in main, e.printStackTrace()
java.lang.Exception: thrown from f()
        at Rethrowing.f(Rethrowing.java:8)
        at Rethrowing.g(Rethrowing.java:12)
        at Rethrowing.main(Rethrowing.java:24)

So the exception stack trace always remembers its true point of origin, no matter how many
times it gets rethrown.

With line 17 commented and line 18 un-commented, fillInStackTrace( ) is used instead, and
the result is:

originating the exception in f()
Inside g(), e.printStackTrace()



Chapter 9: Error Handling with Exceptions 337

java.lang.Exception: thrown from f()
        at Rethrowing.f(Rethrowing.java:8)
        at Rethrowing.g(Rethrowing.java:12)
        at Rethrowing.main(Rethrowing.java:24)
Caught in main, e.printStackTrace()
java.lang.Exception: thrown from f()
        at Rethrowing.g(Rethrowing.java:18)
        at Rethrowing.main(Rethrowing.java:24)

Because of fillInStackTrace( ), line 18 becomes the new point of origin of the exception.

The class Throwable must appear in the exception specification for g( ) and main( ) because
fillInStackTrace( ) produces a handle to a Throwable object. Since Throwable is a base
class of Exception, it’s possible to get an object that’s a Throwable but not an Exception, so
the handler for Exception in main( ) might miss it. To make sure everything is in order, the
compiler forces an exception specification for Throwable. For example, the exception in the
following program is not caught in main( ):

//: ThrowOut.java
public class ThrowOut {
  public static void
  main(String[] args) throws Throwable {
    try {
      throw new Throwable();
    } catch(Exception e) {
      System.out.println("Caught in main()");
    }
  }
} ///:~

It’s also possible to rethrow a different exception from the one you caught. If you do this,
you get a similar effect as when you use fillInStackTrace( ): the information about the
original site of the exception is lost, and what you’re left with is the information pertaining
to the new throw:

//: RethrowNew.java
// Rethrow a different object from the one that
// was caught

public class RethrowNew {
  public static void f() throws Exception {
    System.out.println(
      "originating the exception in f()");
    throw new Exception("thrown from f()");
  }
  public static void main(String[] args) {
    try {
      f();
    } catch(Exception e) {
      System.out.println(
        "Caught in main, e.printStackTrace()");
      e.printStackTrace();
      throw new NullPointerException("from main");
    }
  }



338 Thinking in Java  www.BruceEckel.com

} ///:~

The output is:

originating the exception in f()
Caught in main, e.printStackTrace()
java.lang.Exception: thrown from f()
        at RethrowNew.f(RethrowNew.java:8)
        at RethrowNew.main(RethrowNew.java:13)
java.lang.NullPointerException: from main
        at RethrowNew.main(RethrowNew.java:18)

The final exception knows only that it came from main( ), and not from f( ). Note that
Throwable isn’t necessary in any of the exception specifications.

You never have to worry about cleaning up the previous exception, or any exceptions for
that matter. They’re all heap-based objects created with new, so the garbage collector
automatically cleans them all up.

Standard Java exceptions
Java contains a class called Throwable that describes anything that can be thrown as an
exception. There are two general types of Throwable objects (“types of” = “inherited from”).
Error represents compile-time and system errors that you don’t worry about catching
(except in special cases). Exception is the basic type that can be thrown from any of the
standard Java library class methods and from your methods and run-time accidents.

The best way to get an overview of the exceptions is to browse online Java documentation
from http://java.sun.com. (Of course, it’s easier to download it first.) It’s worth doing this
once just to get a feel for the various exceptions, but you’ll soon see that there isn’t anything
special between one exception and the next except for the name. Also, the number of
exceptions in Java keeps expanding; basically it’s pointless to print them in a book. Any new
library you get from a third-party vendor will probably have its own exceptions as well. The
important thing to understand is the concept and what you should do with the exceptions.

java.lang.Exception

This is the basic exception class your program can catch. Other exceptions are derived from
this. The basic idea is that the name of the exception represents the problem that occurred
and the exception name is intended to be relatively self-explanatory. The exceptions are not
all defined in java.lang; some are created to support other libraries such as util, net, and io,
which you can see from their full class names or what they are inherited from. For example,
all IO exceptions are inherited from java.io.IOException.

The special case of RRuntimeException
The first example in this chapter was

if(t == null)
  throw new NullPointerException();

It can be a bit horrifying to think that you must check for null on every handle that is
passed into a method (since you can’t know if the caller has passed you a valid handle).
Fortunately, you don’t – this is part of the standard run-time checking that Java performs



Chapter 9: Error Handling with Exceptions 339

for you, and if any call is made to a null handle, Java will automatically throw a
NullPointerException. So the above bit of code is always superfluous.

There’s a whole group of exception types that are in this category. They’re always thrown
automatically by Java and you don’t need to include them in your exception specifications.
Conveniently enough, they’re all grouped together by putting them under a single base class
called RuntimeException, which is a perfect example of inheritance: it establishes a family
of types that have some characteristics and behaviors in common. Also, you never need to
write an exception specification saying that a method might throw a RuntimeException,
since that’s just assumed. Because they indicate bugs, you virtually never catch a
RuntimeException – it’s dealt with automatically. If you were forced to check for
RuntimeExceptions your code could get messy. Even though you don’t typically catch
RuntimeExceptions, in your own packages you might choose to throw some of the
RuntimeExceptions.

What happens when you don’t catch such exceptions? Since the compiler doesn’t enforce
exception specifications for these, it’s quite plausible that a RuntimeException could
percolate all the way out to your main( ) method without being caught. To see what
happens in this case, try the following example:

//: NeverCaught.java
// Ignoring RuntimeExceptions

public class NeverCaught {
  static void f() {
    throw new RuntimeException("From f()");
  }
  static void g() {
    f();
  }
  public static void main(String[] args) {
    g();
  }
} ///:~

You can already see that a RuntimeException (or anything inherited from it) is a special
case, since the compiler doesn’t require an exception specification for these types.

The output is:

java.lang.RuntimeException: From f()
        at NeverCaught.f(NeverCaught.java:9)
        at NeverCaught.g(NeverCaught.java:12)
        at NeverCaught.main(NeverCaught.java:15)

So the answer is: If a RuntimeException gets all the way out to main( ) without being
caught, printStackTrace( ) is called for that exception as the program exits.

Keep in mind that it’s possible to ignore only RuntimeExceptions in your coding, since all
other handling is carefully enforced by the compiler. The reasoning is that a
RuntimeException represents a programming error:

1. An error you cannot catch (receiving a null handle handed to your method by a client
programmer, for example)



340 Thinking in Java  www.BruceEckel.com

2. An error that you, as a programmer, should have checked for in your code (such as
ArrayIndexOutOfBoundsException where you should have paid attention to the size of
the array).

You can see what a tremendous benefit it is to have exceptions in this case, since they help in
the debugging process.

It’s interesting to notice that you cannot classify Java exception handling as a single-purpose
tool. Yes, it is designed to handle those pesky run-time errors that will occur because of
forces outside your code’s control, but it’s also essential for certain types of programming
bugs that the compiler cannot detect.

Creating your own exceptions
You’re not stuck using the Java exceptions. This is important because you’ll often need to
create your own exceptions to denote a special error that your library is capable of creating,
but which was not foreseen when the Java hierarchy was created.

To create your own exception class, you’re forced to inherit from an existing type of
exception, preferably one that is close in meaning to your new exception. Inheriting an
exception is quite simple:

//: Inheriting.java
// Inheriting your own exceptions

class MyException extends Exception {
  public MyException() {}
  public MyException(String msg) {
    super(msg);
  }
}

public class Inheriting {
  public static void f() throws MyException {
    System.out.println(
      "Throwing MyException from f()");
    throw new MyException();
  }
  public static void g() throws MyException {
    System.out.println(
      "Throwing MyException from g()");
    throw new MyException("Originated in g()");
  }
  public static void main(String[] args) {
    try {
      f();
    } catch(MyException e) {
      e.printStackTrace();
    }
    try {
      g();
    } catch(MyException e) {
      e.printStackTrace();



Chapter 9: Error Handling with Exceptions 341

    }
  }
} ///:~

The inheritance occurs in the creation of the new class:

class MyException extends Exception {
  public MyException() {}
  public MyException(String msg) {
    super(msg);
  }
}

The key phrase here is extends Exception, which says “it’s everything an Exception is and
more.” The added code is small – the addition of two constructors that define the way
MyException is created. Remember that the compiler automatically calls the base-class
default constructor if you don’t explicitly call a base-class constructor, as in the
MyException( ) default constructor. In the second constructor, the base-class constructor
with a String argument is explicitly invoked by using the super keyword.

The output of the program is:

Throwing MyException from f()
MyException
        at Inheriting.f(Inheriting.java:16)
        at Inheriting.main(Inheriting.java:24)
Throwing MyException from g()
MyException: Originated in g()
        at Inheriting.g(Inheriting.java:20)
        at Inheriting.main(Inheriting.java:29)

You can see the absence of the detail message in the MyException thrown from f( ).

The process of creating your own exceptions can be taken further. You can add extra
constructors and members:

//: Inheriting2.java
// Inheriting your own exceptions

class MyException2 extends Exception {
  public MyException2() {}
  public MyException2(String msg) {
    super(msg);
  }
  public MyException2(String msg, int x) {
    super(msg);
    i = x;
  }
  public int val() { return i; }
  private int i;
}

public class Inheriting2 {
  public static void f() throws MyException2 {
    System.out.println(



342 Thinking in Java  www.BruceEckel.com

      "Throwing MyException2 from f()");
    throw new MyException2();
  }
  public static void g() throws MyException2 {
    System.out.println(
      "Throwing MyException2 from g()");
    throw new MyException2("Originated in g()");
  }
  public static void h() throws MyException2 {
    System.out.println(
      "Throwing MyException2 from h()");
    throw new MyException2(
      "Originated in h()", 47);
  }
  public static void main(String[] args) {
    try {
      f();
    } catch(MyException2 e) {
      e.printStackTrace();
    }
    try {
      g();
    } catch(MyException2 e) {
      e.printStackTrace();
    }
    try {
      h();
    } catch(MyException2 e) {
      e.printStackTrace();
      System.out.println("e.val() = " + e.val());
    }
  }
} ///:~

A data member i has been added, along with a method that reads that value and an
additional constructor that sets it. The output is:

Throwing MyException2 from f()
MyException2
        at Inheriting2.f(Inheriting2.java:22)
        at Inheriting2.main(Inheriting2.java:34)
Throwing MyException2 from g()
MyException2: Originated in g()
        at Inheriting2.g(Inheriting2.java:26)
        at Inheriting2.main(Inheriting2.java:39)
Throwing MyException2 from h()
MyException2: Originated in h()
        at Inheriting2.h(Inheriting2.java:30)
        at Inheriting2.main(Inheriting2.java:44)
e.val() = 47

Since an exception is just another kind of object, you can continue this process of
embellishing the power of your exception classes. Keep in mind, however, that all this
dressing up might be lost on the client programmers using your packages, since they might



Chapter 9: Error Handling with Exceptions 343

simply look for the exception to be thrown and nothing more. (That’s the way most of the
Java library exceptions are used.) If this is the case, it’s possible to create a new exception
type with almost no code at all:

//: SimpleException.java
class SimpleException extends Exception {
} ///:~

This relies on the compiler to create the default constructor (which automatically calls the
base-class default constructor). Of course, in this case you don’t get a
SimpleException(String) constructor, but in practice that isn’t used much.

Exception restrictions
When you override a method, you can throw only the exceptions that have been specified in
the base-class version of the method. This is a useful restriction, since it means that code
that works with the base class will automatically work with any object derived from the
base class (a fundamental OOP concept, of course), including exceptions.

This example demonstrates the kinds of restrictions imposed (at compile time) for exceptions:

//: StormyInning.java
// Overridden methods may throw only the
// exceptions specified in their base-class
// versions, or exceptions derived from the
// base-class exceptions.

class BaseballException extends Exception {}
class Foul extends BaseballException {}
class Strike extends BaseballException {}

abstract class Inning {
  Inning() throws BaseballException {}
  void event () throws BaseballException {
   // Doesn't actually have to throw anything
  }
  abstract void atBat() throws Strike, Foul;
  void walk() {} // Throws nothing
}

class StormException extends Exception {}
class RainedOut extends StormException {}
class PopFoul extends Foul {}

interface Storm {
  void event() throws RainedOut;
  void rainHard() throws RainedOut;
}

public class StormyInning extends Inning
    implements Storm {
  // OK to add new exceptions for constructors,
  // but you must deal with the base constructor



344 Thinking in Java  www.BruceEckel.com

  // exceptions:
  StormyInning() throws RainedOut,
    BaseballException {}
  StormyInning(String s) throws Foul,
    BaseballException {}
  // Regular methods must conform to base class:
//! void walk() throws PopFoul {} //Compile error
  // Interface CANNOT add exceptions to existing
  // methods from the base class:
//! public void event() throws RainedOut {}
  // If the method doesn't already exist in the
  // base class, the exception is OK:
  public void rainHard() throws RainedOut {}
  // You can choose to not throw any exceptions,
  // even if base version does:
  public void event() {}
  // Overridden methods can throw
  // inherited exceptions:
  void atBat() throws PopFoul {}
  public static void main(String[] args) {
    try {
      StormyInning si = new StormyInning();
      si.atBat();
    } catch(PopFoul e) {
    } catch(RainedOut e) {
    } catch(BaseballException e) {}
    // Strike not thrown in derived version.
    try {
      // What happens if you upcast?
      Inning i = new StormyInning();
      i.atBat();
      // You must catch the exceptions from the
      // base-class version of the method:
    } catch(Strike e) {
    } catch(Foul e) {
    } catch(RainedOut e) {
    } catch(BaseballException e) {}
  }
} ///:~

In Inning, you can see that both the constructor and the event( ) method say they will
throw an exception, but they never do. This is legal because it allows you to force the user to
catch any exceptions that you might add in overridden versions of event( ). The same idea
holds for abstract methods, as seen in atBat( ).

The interface Storm is interesting because it contains one method (event( ))that is defined
in Inning, and one method that isn’t. Both methods throw a new type of exception,
RainedOut. When StormyInning extends Inning and implements Storm, you’ll see that
the event( ) method in Storm cannot change the exception interface of event( ) in Inning.
Again, this makes sense because otherwise you’d never know if you were catching the
correct thing when working with the base class. Of course, if a method described in an
interface is not in the base class, such as rainHard( ), then there’s no problem if it throws
exceptions.



Chapter 9: Error Handling with Exceptions 345

The restriction on exceptions does not apply to constructors. You can see in StormyInning
that a constructor can throw anything it wants, regardless of what the base-class
constructor throws. However, since a base-class constructor must always be called one way
or another (here, the default constructor is called automatically), the derived-class
constructor must declare any base-class constructor exceptions in its exception specification.

The reason StormyInning.walk( ) will not compile is that it throws an exception, while
Inning.walk( ) does not. If this was allowed, then you could write code that called
Inning.walk( ) and that didn’t have to handle any exceptions, but then when you
substituted an object of a class derived from Inning, exceptions would be thrown so your
code would break. By forcing the derived-class methods to conform to the exception
specifications of the base-class methods, substitutability of objects is maintained.

The overridden event( ) method shows that a derived-class version of a method may choose
to not throw any exceptions, even if the base-class version does. Again, this is fine since it
doesn’t break any code that is written assuming the base-class version throws exceptions.
Similar logic applies to atBat( ), which throws PopFoul, an exception that is derived from
Foul thrown by the base-class version of atBat( ). This way, if someone writes code that
works with Inning and calls atBat( ), they must catch the Foul exception. Since PopFoul is
derived from Foul, the exception handler will also catch PopFoul.

The last point of interest is in main( ). Here you can see that if you’re dealing with exactly a
StormyInning object, the compiler forces you to catch only the exceptions that are specific
to that class, but if you upcast to the base type then the compiler (correctly) forces you to
catch the exceptions for the base type. All these constraints produce much more robust
exception-handling code.3

It’s useful to realize that although exception specifications are enforced by the compiler
during inheritance, the exception specifications are not part of the type of a method, which is
comprised of only the method name and argument types. Therefore, you cannot overload
methods based on exception specifications. In addition, because an exception specification
exists in a base-class version of a method doesn’t mean that it must exist in the derived-class
version of the method, and this is quite different from inheriting the methods (that is, a
method in the base class must also exist in the derived class). Put another way, the
“exception specification interface” for a particular method may narrow during inheritance
and overriding, but it may not widen – this is precisely the opposite of the rule for the class
interface during inheritance.

Performing cleanup
with finally
There’s often some piece of code that you want to execute whether or not an exception
occurs in a try block. This usually pertains to some operation other than memory recovery
(since that’s taken care of by the garbage collector). To achieve this effect, you use a finally

                                                

3 ANSI/ISO C++ added similar constraints that require derived-method exceptions to be the same as,
or derived from, the exceptions thrown by the base-class method. This is one case in which C++ is
actually able to check exception specifications at compile time.



346 Thinking in Java  www.BruceEckel.com

clause4 at the end of all the exception handlers. The full picture of an exception-handling
section is thus:

try {
  // The guarded region:
  // Dangerous stuff that might throw A, B, or C
} catch (A a1) {
  // Handle A
} catch (B b1) {
  // Handle B
} catch (C c1) {
  // Handle C
} finally {
  // Stuff that happens every time
}

To demonstrate that the finally clause always runs, try this program:

//: FinallyWorks.java
// The finally clause is always executed

public class FinallyWorks {
  static int count = 0;
  public static void main(String[] args) {
    while(true) {
      try {
        // post-increment is zero first time:
        if(count++ == 0)
          throw new Exception();
        System.out.println("No exception");
      } catch(Exception e) {
        System.out.println("Exception thrown");
      } finally {
        System.out.println("in finally clause");
        if(count == 2) break; // out of "while"
      }
    }
  }
} ///:~

This program also gives a hint for how you can deal with the fact that exceptions in Java
(like exceptions in C++) do not allow you to resume back to where the exception was
thrown, as discussed earlier. If you place your try block in a loop, you can establish a
condition that must be met before you continue the program. You can also add a static
counter or some other device to allow the loop to try several different approaches before
giving up. This way you can build a greater level of robustness into your programs.

The output is:

Exception thrown

                                                

4 C++ exception handling does not have the finally clause because it relies on destructors to
accomplish this sort of cleanup.



Chapter 9: Error Handling with Exceptions 347

in finally clause
No exception
in finally clause

Whether an exception is thrown or not, the finally clause is always executed.

What’s ffinally for?
In a language without garbage collection and without automatic destructor calls,5 finally is
important because it allows the programmer to guarantee the release of memory regardless
of what happens in the try block. But Java has garbage collection, so releasing memory is
virtually never a problem. Also, it has no destructors to call. So when do you need to use
finally in Java?

finally is necessary when you need to set something other than memory back to its original
state. This is usually something like an open file or network connection, something you’ve
drawn on the screen or even a switch in the outside world, as modeled in the following
example:

//: OnOffSwitch.java
// Why use finally?

class Switch {
  boolean state = false;
  boolean read() { return state; }
  void on() { state = true; }
  void off() { state = false; }
}

public class OnOffSwitch {
  static Switch sw = new Switch();
  public static void main(String[] args) {
    try {
      sw.on();
      // Code that can throw exceptions...
      sw.off();
    } catch(NullPointerException e) {
      System.out.println("NullPointerException");
      sw.off();
    } catch(IllegalArgumentException e) {
      System.out.println("IOException");
      sw.off();
    }
  }
} ///:~

                                                

5 A destructor is a function that’s always called when an object becomes unused. You always know
exactly where and when the destructor gets called. C++ has automatic destructor calls, but Delphi’s
Object Pascal versions 1 and 2 do not (which changes the meaning and use of the concept of a
destructor for that language).



348 Thinking in Java  www.BruceEckel.com

The goal here is to make sure that the switch is off when main( ) is completed, so sw.off( ) is
placed at the end of the try block and at the end of each exception handler. But it’s possible
that an exception could be thrown that isn’t caught here, so sw.off( ) would be missed.
However, with finally you can place the closure code from a try block in just one place:

//: WithFinally.java
// Finally Guarantees cleanup

class Switch2 {
  boolean state = false;
  boolean read() { return state; }
  void on() { state = true; }
  void off() { state = false; }
}

public class WithFinally {
  static Switch2 sw = new Switch2();
  public static void main(String[] args) {
    try {
      sw.on();
      // Code that can throw exceptions...
    } catch(NullPointerException e) {
      System.out.println("NullPointerException");
    } catch(IllegalArgumentException e) {
      System.out.println("IOException");
    } finally {
      sw.off();
    }
  }
} ///:~

Here the sw.off( ) has been moved to just one place, where it’s guaranteed to run no matter
what happens.

Even in cases in which the exception is not caught in the current set of catch clauses, finally
will be executed before the exception-handling mechanism continues its search for a handler
at the next higher level:

//: AlwaysFinally.java
// Finally is always executed

class Ex extends Exception {}

public class AlwaysFinally {
  public static void main(String[] args) {
    System.out.println(
      "Entering first try block");
    try {
      System.out.println(
        "Entering second try block");
      try {
        throw new Ex();
      } finally {
        System.out.println(



Chapter 9: Error Handling with Exceptions 349

          "finally in 2nd try block");
      }
    } catch(Ex e) {
      System.out.println(
        "Caught Ex in first try block");
    } finally {
      System.out.println(
        "finally in 1st try block");
    }
  }
} ///:~

The output for this program shows you what happens:

Entering first try block
Entering second try block
finally in 2nd try block
Caught Ex in first try block
finally in 1st try block

The finally statement will also be executed in situations in which break and continue
statements are involved. Note that, along with the labeled break and labeled continue,
finally eliminates the need for a goto statement in Java.

Pitfall: the lost exception
In general, Java’s exception implementation is quite outstanding, but unfortunately there’s a
flaw. Although exceptions are an indication of a crisis in your program and should never be
ignored, it’s possible for an exception to simply be lost. This happens with a particular
configuration using a finally clause:

//: LostMessage.java
// How an exception can be lost

class VeryImportantException extends Exception {
  public String toString() {
    return "A very important exception!";
  }
}

class HoHumException extends Exception {
  public String toString() {
    return "A trivial exception";
  }
}

public class LostMessage {
  void f() throws VeryImportantException {
    throw new VeryImportantException();
  }
  void dispose() throws HoHumException {
    throw new HoHumException();
  }
  public static void main(String[] args)



350 Thinking in Java  www.BruceEckel.com

      throws Exception {
    LostMessage lm = new LostMessage();
    try {
      lm.f();
    } finally {
      lm.dispose();
    }
  }
} ///:~

The output is:

A trivial exception
        at LostMessage.dispose(LostMessage.java:21)
        at LostMessage.main(LostMessage.java:29)

You can see that there’s no evidence of the VeryImportantException, which is simply
replaced by the HoHumException in the finally clause. This is a rather serious pitfall, since
it means that an exception can be completely lost, and in a far more subtle and difficult-to-
detect fashion than the example above. In contrast, C++ treats the situation in which a
second exception is thrown before the first one is handled as a dire programming error.
Perhaps a future version of Java will repair the problem. (The above results were produced
with Java 1.1.)

Constructors
When writing code with exceptions, it’s particularly important that you always ask, “If an
exception occurs, will this be properly cleaned up?” Most of the time you’re fairly safe, but
in constructors there’s a problem. The constructor puts the object into a safe starting state,
but it might perform some operation – such as opening a file – that doesn’t get cleaned up
until the user is finished with the object and calls a special cleanup method. If you throw an
exception from inside a constructor, these cleanup behaviors might not occur properly. This
means that you must be especially diligent while you write your constructor.

Since you’ve just learned about finally, you might think that it is the correct solution. But
it’s not quite that simple, because finally performs the cleanup code every time, even in the
situations in which you don’t want the cleanup code executed until the cleanup method
runs. Thus, if you do perform cleanup in finally, you must set some kind of flag when the
constructor finishes normally and don’t do anything in the finally block if the flag is set.
Because this isn’t particularly elegant (you are coupling your code from one place to
another), it’s best if you try to avoid performing this kind of cleanup in finally unless you
are forced to.

In the following example, a class called InputFile is created that opens a file and allows you
to read it one line (converted into a String) at a time. It uses the classes FileReader and
BufferedReader from the Java standard IO library that will be discussed in Chapter 10, but
which are simple enough that you probably won’t have any trouble understanding their
basic use:

//: Cleanup.java
// Paying attention to exceptions
// in constructors
import java.io.*;



Chapter 9: Error Handling with Exceptions 351

class InputFile {
  private BufferedReader in;
  InputFile(String fname) throws Exception {
    try {
      in =
        new BufferedReader(
          new FileReader(fname));
      // Other code that might throw exceptions
    } catch(FileNotFoundException e) {
      System.out.println(
        "Could not open " + fname);
      // Wasn't open, so don't close it
      throw e;
    } catch(Exception e) {
      // All other exceptions must close it
      try {
        in.close();
      } catch(IOException e2) {
        System.out.println(
          "in.close() unsuccessful");
      }
      throw e;
    } finally {
      // Don't close it here!!!
    }
  }
  String getLine() {
    String s;
    try {
      s = in.readLine();
    } catch(IOException e) {
      System.out.println(
        "readLine() unsuccessful");
      s = "failed";
    }
    return s;
  }
  void cleanup() {
    try {
      in.close();
    } catch(IOException e2) {
      System.out.println(
        "in.close() unsuccessful");
    }
  }
}

public class Cleanup {
  public static void main(String[] args) {
    try {
      InputFile in =
        new InputFile("Cleanup.java");
      String s;
      int i = 1;



352 Thinking in Java  www.BruceEckel.com

      while((s = in.getLine()) != null)
        System.out.println(""+ i++ + ": " + s);
      in.cleanup();
    } catch(Exception e) {
      System.out.println(
        "Caught in main, e.printStackTrace()");
      e.printStackTrace();
    }
  }
} ///:~

This example uses Java 1.1 IO classes.

The constructor for InputFile takes a String argument, which is the name of the file you
want to open. Inside a try block, it creates a FileReader using the file name. A FileReader
isn’t particularly useful until you turn around and use it to create a BufferedReader that
you can actually talk to – notice that one of the benefits of InputFile is that it combines
these two actions.

If the FileReader constructor is unsuccessful, it throws a FileNotFoundException, which
must be caught separately because that’s the one case in which you don’t want to close the
file since it wasn’t successfully opened. Any other catch clauses must close the file because it
was opened by the time those catch clauses are entered. (Of course, this is trickier if more
than one method can throw a FileNotFoundException. In that case, you might want to
break things into several try blocks.) The close( ) method throws an exception that is tried
and caught even though it’s within the block of another catch clause – it’s just another pair
of curly braces to the Java compiler. After performing local operations, the exception is re-
thrown, which is appropriate because this constructor failed, and you wouldn’t want the
calling method to assume that the object had been properly created and was valid.

In this example, which doesn’t use the aforementioned flagging technique, the finally clause
is definitely not the place to close( ) the file, since that would close it every time the
constructor completed. Since we want the file to be open for the useful lifetime of the
InputFile object this would not be appropriate.

The getLine( ) method returns a String containing the next line in the file. It calls
readLine( ), which can throw an exception, but that exception is caught so getLine( )
doesn’t throw any exceptions. One of the design issues with exceptions is whether to handle
an exception completely at this level, to handle it partially and pass the same exception (or a
different one) on, or whether to simply pass it on. Passing it on, when appropriate, can
certainly simplify coding. The getLine( ) method becomes:

String getLine() throws IOException {
  return in.readLine();
}

But of course, the caller is now responsible for handling any IOException that might arise.

The cleanup( ) method must be called by the user when they are finished using the
InputFile object to release the system resources (such as file handles) that are used by the
BufferedReader and/or FileReader objects.6 You don’t want to do this until you’re finished
with the InputFile object, at the point you’re going to let it go. You might think of putting

                                                

6 In C++, a destructor would handle this for you.



Chapter 9: Error Handling with Exceptions 353

such functionality into a finalize( ) method, but as mentioned in Chapter 4 you can’t
always be sure that finalize( ) will be called (even if you can be sure that it will be called,
you don’t know when). This is one of the downsides to Java – all cleanup other than
memory cleanup doesn’t happen automatically, so you must inform the client programmer
that they are responsible, and possibly guarantee that cleanup occurs using finalize( ).

In Cleanup.java an InputFile is created to open the same source file that creates the
program, and this file is read in a line at a time, and line numbers are added. All exceptions
are caught generically in main( ), although you could choose greater granularity.

One of the benefits of this example is to show you why exceptions are introduced at this
point in the book. Exceptions are so integral to programming in Java, especially because the
compiler enforces them, that you can accomplish only so much without knowing how to
work with them.

Exception matching
When an exception is thrown, the exception-handling system looks through the “nearest”
handlers in the order they are written. When it finds a match, the exception is considered
handled, and no further searching occurs.

Matching an exception doesn’t require a perfect match between the exception and its handler.
A derived-class object will match a handler for the base class, as shown in this example:

//: Human.java
// Catching Exception Hierarchies

class Annoyance extends Exception {}
class Sneeze extends Annoyance {}

public class Human {
  public static void main(String[] args) {
    try {
      throw new Sneeze();
    } catch(Sneeze s) {
      System.out.println("Caught Sneeze");
    } catch(Annoyance a) {
      System.out.println("Caught Annoyance");
    }
  }
} ///:~

The Sneeze exception will be caught by the first catch clause that it matches, which is the
first one, of course. However, if you remove the first catch clause:

    try {
      throw new Sneeze();
    } catch(Annoyance a) {
      System.out.println("Caught Annoyance");
    }

The remaining catch clause will still work because it’s catching the base class of Sneeze. Put
another way, catch(Annoyance e) will catch a Annoyance or any class derived from it. This
is useful because if you decide to add more exceptions to a method, if they’re all inherited



354 Thinking in Java  www.BruceEckel.com

from the same base class then the client programmer’s code will not need changing,
assuming they catch the base class, at the very least.

If you try to “mask” the derived-class exceptions by putting the base-class catch clause first,
like this:

    try {
      throw new Sneeze();
    } catch(Annoyance a) {
      System.out.println("Caught Annoyance");
    } catch(Sneeze s) {
      System.out.println("Caught Sneeze");
    }

the compiler will give you an error message, since it sees that the Sneeze catch-clause can
never be reached.

Exception guidelines
Use exceptions to:

 1.  Fix the problem and call the method (which caused the exception) again.

 2.  Patch things up and continue without retrying the method.

 3.  Calculate some alternative result instead of what the method was supposed to produce.

 4.  Do whatever you can in the current context and rethrow the same exception to a higher
context.

 5.  Do whatever you can in the current context and throw a different exception to a higher
context.

 6.  Terminate the program.

 7.  Simplify. If your exception scheme makes things more complicated, then it is painful and
annoying to use.

 8.  Make your library and program safer. This is a short-term investment (for debugging) and
a long-term investment (for application robustness).

Summary
Improved error recovery is one of the most powerful ways that you can increase the
robustness of your code. Error recovery is a fundamental concern for every program you
write, and it’s especially important in Java, in which one of the primary goals is to create
program components for others to use. To create a robust system, each component must be
robust.



Chapter 9: Error Handling with Exceptions 355

The goals for exception handling in Java are to simplify the creation of large, reliable
programs using less code than currently possible, with more confidence that your
application doesn’t have an unhandled error.

Exceptions are not terribly difficult to learn, and are one of those features that provide
immediate and significant benefits to your project. Fortunately, Java enforces all aspects of
exceptions so it’s guaranteed that they will be used consistently by both library designer and
client programmer.

Exercises
 1.  Create a class with a main( ) that throws an object of class Exception inside a try block.

Give the constructor for Exception a string argument. Catch the exception inside a catch
clause and print out the string argument. Add a finally clause and print a message to
prove you were there.

 2.  Create your own exception class using the extends keyword. Write a constructor for this
class that takes a String argument and stores it inside the object with a String handle.
Write a method that prints out the stored String. Create a try-catch clause to exercise
your new exception.

 3.  Write a class with a method that throws an exception of the type created in Exercise 2. Try
compiling it without an exception specification to see what the compiler says. Add the
appropriate exception specification. Try out your class and its exception inside a try-catch
clause.

 4.  In chapter 5, find the two programs called Assert.java and modify these to throw their
own type of exception instead of printing to System.err. This exception should be an
inner class that extends RuntimeException.



357

v

10: The Java
IO system

Creating a good input/output (IO) system is one of the more difficult
tasks for the language designer.
This is evidenced by the number of different approaches. The challenge seems to be in
covering all eventualities. Not only are there different kinds of IO that you want to
communicate with (files, the console, network connections), but you need to talk to them in
a wide variety of ways (sequential, random-access, binary, character, by lines, by words,
etc.).

The Java library designers attacked the problem by creating lots of classes. In fact, there are
so many classes for Java’s IO system that it can be intimidating at first (ironically, the Java
IO design actually prevents an explosion of classes). There has also been a significant change
in the IO library between Java 1.0 and Java 1.1. Instead of simply replacing the old library
with a new one, the designers at Sun extended the old library and added the new one
alongside it. As a result you can sometimes end up mixing the old and new libraries and
creating even more intimidating code.

This chapter will help you understand the variety of IO classes in the standard Java library
and how to use them. The first portion of the chapter will introduce the “old” Java 1.0 IO
stream library, since there is a significant amount of existing code that uses that library. The
remainder of the chapter will introduce the new features in the Java 1.1 IO library. Note that
when you compile some of the code in the first part of the chapter with a Java 1.1 compiler
you can get a “deprecated feature” warning message at compile time. The code still works;
the compiler is just suggesting that you use certain new features that are described in the
latter part of this chapter. It is valuable, however, to see the difference between the old and



358 Thinking in Java  www.BruceEckel.com

new way of doing things and that’s why it was left in – to increase your understanding (and
to allow you to read code written for Java 1.0).

Input and output
The Java library classes for IO are divided by input and output, as you can see by looking at
the online Java class hierarchy with your Web browser. By inheritance, all classes derived
from InputStream have basic methods called read( ) for reading a single byte or array of
bytes. Likewise, all classes derived from OutputStream have basic methods called write( )
for writing a single byte or array of bytes. However, you won’t generally use these methods;
they exist so more sophisticated classes can use them as they provide a more useful interface.
Thus, you’ll rarely create your stream object by using a single class, but instead will layer
multiple objects together to provide your desired functionality. The fact that you create more
than one object to create a single resulting stream is the primary reason that Java’s stream
library is confusing.

It’s helpful to categorize the classes by their functionality. The library designers started by
deciding that all classes that had anything to do with input would be inherited from
InputStream and all classes that were associated with output would be inherited from
OutputStream.

Types of IInputStream
InputStream’s job is to represent classes that produce input from different sources. These
sources can be (and each has an associated subclass of InputStream):

1. An array of bytes

2. A String object

3. A file

4. A “pipe,” which works like a physical pipe: you put things in one end and they come out
the other

5. A sequence of other streams, so you can collect them together into a single stream

6. Other sources, such as an Internet connection. (This will be discussed in a later chapter.)

In addition, the FilterInputStream is also a type of InputStream, to provide a base class for
"decorator" classes that attach attributes or useful interfaces to input streams. This is
discussed later.

Table 10-1. Types of InputStream

Constructor ArgumentsClass Function

How to use it

The buffer from which to
extract the bytes.

ByteArray-
InputStream

Allows a buffer
in memory to be
used as an
InputStream. As a source of data. Connect it

to a FilterInputStream object
to provide a useful interface.



Chapter 10: The Java IO System 359

Constructor ArgumentsClass Function

How to use it

A String. The underlying
implementation actually uses a
StringBuffer.

StringBuffer
-
InputStream

Converts a
String into an
InputStream.

As a source of data. Connect it
to a FilterInputStream object
to provide a useful interface.
A String representing the file
name, or a File or
FileDescriptor object.

File-
InputStream

For reading
information
from a file.

As a source of data. Connect it
to a FilterInputStream object
to provide a useful interface.
PipedOutputStreamPiped-

InputStream
Produces the
data that’s being
written to the
associated
PipedOutput-
Stream.
Implements the
“piping”
concept.

As a source of data in
multithreading. Connect it to a
FilterInputStream object to
provide a useful interface.

Two InputStream objects or an
Enumeration for a container of
InputStream objects.

Sequence-
InputStream

Coverts two or
more
InputStream
objects into a
single
InputStream.

As a source of data. Connect it
to a FilterInputStream object
to provide a useful interface.
See Table 10-3.Filter-

InputStream
Abstract class
which is an
interface for
decorators that
provide useful
functionality to
the other
InputStream
classes. See Table
10-3.

See Table 10-3.

Types of OOutputStream
This category includes the classes that decide where your output will go: an array of bytes
(no String, however; presumably you can create one using the array of bytes), a file, or a
“pipe.”

In addition, the FilterOutputStream provides a base class for "decorator" classes that attach
attributes or useful interfaces to output streams. This is discussed later.



360 Thinking in Java  www.BruceEckel.com

Table 10-2. Types of OutputStream

Constructor ArgumentsClass Function
How to use it
Optional initial size of the
buffer.

ByteArray-
OutputStream

Creates a buffer
in memory. All
the data that you
send to the
stream is placed
in this buffer.

To designate the destination of
your data. Connect it to a
FilterOutputStream object to
provide a useful interface.
A String representing the file
name, or a File or
FileDescriptor object.

File-
OutputStream

For sending
information to a
file.

To designate the destination of
your data. Connect it to a
FilterOutputStream object to
provide a useful interface.
PipedInputStreamPiped-

OutputStream
Any information
you write to this
automatically
ends up as input
for the associated
PipedInput-
Stream.
Implements the
“piping” concept.

To designate the destination of
your data for multithreading.
Connect it to a
FilterOutputStream object to
provide a useful interface.
See Table 10-4.Filter-

OutputStream
Abstract class
which is an
interface for
decorators that
provide useful
functionality to
the other
OutputStream
classes. See Table
10-4.

See Table 10-4.

Adding attributes
and useful interfaces
The use of layered objects to dynamically and transparently add responsibilities to individual
objects is referred to as the decorator pattern. (Patterns1 are the subject of Chapter 16.) The
decorator pattern specifies that all objects that wrap around your initial object have the
same interface, to make the use of the decorators transparent – you send the same message

                                                

1 In Design Patterns, Erich Gamma et al., Addison-Wesley 1995. Described later in this book.



Chapter 10: The Java IO System 361

to an object whether it’s been decorated or not. This is the reason for the existence of the
“filter” classes in the Java IO library: the abstract “filter” class is the base class for all the
decorators. (A decorator must have the same interface as the object it decorates, but the
decorator can also extend the interface, which occurs in several of the “filter” classes).

Decorators are often used when subclassing requires a large number of subclasses to support
every possible combination needed – so many that subclassing becomes impractical. The Java
IO library requires many different combinations of features which is why the decorator
pattern is a good approach. There is a drawback to the decorator pattern, however.
Decorators give you much more flexibility while you’re writing a program (since you can
easily mix and match attributes), but they add complexity to your code. The reason that the
Java IO library is awkward to use is that you must create many classes – the “core” IO type
plus all the decorators – in order to get the single IO object that you want.

The classes that provide the decorator interface to control a particular InputStream or
OutputStream are the FilterInputStream and FilterOutputStream – which don’t have
very intuitive names. They are derived, respectively, from InputStream and OutputStream,
and they are abstract classes, in theory to provide a common interface for all the different
ways you want to talk to a stream. In fact, FilterInputStream and FilterOutputStream
simply mimic their base classes, which is the key requirement of the decorator.

Reading from an IInputStream
with  FilterInputStream

The FilterInputStream classes accomplish two significantly different things.
DataInputStream allows you to read different types of primitive data as well as String
objects. (All the methods start with “read,” such as readByte( ), readFloat( ), etc.) This,
along with its companion DataOutputStream, allows you to move primitive data from one
place to another via a stream. These “places” are determined by the classes in Table 10-1. If
you’re reading data in blocks and parsing it yourself, you won’t need DataInputStream,
but in most other cases you will want to use it to automatically format the data you read.

The remaining classes modify the way an InputStream behaves internally: whether it’s
buffered or unbuffered, if it keeps track of the lines it’s reading (allowing you to ask for line
numbers or set the line number), and whether you can push back a single character. The last
two classes look a lot like support for building a compiler (that is, they were added to
support the construction of the Java compiler), so you probably won’t use them in general
programming.

You’ll probably need to buffer your input almost every time, regardless of the IO device
you’re connecting to, so it would have made more sense for the IO library to make a special
case for unbuffered input rather than buffered input.

Table 10-3. Types of FilterInputStream

Constructor ArgumentsClass Function

How to use it

Data-
InputStream

Used in concert with
DataOutputStream,
so you can read
primitives (int, char,
long, etc.) from a
stream in a portable
fashion.

InputStream



362 Thinking in Java  www.BruceEckel.com

Contains a full interface to
allow you to read primitive
types.

InputStream, with optional
buffer size.

Buffered-
InputStream

Use this to prevent a
physical read every
time you want more
data. You’re saying
“Use a buffer.”

This doesn’t provide an
interface per se, just a
requirement that a buffer be
used. Attach an interface
object.
InputStreamLineNumber-

InputStream
Keeps track of line
numbers in the input
stream; you can call
getLineNumber( ) and
setLineNumber(int).

This just adds line
numbering, so you’ll
probably attach an interface
object.
InputStreamPushback-

InputStream
Has a one byte push-
back buffer so that you
can push back the last
character read.

Generally used in the
scanner for a compiler and
probably included because
the Java compiler needed it.
You probably won’t use
this.

Writing to an OOutputStream
with  FilterOutputStream

The complement to DataInputStream is DataOutputStream, which formats each of the
primitive types and String objects onto a stream in such a way that any DataInputStream,
on any machine, can read them. All the methods start with “write,” such as writeByte( ),
writeFloat( ), etc.

If you want to do true formatted output, for example, to the console, use a PrintStream.
This is the endpoint that allows you to print all of the primitive data types and String
objects in a viewable format as opposed to DataOutputStream, whose goal is to put them
on a stream in a way that DataInputStream can portably reconstruct them. The
System.out static object is a PrintStream.

The two important methods in PrintStream are print( ) and println( ), which are
overloaded to print out all the various types. The difference between print( ) and println( )
is that the latter adds a newline when it’s done.

BufferedOutputStream is a modifier and tells the stream to use buffering so you don’t get a
physical write every time you write to the stream. You’ll probably always want to use this
with files, and possibly console IO.

Table 10-4. Types of FilterOutputStream



Chapter 10: The Java IO System 363

Constructor ArgumentsClass Function

How to use it

OutputStreamData-
OutputStream

Used in concert with
DataInputStream so
you can write
primitives (int, char,
long, etc.) to a stream
in a portable fashion.

Contains full interface
to allow you to write
primitive types.

OutputStream, with
optional boolean
indicating that the
buffer is flushed with
every newline.

PrintStream For producing
formatted output.
While
DataOutputStream
handles the storage of
data, PrintStream
handles display. Should be the “final”

wrapping for your
OutputStream object.
You’ll probably use this
a lot.

OutputStream, with
optional buffer size.

Buffered-
OutputStream

Use this to prevent a
physical write every
time you send a piece
of data. You’re saying
“Use a buffer.” You can
call flush( ) to flush the
buffer.

This doesn’t provide an
interface per se, just a
requirement that a
buffer is used. Attach
an interface object.

Off by itself:
RandomAccessFile
RandomAccessFile is used for files containing records of known size so that you can move
from one record to another using seek( ), then read or change the records. The records don’t
have to be the same size; you just have to be able to determine how big they are and where
they are placed in the file.

At first it’s a little bit hard to believe that RandomAccessFile is not part of the InputStream
or OutputStream hierarchy. It has no association with those hierarchies other than that it
happens to implement the DataInput and DataOutput interfaces (which are also
implemented by DataInputStream and DataOutputStream). It doesn’t even use any of the
functionality of the existing InputStream or OutputStream classes – it’s a completely
separate class, written from scratch, with all of its own (mostly native) methods. The reason
for this may be that RandomAccessFile has essentially different behavior than the other IO
types, since you can move forward and backward within a file. In any event, it stands alone,
as a direct descendant of Object.

Essentially, a RandomAccessFile works like a DataInputStream pasted together with a
DataOutputStream and the methods getFilePointer( ) to find out where you are in the file,



364 Thinking in Java  www.BruceEckel.com

seek( ) to move to a new point in the file, and length( ) to determine the maximum size of
the file. In addition, the constructors require a second argument (identical to fopen( ) in C)
indicating whether you are just randomly reading (“r”) or reading and writing (“rw”).
There’s no support for write-only files, which could suggest that RandomAccessFile might
have worked well if it were inherited from DataInputStream.

What’s even more frustrating is that you could easily imagine wanting to seek within other
types of streams, such as a ByteArrayInputStream, but the seeking methods are available
only in RandomAccessFile, which works for files only. BufferedInputStream does allow
you to mark( ) a position (whose value is held in a single internal variable) and reset( ) to
that position, but this is limited and not too useful.

The FileFile class
The File class has a deceiving name – you might think it refers to a file, but it doesn’t. It can
represent either the name of a particular file or the names of a set of files in a directory. If it’s
a set of files, you can ask for the set with the list( ) method, and this returns an array of
String. It makes sense to return an array rather than one of the flexible collection classes
because the number of elements is fixed, and if you want a different directory listing you
just create a different File object. In fact, “FilePath” would have been a better name. This
section shows a complete example of the use of this class, including the associated
FilenameFilter interface.

A directory lister
Suppose you’d like to see a directory listing. The File object can be listed in two ways. If you
call list( ) with no arguments, you’ll get the full list that the File object contains. However, if
you want a restricted list, for example, all of the files with an extension of .java, then you
use a “directory filter,” which is a class that tells how to select the File objects for display.

Here’s the code for the example: (See page 94 if you have trouble executing this program.)

//: DirList.java
// Displays directory listing
package c10;
import java.io.*;

public class DirList {
  public static void main(String[] args) {
    try {
      File path = new File(".");
      String[] list;
      if(args.length == 0)
        list = path.list();
      else
        list = path.list(new DirFilter(args[0]));
      for(int i = 0; i < list.length; i++)
        System.out.println(list[i]);
    } catch(Exception e) {
      e.printStackTrace();
    }
  }



Chapter 10: The Java IO System 365

}

class DirFilter implements FilenameFilter {
  String afn;
  DirFilter(String afn) { this.afn = afn; }
  public boolean accept(File dir, String name) {
    // Strip path information:
    String f = new File(name).getName();
    return f.indexOf(afn) != -1;
  }
} ///:~

The DirFilter class “implements” the interface FilenameFilter. (Interfaces were covered in
Chapter 7.) It’s useful to see how simple the FilenameFilter interface is:

public interface FilenameFilter {
  boolean accept(File dir, String name);
}

It says that all that this type of object does is provide a method called accept( ). The whole
reason behind the creation of this class is to provide the accept( ) method to the list( )
method so that list( ) can call back accept( ) to determine which file names should be
included in the list. Thus, this technique is often referred to as a callback or sometimes a
functor (that is, DirFilter is a functor because its only job is to hold a method). Because list( )
takes a FilenameFilter object as its argument, it means that you can pass an object of any
class that implements FilenameFilter to choose (even at run-time) how the list( ) method
will behave. The purpose of a callback is to provide flexibility in the behavior of code.

DirFilter shows that just because an interface contains only a set of methods, you’re not
restricted to writing only those methods. (You must at least provide definitions for all the
methods in an interface, however.) In this case, the DirFilter constructor is also created.

The accept( ) method must accept a File object representing the directory that a particular
file is found in, and a String containing the name of that file. You might choose to use or
ignore either of these arguments, but you will probably at least use the file name. Remember
that the list( ) method is calling accept( ) for each of the file names in the directory object to
see which one should be included – this is indicated by the boolean result returned by
accept( ).

To make sure that what you’re working with is only the name and contains no path
information, all you have to do is take the String object and create a File object out of it,
then call getName( ) which strips away all the path information (in a platform-independent
way). Then accept( ) uses the String class indexOf( ) method to see if the search string afn
appears anywhere in the name of the file. If afn is found within the string, the return value
is the starting index of afn, but if it’s not found the return value is -1. Keep in mind that this
is a simple string search and does not have regular expression “wildcard” matching such as
“fo?.b?r*” which is much more difficult to implement.

The list( ) method returns an array. You can query this array for its length and then move
through it selecting the array elements. This ability to easily pass an array in and out of a
method is a tremendous improvement over the behavior of C and C++.



366 Thinking in Java  www.BruceEckel.com

Anonymous inner classes
This example is ideal for rewriting using an anonymous inner class (described in Chapter 7).
As a first cut, a method filter( ) is created that returns a handle to a FilenameFilter:

//: DirList2.java
// Uses Java 1.1 anonymous inner classes
import java.io.*;

public class DirList2 {
  public static FilenameFilter
  filter(final String afn) {
    // Creation of anonymous inner class:
    return new FilenameFilter() {
      String fn = afn;
      public boolean accept(File dir, String n) {
        // Strip path information:
        String f = new File(n).getName();
        return f.indexOf(fn) != -1;
      }
    }; // End of anonymous inner class
  }
  public static void main(String[] args) {
    try {
      File path = new File(".");
      String[] list;
      if(args.length == 0)
        list = path.list();
      else
        list = path.list(filter(args[0]));
      for(int i = 0; i < list.length; i++)
        System.out.println(list[i]);
    } catch(Exception e) {
      e.printStackTrace();
    }
  }
} ///:~

Note that the argument to filter( ) must be final. This is required by the anonymous inner
class so that it can use an object from outside its scope.

This design is an improvement because the FilenameFilter class is now tightly bound to
DirList2. However, you can take this approach one step further and define the anonymous
inner class as an argument to list( ), in which case it’s even smaller:

//: DirList3.java
// Building the anonymous inner class "in-place"
import java.io.*;

public class DirList3 {
  public static void main(final String[] args) {
    try {
      File path = new File(".");
      String[] list;



Chapter 10: The Java IO System 367

      if(args.length == 0)
        list = path.list();
      else
        list = path.list(
          new FilenameFilter() {
            public boolean
            accept(File dir, String n) {
              String f = new File(n).getName();
              return f.indexOf(args[0]) != -1;
            }
          });
      for(int i = 0; i < list.length; i++)
        System.out.println(list[i]);
    } catch(Exception e) {
      e.printStackTrace();
    }
  }
} ///:~

The argument to main( ) is now final, since the anonymous inner class uses args[0]
directly.

This shows you how anonymous inner classes allow the creation of quick-and-dirty classes
to solve problems. Since everything in Java revolves around classes, this can be a useful
coding technique. One benefit is that it keeps the code that solves a particular problem
isolated together in one spot. On the other hand, it is not always as easy to read, so you
must use it judiciously.

A sorted directory listing
Ah, you say that you want the file names sorted? Since there’s no support for sorting in Java
1.0 or Java 1.1 (although sorting is included in Java 1.2), it will have to be added into the
program directly using the SortVector created in Chapter 8:

//: SortedDirList.java
// Displays sorted directory listing
import java.io.*;
import c08.*;

public class SortedDirList {
  private File path;
  private String[] list;
  public SortedDirList(final String afn) {
    path = new File(".");
    if(afn == null)
      list = path.list();
    else
      list = path.list(
          new FilenameFilter() {
            public boolean
            accept(File dir, String n) {
              String f = new File(n).getName();
              return f.indexOf(afn) != -1;
            }



368 Thinking in Java  www.BruceEckel.com

          });
    sort();
  }
  void print() {
    for(int i = 0; i < list.length; i++)
      System.out.println(list[i]);
  }
  private void sort() {
    StrSortVector sv = new StrSortVector();
    for(int i = 0; i < list.length; i++)
      sv.addElement(list[i]);
    // The first time an element is pulled from
    // the StrSortVector the list is sorted:
    for(int i = 0; i < list.length; i++)
      list[i] = sv.elementAt(i);
  }
  // Test it:
  public static void main(String[] args) {
    SortedDirList sd;
    if(args.length == 0)
      sd = new SortedDirList(null);
    else
      sd = new SortedDirList(args[0]);
    sd.print();
  }
} ///:~

A few other improvements have been made. Instead of creating path and list as local
variables to main( ), they are members of the class so their values can be accessible for the
lifetime of the object. In fact, main( ) is now just a way to test the class. You can see that the
constructor of the class automatically sorts the list once that list has been created.

The sort is case-insensitive so you don’t end up with a list of all the words starting with
capital letters, followed by the rest of the words starting with all the lowercase letters.
However, you’ll notice that within a group of file names that begin with the same letter the
capitalized words are listed first, which is still not quite the desired behavior for the sort.
This problem will be fixed in Java 1.2.

Checking for and creating directories
The File class is more than just a representation for an existing directory path, file, or group
of files. You can also use a File object to create a new directory or an entire directory path if
it doesn’t exist. You can also look at the characteristics of files (size, last modification date,
read/write), see whether a File object represents a file or a directory, and delete a file. This
program shows the remaining methods available with the File class:

//: MakeDirectories.java
// Demonstrates the use of the File class to
// create directories and manipulate files.
import java.io.*;

public class MakeDirectories {
  private final static String usage =
    "Usage:MakeDirectories path1 ...\n" +



Chapter 10: The Java IO System 369

    "Creates each path\n" +
    "Usage:MakeDirectories -d path1 ...\n" +
    "Deletes each path\n" +
    "Usage:MakeDirectories -r path1 path2\n" +
    "Renames from path1 to path2\n";
  private static void usage() {
    System.err.println(usage);
    System.exit(1);
  }
  private static void fileData(File f) {
    System.out.println(
      "Absolute path: " + f.getAbsolutePath() +
      "\n Can read: " + f.canRead() +
      "\n Can write: " + f.canWrite() +
      "\n getName: " + f.getName() +
      "\n getParent: " + f.getParent() +
      "\n getPath: " + f.getPath() +
      "\n length: " + f.length() +
      "\n lastModified: " + f.lastModified());
    if(f.isFile())
      System.out.println("it's a file");
    else if(f.isDirectory())
      System.out.println("it's a directory");
  }
  public static void main(String[] args) {
    if(args.length < 1) usage();
    if(args[0].equals("-r")) {
      if(args.length != 3) usage();
      File
        old = new File(args[1]),
        rname = new File(args[2]);
      old.renameTo(rname);
      fileData(old);
      fileData(rname);
      return; // Exit main
    }
    int count = 0;
    boolean del = false;
    if(args[0].equals("-d")) {
      count++;
      del = true;
    }
    for( ; count < args.length; count++) {
      File f = new File(args[count]);
      if(f.exists()) {
        System.out.println(f + " exists");
        if(del) {
          System.out.println("deleting..." + f);
          f.delete();
        }
      }
      else { // Doesn't exist
        if(!del) {
          f.mkdirs();



370 Thinking in Java  www.BruceEckel.com

          System.out.println("created " + f);
        }
      }
      fileData(f);
    }
  }
} ///:~

In fileData( ) you can see the various file investigation methods put to use to display
information about the file or directory path.

The first method that’s exercised by main( ) is renameTo( ), which allows you to rename (or
move) a file to an entirely new path represented by the argument, which is another File
object. This also works with directories of any length.

If you experiment with the above program, you’ll find that you can make a directory path
of any complexity because mkdirs( ) will do all the work for you. In Java 1.0, the -d flag
reports that the directory is deleted but it’s still there; in Java 1.1 the directory is actually
deleted.

Typical uses of IO streams
Although there are a lot of IO stream classes in the library that can be combined in many
different ways, there are just a few ways that you’ll probably end up using them. However,
they require attention to get the correct combinations. The following rather long example
shows the creation and use of typical IO configurations so you can use it as a reference when
writing your own code. Note that each configuration begins with a commented number and
title that corresponds to the heading for the appropriate explanation that follows in the text.

//: IOStreamDemo.java
// Typical IO Stream Configurations
import java.io.*;
import com.bruceeckel.tools.*;

public class IOStreamDemo {
  public static void main(String[] args) {
    try {
      // 1. Buffered input file
      DataInputStream in =
        new DataInputStream(
          new BufferedInputStream(
            new FileInputStream(args[0])));
      String s, s2 = new String();
      while((s = in.readLine())!= null)
        s2 += s + "\n";
      in.close();

      // 2. Input from memory
      StringBufferInputStream in2 =
          new StringBufferInputStream(s2);
      int c;
      while((c = in2.read()) != -1)
        System.out.print((char)c);



Chapter 10: The Java IO System 371

      // 3. Formatted memory input
      try {
        DataInputStream in3 =
          new DataInputStream(
            new StringBufferInputStream(s2));
        while(true)
          System.out.print((char)in3.readByte());
      } catch(EOFException e) {
        System.out.println(
          "End of stream encountered");
      }

      // 4. Line numbering & file output
      try {
        LineNumberInputStream li =
          new LineNumberInputStream(
            new StringBufferInputStream(s2));
        DataInputStream in4 =
          new DataInputStream(li);
        PrintStream out1 =
          new PrintStream(
            new BufferedOutputStream(
              new FileOutputStream(
                "IODemo.out")));
        while((s = in4.readLine()) != null )
          out1.println(
            "Line " + li.getLineNumber() + s);
        out1.close(); // finalize() not reliable!
      } catch(EOFException e) {
        System.out.println(
          "End of stream encountered");
      }

      // 5. Storing & recovering data
      try {
        DataOutputStream out2 =
          new DataOutputStream(
            new BufferedOutputStream(
              new FileOutputStream("Data.txt")));
        out2.writeBytes(
          "Here's the value of pi: \n");
        out2.writeDouble(3.14159);
        out2.close();
        DataInputStream in5 =
          new DataInputStream(
            new BufferedInputStream(
              new FileInputStream("Data.txt")));
        System.out.println(in5.readLine());
        System.out.println(in5.readDouble());
      } catch(EOFException e) {
        System.out.println(
          "End of stream encountered");
      }



372 Thinking in Java  www.BruceEckel.com

      // 6. Reading/writing random access files
      RandomAccessFile rf =
        new RandomAccessFile("rtest.dat", "rw");
      for(int i = 0; i < 10; i++)
        rf.writeDouble(i*1.414);
      rf.close();

      rf =
        new RandomAccessFile("rtest.dat", "rw");
      rf.seek(5*8);
      rf.writeDouble(47.0001);
      rf.close();

      rf =
        new RandomAccessFile("rtest.dat", "r");
      for(int i = 0; i < 10; i++)
        System.out.println(
          "Value " + i + ": " +
          rf.readDouble());
      rf.close();

      // 7. File input shorthand
      InFile in6 = new InFile(args[0]);
      String s3 = new String();
      System.out.println(
        "First line in file: " +
        in6.readLine());
        in6.close();

      // 8. Formatted file output shorthand
      PrintFile out3 = new PrintFile("Data2.txt");
      out3.print("Test of PrintFile");
      out3.close();

      // 9. Data file output shorthand
      OutFile out4 = new OutFile("Data3.txt");
      out4.writeBytes("Test of outDataFile\n\r");
      out4.writeChars("Test of outDataFile\n\r");
      out4.close();

    } catch(FileNotFoundException e) {
      System.out.println(
        "File Not Found:" + args[0]);
    } catch(IOException e) {
      System.out.println("IO Exception");
    }
  }
} ///:~



Chapter 10: The Java IO System 373

Input streams
Of course, one common thing you’ll want to do is print formatted output to the console, but
that’s already been simplified in the package com.bruceeckel.tools created in Chapter 5.

Parts 1 through 4 demonstrate the creation and use of input streams (although part 4 also
shows the simple use of an output stream as a testing tool).

1. Buffered input file
To open a file for input, you use a FileInputStream with a String or a File object as the file
name. For speed, you’ll want that file to be buffered so you give the resulting handle to the
constructor for a BufferedInputStream. To read input in a formatted fashion, you give that
resulting handle to the constructor for a DataInputStream, which is your final object and
the interface you read from.

In this example, only the readLine( ) method is used, but of course any of the
DataInputStream methods are available. When you reach the end of the file, readLine( )
returns null so that is used to break out of the while loop.

The String s2 is used to accumulate the entire contents of the file (including newlines that
must be added since readLine( ) strips them off). s2 is then used in the later portions of this
program. Finally, close( ) is called to close the file. Technically, close( ) will be called when
finalize( ) is run, and this is supposed to happen (whether or not garbage collection occurs)
as the program exits. However, Java 1.0 has a rather important bug, so this doesn’t happen.
In Java 1.1 you must explicitly call System.runFinalizersOnExit(true) to guarantee that
finalize( ) will be called for every object in the system. The safest approach is to explicitly
call close( ) for files.

2. Input from memory
This piece takes the String s2 that now contains the entire contents of the file and uses it to
create a StringBufferInputStream. (A String, not a StringBuffer, is required as the
constructor argument.) Then read( ) is used to read each character one at a time and send it
out to the console. Note that read( ) returns the next byte as an int and thus it must be cast
to a char to print properly.

3. Formatted memory input
The interface for StringBufferInputStream is limited, so you usually enhance it by
wrapping it inside a DataInputStream. However, if you choose to read the characters out a
byte at a time using readByte( ), any value is valid so the return value cannot be used to
detect the end of input. Instead, you can use the available( ) method to find out how many
more characters are available. Here’s an example that shows how to read a file one byte at a
time:

//: TestEOF.java
// Testing for the end of file while reading
// a byte at a time.
import java.io.*;

public class TestEOF {
  public static void main(String[] args) {
    try {



374 Thinking in Java  www.BruceEckel.com

      DataInputStream in =
        new DataInputStream(
         new BufferedInputStream(
          new FileInputStream("TestEof.java")));
      while(in.available() != 0)
        System.out.print((char)in.readByte());
    } catch (IOException e) {
      System.err.println("IOException");
    }
  }
} ///:~

Note that available( ) works differently depending on what sort of medium you’re reading
from – it’s literally “the number of bytes that can be read without blocking.” With a file this
means the whole file, but with a different kind of stream this might not be true, so use it
thoughtfully.

You could also detect the end of input in cases like these by catching an exception. However,
the use of exceptions for control flow is considered a misuse of that feature.

4. Line numbering and file output
This example shows the use of the LineNumberInputStream to keep track of the input line
numbers. Here, you cannot simply gang all the constructors together, since you have to keep
a handle to the LineNumberInputStream. (Note that this is not an inheritance situation, so
you cannot simply cast in4 to a LineNumberInputStream.) Thus, li holds the handle to the
LineNumberInputStream, which is then used to create a DataInputStream for easy
reading.

This example also shows how to write formatted data to a file. First, a FileOutputStream is
created to connect to the file. For efficiency, this is made a BufferedOutputStream, which is
what you’ll virtually always want to do, but you’re forced to do it explicitly. Then for the
formatting it’s turned into a PrintStream. The data file created this way is readable as an
ordinary text file.

One of the methods that indicates when a DataInputStream is exhausted is readLine( ),
which returns null when there are no more strings to read. Each line is printed to the file
along with its line number, which is acquired through li.

You’ll see an explicit close( ) for out1, which would make sense if the program were to turn
around and read the same file again. However, this program ends without ever looking at
the file IODemo.out. As mentioned before, if you don’t call close( ) for all your output files,
you might discover that the buffers don’t get flushed so they’re incomplete.

Output streams
The two primary kinds of output streams are separated by the way they write data: one
writes it for human consumption, and the other writes it to be re-acquired by a
DataInputStream. The RandomAccessFile stands alone, although its data format is
compatible with the DataInputStream and DataOutputStream.



Chapter 10: The Java IO System 375

5. Storing and recovering data
A PrintStream formats data so it’s readable by a human. To output data so that it can be
recovered by another stream, you use a DataOutputStream to write the data and a
DataInputStream to recover the data. Of course, these streams could be anything, but here
a file is used, buffered for both reading and writing.

Note that the character string is written using writeBytes( ) and not writeChars( ). If you
use the latter, you’ll be writing the 16-bit Unicode characters. Since there is no
complementary “readChars” method in DataInputStream, you’re stuck pulling these
characters off one at a time with readChar( ). So for ASCII, it’s easier to write the characters
as bytes followed by a newline; then use readLine( ) to read back the bytes as a regular
ASCII line.

The writeDouble( ) stores the double number to the stream and the complementary
readDouble( ) recovers it. But for any of the reading methods to work correctly, you must
know the exact placement of the data item in the stream, since it would be equally possible
to read the stored double as a simple sequence of bytes, or as a char, etc. So you must either
have a fixed format for the data in the file or extra information must be stored in the file
that you parse to determine where the data is located.

6. Reading and writing random access files
As previously noted, the RandomAccessFile is almost totally isolated from the rest of the IO
hierarchy, save for the fact that it implements the DataInput and DataOutput interfaces. So
you cannot combine it with any of the aspects of the InputStream and OutputStream
subclasses. Even though it might make sense to treat a ByteArrayInputStream as a random
access element, you can use RandomAccessFile to only open a file. You must assume a
RandomAccessFile is properly buffered since you cannot add that.

The one option you have is in the second constructor argument: you can open a
RandomAccessFile to read (“r”) or read and write (“rw”).

Using a RandomAccessFile is like using a combined DataInputStream and
DataOutputStream (because it implements the equivalent interfaces). In addition, you can
see that seek( ) is used to move about in the file and change one of the values.

Shorthand for file manipulation
Since there are certain canonical forms that you’ll be using regularly with files, you may
wonder why you have to do all of that typing – this is one of the drawbacks of the decorator
pattern. This portion shows the creation and use of shorthand versions of typical file reading
and writing configurations. These shorthands are placed in the package
com.bruceeckel.tools that was begun in Chapter 5 (See page 170). To add each class to the
library, simply place it in the appropriate directory and add the package statement.

7. File input shorthand
The creation of an object that reads a file from a buffered DataInputStream can be
encapsulated into a class called InFile:

//: InFile.java
// Shorthand class for opening an input file
package com.bruceeckel.tools;



376 Thinking in Java  www.BruceEckel.com

import java.io.*;

public class InFile extends DataInputStream {
  public InFile(String filename)
    throws FileNotFoundException {
    super(
      new BufferedInputStream(
        new FileInputStream(filename)));
  }
  public InFile(File file)
    throws FileNotFoundException {
    this(file.getPath());
  }
} ///:~

Both the String versions of the constructor and the File versions are included, to parallel the
creation of a FileInputStream.

Now you can reduce your chances of repetitive stress syndrome while creating files, as seen
in the example.

8. Formatted file output shorthand
The same kind of approach can be taken to create a PrintStream that writes to a buffered
file. Here’s the extension to com.bruceeckel.tools:

//: PrintFile.java
// Shorthand class for opening an output file
// for human-readable output.
package com.bruceeckel.tools;
import java.io.*;

public class PrintFile extends PrintStream {
  public PrintFile(String filename)
    throws IOException {
    super(
      new BufferedOutputStream(
        new FileOutputStream(filename)));
  }
  public PrintFile(File file)
    throws IOException {
    this(file.getPath());
  }
} ///:~

Note that it is not possible for a constructor to catch an exception that’s thrown by a base-
class constructor.

9. Data file output shorthand
Finally, the same kind of shorthand can create a buffered output file for data storage (as
opposed to human-readable storage):

//: OutFile.java
// Shorthand class for opening an output file



Chapter 10: The Java IO System 377

// for data storage.
package com.bruceeckel.tools;
import java.io.*;

public class OutFile extends DataOutputStream {
  public OutFile(String filename)
    throws IOException {
    super(
      new BufferedOutputStream(
        new FileOutputStream(filename)));
  }
  public OutFile(File file)
    throws IOException {
    this(file.getPath());
  }
} ///:~

It is curious (and unfortunate) that the Java library designers didn’t think to provide these
conveniences as part of their standard.

Reading from standard input
Following the approach pioneered in Unix of “standard input,” “standard output,” and
“standard error output,” Java has System.in, System.out, and System.err. Throughout the
book you’ve seen how to write to standard output using System.out, which is already pre-
wrapped as a PrintStream object. System.err is likewise a PrintStream, but System.in is a
raw InputStream, with no wrapping. This means that while you can use System.out and
System.err right away, System.in must be wrapped before you can read from it.

Typically, you’ll want to read input a line at a time using readLine( ), so you’ll want to
wrap System.in in a DataInputStream. This is the “old” Java 1.0 way to do line input. A
bit later in the chapter you’ll see the Java 1.1 solution. Here’s an example that simply echoes
each line that you type in:

//: Echo.java
// How to read from standard input
import java.io.*;

public class Echo {
  public static void main(String[] args) {
    DataInputStream in =
      new DataInputStream(
        new BufferedInputStream(System.in));
    String s;
    try {
      while((s = in.readLine()).length() != 0)
        System.out.println(s);
      // An empty line terminates the program
    } catch(IOException e) {
      e.printStackTrace();
    }
  }
} ///:~



378 Thinking in Java  www.BruceEckel.com

The reason for the try block is that readLine( ) can throw an IOException. Note that
System.in should also be buffered, as with most streams

It’s a bit inconvenient that you’re forced to wrap System.in in a DataInputStream in each
program, but perhaps it was designed this way to allow maximum flexibility.

Piped streams
The PipedInputStream and PipedOutputStream have been mentioned only briefly in this
chapter. This is not to suggest that they aren’t useful, but their value is not apparent until
you begin to understand multithreading, since the piped streams are used to communicate
between threads. This is covered along with an example in Chapter 14.

StreamTokenizer
Although StreamTokenizer is not derived from InputStream or OutputStream, it works
only with InputStream objects, so it rightfully belongs in the IO portion of the library.

The StreamTokenizer class is used to break any InputStream into a sequence of “tokens,”
which are bits of text delimited by whatever you choose. For example, your tokens could be
words, and then they would be delimited by white space and punctuation.

Consider a program to count the occurrence of words in a text file:

//: SortedWordCount.java
// Counts words in a file, outputs
// results in sorted form.
import java.io.*;
import java.util.*;
import c08.*; // Contains StrSortVector

class Counter {
  private int i = 1;
  int read() { return i; }
  void increment() { i++; }
}

public class SortedWordCount {
  private FileInputStream file;
  private StreamTokenizer st;
  private Hashtable counts = new Hashtable();
  SortedWordCount(String filename)
    throws FileNotFoundException {
    try {
      file = new FileInputStream(filename);
      st = new StreamTokenizer(file);
      st.ordinaryChar('.');
      st.ordinaryChar('-');
    } catch(FileNotFoundException e) {
      System.out.println(
        "Could not open " + filename);
      throw e;
    }



Chapter 10: The Java IO System 379

  }
  void cleanup() {
    try {
      file.close();
    } catch(IOException e) {
      System.out.println(
        "file.close() unsuccessful");
    }
  }
  void countWords() {
    try {
      while(st.nextToken() !=
        StreamTokenizer.TT_EOF) {
        String s;
        switch(st.ttype) {
          case StreamTokenizer.TT_EOL:
            s = new String("EOL");
            break;
          case StreamTokenizer.TT_NUMBER:
            s = Double.toString(st.nval);
            break;
          case StreamTokenizer.TT_WORD:
            s = st.sval; // Already a String
            break;
          default: // single character in ttype
            s = String.valueOf((char)st.ttype);
        }
        if(counts.containsKey(s))
          ((Counter)counts.get(s)).increment();
        else
          counts.put(s, new Counter());
      }
    } catch(IOException e) {
      System.out.println(
        "st.nextToken() unsuccessful");
    }
  }
  Enumeration values() {
    return counts.elements();
  }
  Enumeration keys() { return counts.keys(); }
  Counter getCounter(String s) {
    return (Counter)counts.get(s);
  }
  Enumeration sortedKeys() {
    Enumeration e = counts.keys();
    StrSortVector sv = new StrSortVector();
    while(e.hasMoreElements())
      sv.addElement((String)e.nextElement());
    // This call forces a sort:
    return sv.elements();
  }
  public static void main(String[] args) {
    try {



380 Thinking in Java  www.BruceEckel.com

      SortedWordCount wc =
        new SortedWordCount(args[0]);
      wc.countWords();
      Enumeration keys = wc.sortedKeys();
      while(keys.hasMoreElements()) {
        String key = (String)keys.nextElement();
        System.out.println(key + ": "
                 + wc.getCounter(key).read());
      }
      wc.cleanup();
    } catch(Exception e) {
      e.printStackTrace();
    }
  }
} ///:~

It makes sense to present these in a sorted form, but since Java 1.0 and Java 1.1 don’t have
any sorting methods, that will have to be mixed in. This is easy enough to do with a
StrSortVector. (This was created in Chapter 8, and is part of the package created in that
chapter. Remember that the starting directory for all the subdirectories in this book must be
in your class path for the program to compile successfully.)

To open the file, a FileInputStream is used, and to turn the file into words a
StreamTokenizer is created from the FileInputStream. In StreamTokenizer, there is a
default list of separators, and you can add more with a set of methods. Here,
ordinaryChar( ) is used to say “This character has no significance that I’m interested in,” so
the parser doesn’t include it as part of any of the words that it creates. For example, saying
st.ordinaryChar('.') means that periods will not be included as parts of the words that are
parsed. You can find more information in the online documentation that comes with Java.

In countWords( ), the tokens are pulled one at a time from the stream, and the ttype
information is used to determine what to do with each token, since a token can be an end-
of-line, a number, a string, or a single character.

Once a token is found, the Hashtable counts is queried to see if it already contains the token
as a key. If it does, the corresponding Counter object is incremented to indicate that another
instance of this word has been found. If not, a new Counter is created – since the Counter
constructor initializes its value to one, this also acts to count the word.

SortedWordCount is not a type of Hashtable, so it wasn’t inherited. It performs a specific
type of functionality, so even though the keys( ) and values( ) methods must be re-exposed,
that still doesn’t mean that inheritance should be used since a number of Hashtable
methods are inappropriate here. In addition, other methods like getCounter( ), which get the
Counter for a particular String, and sortedKeys( ), which produces an Enumeration, finish
the change in the shape of SortedWordCount’s interface.

In main( ) you can see the use of a SortedWordCount to open and count the words in a file
– it just takes two lines of code. Then an enumeration to a sorted list of keys (words) is
extracted, and this is used to pull out each key and associated Count. Note that the call to
cleanup( ) is necessary to ensure that the file is closed.

A second example using StreamTokenizer can be found in Chapter 17.



Chapter 10: The Java IO System 381

StringTokenizer
Although it isn’t part of the IO library, the StringTokenizer has sufficiently similar
functionality to StreamTokenizer that it will be described here.

The StringTokenizer returns the tokens within a string one at a time. These tokens are
consecutive characters delimited by tabs, spaces, and newlines. Thus, the tokens of the string
“Where is my cat?” are “Where”, “is”, “my”, and “cat?” Like the StreamTokenizer, you can
tell the StringTokenizer to break up the input in any way that you want, but with
StringTokenizer you do this by passing a second argument to the constructor, which is a
String of the delimiters you wish to use. In general, if you need more sophistication, use a
StreamTokenizer.

You ask a StringTokenizer object for the next token in the string using the nextToken( )
method, which either returns the token or an empty string to indicate that no tokens
remain.

As an example, the following program performs a limited analysis of a sentence, looking for
key phrase sequences to indicate whether happiness or sadness is implied.

//: AnalyzeSentence.java
// Look for particular sequences
// within sentences.
import java.util.*;

public class AnalyzeSentence {
  public static void main(String[] args) {
    analyze("I am happy about this");
    analyze("I am not happy about this");
    analyze("I am not! I am happy");
    analyze("I am sad about this");
    analyze("I am not sad about this");
    analyze("I am not! I am sad");
    analyze("Are you happy about this?");
    analyze("Are you sad about this?");
    analyze("It's you! I am happy");
    analyze("It's you! I am sad");
  }
  static StringTokenizer st;
  static void analyze(String s) {
    prt("\nnew sentence >> " + s);
    boolean sad = false;
    st = new StringTokenizer(s);
    while (st.hasMoreTokens()) {
      String token = next();
      // Look until you find one of the
      // two starting tokens:
      if(!token.equals("I") &&
         !token.equals("Are"))
        continue; // Top of while loop
      if(token.equals("I")) {
        String tk2 = next();
        if(!tk2.equals("am")) // Must be after I
          break; // Out of while loop



382 Thinking in Java  www.BruceEckel.com

        else {
          String tk3 = next();
          if(tk3.equals("sad")) {
            sad = true;
            break; // Out of while loop
          }
          if (tk3.equals("not")) {
            String tk4 = next();
            if(tk4.equals("sad"))
              break; // Leave sad false
            if(tk4.equals("happy")) {
              sad = true;
              break;
            }
          }
        }
      }
      if(token.equals("Are")) {
        String tk2 = next();
        if(!tk2.equals("you"))
          break; // Must be after Are
        String tk3 = next();
        if(tk3.equals("sad"))
          sad = true;
        break; // Out of while loop
      }
    }
    if(sad) prt("Sad detected");
  }
  static String next() {
    if(st.hasMoreTokens()) {
      String s = st.nextToken();
      prt(s);
      return s;
    }
    else
      return "";
  }
  static void prt(String s) {
    System.out.println(s);
  }
} ///:~

For each string being analyzed, a while loop is entered and tokens are pulled off the string.
Notice the first if statement, which says to continue (go back to the beginning of the loop
and start again) if the token is neither an “I” nor an “Are.” This means that it will get tokens
until an “I” or an “Are” is found. You might think to use the == instead of the equals( )
method, but that won’t work correctly, since == compares handle values while equals( )
compares contents.

The logic of the rest of the analyze( ) method is that the pattern that’s being searched for is
“I am sad,” “I am not happy,” or “Are you sad?” Without the break statement, the code for
this would be even messier than it is. You should be aware that a typical parser (this is a



Chapter 10: The Java IO System 383

primitive example of one) normally has a table of these tokens and a piece of code that
moves through the states in the table as new tokens are read.

You should think of the StringTokenizer only as shorthand for a simple and specific kind of
StreamTokenizer. However, if you have a String that you want to tokenize and
StringTokenizer is too limited, all you have to do is turn it into a stream with
StringBufferInputStream and then use that to create a much more powerful
StreamTokenizer.

Java 1.1 IO streams
At this point you might be scratching your head, wondering if there is another design for IO
streams that could require more typing. Could someone have come up with an odder
design?” Prepare yourself: Java 1.1 makes some significant modifications to the IO stream
library. When you see the Reader and Writer classes your first thought (like mine) might be
that these were meant to replace the InputStream and OutputStream classes. But that’s
not the case. Although some aspects of the original streams library are deprecated (if you use
them you will receive a warning from the compiler), the old streams have been left in for
backwards compatibility and:

1. New classes have been put into the old hierarchy, so it’s obvious that Sun is not
abandoning the old streams.

2. There are times when you’re supposed to use classes in the old hierarchy in combination
with classes in the new hierarchy and to accomplish this there are “bridge” classes:
InputStreamReader converts an InputStream to a Reader and OutputStreamWriter
converts an OutputStream to a Writer.

As a result there are situations in which you have more layers of wrapping with the new IO
stream library than with the old. Again, this is a drawback of the decorator pattern – the
price you pay for added flexibility.

The most important reason for adding the Reader and Writer hierarchies in Java 1.1 is for
internationalization. The old IO stream hierarchy supports only 8-bit byte streams and
doesn’t handle the 16-bit Unicode characters well. Since Unicode is used for
internationalization (and Java’s native char is 16-bit Unicode), the Reader and Writer
hierarchies were added to support Unicode in all IO operations. In addition, the new libraries
are designed for faster operations than the old.

As is the practice in this book, I will attempt to provide an overview of the classes but
assume that you will use online documentation to determine all the details, such as the
exhaustive list of methods.

Sources and sinks of data
Almost all of the Java 1.0 IO stream classes have corresponding Java 1.1 classes to provide
native Unicode manipulation. It would be easiest to say “Always use the new classes, never
use the old ones,” but things are not that simple. Sometimes you are forced into using the
Java 1.0 IO stream classes because of the library design; in particular, the java.util.zip
libraries are new additions to the old stream library and they rely on old stream
components. So the most sensible approach to take is to try to use the Reader and Writer
classes whenever you can, and you’ll discover the situations when you have to drop back
into the old libraries because your code won’t compile.



384 Thinking in Java  www.BruceEckel.com

Here is a table that shows the correspondence between the sources and sinks of information
(that is, where the data physically comes from or goes to) in the old and new libraries.

Sources & Sinks:
Java 1.0 class

Corresponding Java 1.1 class

InputStream Reader
converter: InputStreamReader

OutputStream Writer
converter: OutputStreamWriter

FileInputStream FileReader
FileOutputStream FileWriter
StringBufferInputStream StringReader
(no corresponding class) StringWriter
ByteArrayInputStream CharArrayReader
ByteArrayOutputStream CharArrayWriter
PipedInputStream PipedReader
PipedOutputStream PipedWriter

In general, you’ll find that the interfaces in the old library components and the new ones are
similar if not identical.

Modifying stream behavior
In Java 1.0, streams were adapted for particular needs using “decorator” subclasses of
FilterInputStream and FilterOutputStream. Java 1.1 IO streams continues the use of this
idea, but the model of deriving all of the decorators from the same “filter” base class is not
followed. This can make it a bit confusing if you’re trying to understand it by looking at the
class hierarchy.

In the following table, the correspondence is a rougher approximation than in the previous
table. The difference is because of the class organization: while BufferedOutputStream is a
subclass of FilterOutputStream, BufferedWriter is not a subclass of FilterWriter (which,
even though it is abstract, has no subclasses and so appears to have been put in either as a
placeholder or simply so you wouldn’t wonder where it was). However, the interfaces to the
classes are quite a close match and it’s apparent that you’re supposed to use the new
versions instead of the old whenever possible (that is, except in cases where you’re forced to
produce a Stream instead of a Reader or Writer).

Filters:
Java 1.0 class

Corresponding Java 1.1 class

FilterInputStream FilterReader
FilterOutputStream FilterWriter (abstract class with no

subclasses)
BufferedInputStream BufferedReader

(also has readLine( ))
BufferedOutputStream BufferedWriter
DataInputStream use DataInputStream

(Except when you need to use
readLine( ), when you should use a
BufferedReader)

PrintStream PrintWriter
LineNumberInputStream LineNumberReader



Chapter 10: The Java IO System 385

Filters:
Java 1.0 class

Corresponding Java 1.1 class

StreamTokenizer StreamTokenizer
(use constructor that takes a Reader
instead)

PushBackInputStream PushBackReader

There’s one direction that’s quite clear: Whenever you want to use readLine( ), you
shouldn’t do it with a DataInputStream any more (this is met with a deprecation message
at compile time), but instead use a BufferedReader. Other than this, DataInputStream is
still a “preferred” member of the Java 1.1 IO library.

To make the transition to using a PrintWriter easier, it has constructors that take any
OutputStream object. However, PrintWriter has no more support for formatting than
PrintStream does; the interfaces are virtually the same.

Unchanged Classes
Apparently, the Java library designers felt that they got some of the classes right the first
time so there were no changes to these and you can go on using them as they are:

Java 1.0 classes without
corresponding Java 1.1 classes
DataOutputStream
File
RandomAccessFile
SequenceInputStream

The DataOutputStream, in particular, is used without change, so for storing and retrieving
data in a transportable format you’re forced to stay in the InputStream and OutputStream
hierarchies.

An example
To see the effect of the new classes, let’s look at the appropriate portion of the
IOStreamDemo.java example modified to use the Reader and Writer classes:

//: NewIODemo.java
// Java 1.1 IO typical usage
import java.io.*;

public class NewIODemo {
  public static void main(String[] args) {
    try {
      // 1. Reading input by lines:
      BufferedReader in =
        new BufferedReader(
          new FileReader(args[0]));
      String s, s2 = new String();
      while((s = in.readLine())!= null)
        s2 += s + "\n";
      in.close();



386 Thinking in Java  www.BruceEckel.com

      // 1b. Reading standard input:
      BufferedReader stdin =
        new BufferedReader(
          new InputStreamReader(System.in));
      System.out.print("Enter a line:");
      System.out.println(stdin.readLine());

      // 2. Input from memory
      StringReader in2 = new StringReader(s2);
      int c;
      while((c = in2.read()) != -1)
        System.out.print((char)c);

      // 3. Formatted memory input
      try {
        DataInputStream in3 =
          new DataInputStream(
            // Oops: must use deprecated class:
            new StringBufferInputStream(s2));
        while(true)
          System.out.print((char)in3.readByte());
      } catch(EOFException e) {
        System.out.println("End of stream");
      }

      // 4. Line numbering & file output
      try {
        LineNumberReader li =
          new LineNumberReader(
            new StringReader(s2));
        BufferedReader in4 =
          new BufferedReader(li);
        PrintWriter out1 =
          new PrintWriter(
            new BufferedWriter(
              new FileWriter("IODemo.out")));
        while((s = in4.readLine()) != null )
          out1.println(
            "Line " + li.getLineNumber() + s);
        out1.close();
      } catch(EOFException e) {
        System.out.println("End of stream");
      }

      // 5. Storing & recovering data
      try {
        DataOutputStream out2 =
          new DataOutputStream(
            new BufferedOutputStream(
              new FileOutputStream("Data.txt")));
        out2.writeDouble(3.14159);
        out2.writeBytes("That was pi");
        out2.close();
        DataInputStream in5 =



Chapter 10: The Java IO System 387

          new DataInputStream(
            new BufferedInputStream(
              new FileInputStream("Data.txt")));
        BufferedReader in5br =
          new BufferedReader(
            new InputStreamReader(in5));
        // Must use DataInputStream for data:
        System.out.println(in5.readDouble());
        // Can now use the "proper" readLine():
        System.out.println(in5br.readLine());
      } catch(EOFException e) {
        System.out.println("End of stream");
      }

      // 6. Reading and writing random access
      // files is the same as before.
      // (not repeated here)

    } catch(FileNotFoundException e) {
      System.out.println(
        "File Not Found:" + args[1]);
    } catch(IOException e) {
      System.out.println("IO Exception");
    }
  }
} ///:~

In general, you’ll see that the conversion is fairly straightforward and the code looks quite
similar. There are some important differences, though. First of all, since random access files
have not changed, section 6 is not repeated.

Section 1 shrinks a bit because if all you’re doing is reading line input you need only to wrap
a BufferedReader around a FileReader. Section 1b shows the new way to wrap System.in
for reading console input, and this expands because System.in is a DataInputStream and
BufferedReader needs a Reader argument, so InputStreamReader is brought in to
perform the translation.

In section 2 you can see that if you have a String and want to read from it you just use a
StringReader instead of a StringBufferInputStream and the rest of the code is identical.

Section 3 shows a bug in the design of the new IO stream library. If you have a String and
you want to read from it, you’re not supposed to use a StringBufferInputStream any
more. When you compile code involving a StringBufferInputStream constructor, you get a
deprecation message telling you to not use it. Instead, you’re supposed to use a
StringReader. However, if you want to do formatted memory input as in section 3, you’re
forced to use a DataInputStream – there is no “DataReader” to replace it – and a
DataInputStream constructor requires an InputStream argument. So you have no choice
but to use the deprecated StringBufferInputStream class. The compiler will give you a
deprecation message but there’s nothing you can do about it.2

                                                

2 Perhaps by the time you read this, the bug will be fixed.



388 Thinking in Java  www.BruceEckel.com

Section 4 is a reasonably straightforward translation from the old streams to the new, with
no surprises. In section 5, you’re forced to use all the old streams classes because
DataOutputStream and DataInputStream require them and there are no alternatives.
However, you don’t get any deprecation messages at compile time. If a stream is deprecated,
typically its constructor produces a deprecation message to prevent you from using the
entire class, but in the case of DataInputStream only the readLine( ) method is deprecated
since you’re supposed to use a BufferedReader for readLine( ) (but a DataInputStream for
all other formatted input).

If you compare section 5 with that section in IOStreamDemo.java, you’ll notice that in this
version, the data is written before the text. That’s because a bug was introduced in Java 1.1,
which is shown in the following code:

//: IOBug.java
// Java 1.1 (and higher?) IO Bug
import java.io.*;

public class IOBug {
  public static void main(String[] args)
  throws Exception {
    DataOutputStream out =
      new DataOutputStream(
        new BufferedOutputStream(
          new FileOutputStream("Data.txt")));
    out.writeDouble(3.14159);
    out.writeBytes("That was the value of pi\n");
    out.writeBytes("This is pi/2:\n");
    out.writeDouble(3.14159/2);
    out.close();

    DataInputStream in =
      new DataInputStream(
        new BufferedInputStream(
          new FileInputStream("Data.txt")));
    BufferedReader inbr =
      new BufferedReader(
        new InputStreamReader(in));
    // The doubles written BEFORE the line of text
    // read back correctly:
    System.out.println(in.readDouble());
    // Read the lines of text:
    System.out.println(inbr.readLine());
    System.out.println(inbr.readLine());
    // Trying to read the doubles after the line
    // produces an end-of-file exception:
    System.out.println(in.readDouble());
  }
} ///:~

It appears that anything you write after a call to writeBytes( ) is not recoverable. This is a
rather limiting bug, and we can hope that it will be fixed by the time you read this. You
should run the above program to test it; if you don’t get an exception and the values print
correctly then you’re out of the woods.



Chapter 10: The Java IO System 389

Redirecting standard IO
Java 1.1 has added methods in class System that allow you to redirect the standard input,
output, and error IO streams using simple static method calls:

setIn(InputStream)
setOut(PrintStream)
setErr(PrintStream)

Redirecting output is especially useful if you suddenly start creating a large amount of
output on your screen and it’s scrolling past faster than you can read it. Redirecting input is
valuable for a command-line program in which you want to test a particular user-input
sequence repeatedly. Here’s a simple example that shows the use of these methods:

//: Redirecting.java
// Demonstrates the use of redirection for
// standard IO in Java 1.1
import java.io.*;

class Redirecting {
  public static void main(String[] args) {
    try {
      BufferedInputStream in =
        new BufferedInputStream(
          new FileInputStream(
            "Redirecting.java"));
      // Produces deprecation message:
      PrintStream out =
        new PrintStream(
          new BufferedOutputStream(
            new FileOutputStream("test.out")));
      System.setIn(in);
      System.setOut(out);
      System.setErr(out);

      BufferedReader br =
        new BufferedReader(
          new InputStreamReader(System.in));
      String s;
      while((s = br.readLine()) != null)
        System.out.println(s);
      out.close(); // Remember this!
    } catch(IOException e) {
      e.printStackTrace();
    }
  }
} ///:~

This program attaches standard input to a file, and redirects standard output and standard
error to another file.

This is another example in which a deprecation message is inevitable. The message you can
get when compiling with the -deprecation flag is:



390 Thinking in Java  www.BruceEckel.com

Note: The constructor java.io.PrintStream(java.io.OutputStream)
has been deprecated.

However, both System.setOut( ) and System.setErr( ) require a PrintStream object as an
argument, so you are forced to call the PrintStream constructor. You might wonder, if Java
1.1 deprecates the entire PrintStream class by deprecating the constructor, why the library
designers, at the same time as they added this deprecation, also add new methods to System
that required a PrintStream rather than a PrintWriter, which is the new and preferred
replacement. It’s a mystery.

Compression
Java 1.1 has also added some classes to support reading and writing streams in a
compressed format. These are wrapped around existing IO classes to provide compression
functionality.

One aspect of these Java 1.1 classes stands out: They are not derived from the new Reader
and Writer classes, but instead are part of the InputStream and OutputStream hierarchies.
So you might be forced to mix the two types of streams. (Remember that you can use
InputStreamReader and OutputStreamWriter to provide easy conversion between one
type and another.)

Java 1.1 Compression
class

Function

CheckedInputStream GetCheckSum( ) produces checksum for
any InputStream (not just decompression)

CheckedOutputStream GetCheckSum( ) produces checksum for
any OutputStream (not just compression)

DeflaterOutputStream Base class for compression classes
ZipOutputStream A DeflaterOutputStream that compresses

data into the Zip file format
GZIPOutputStream A DeflaterOutputStream that compresses

data into the GZIP file format
InflaterInputStream Base class for decompression classes
ZipInputStream A DeflaterInputStream that

Decompresses data that has been stored in
the Zip file format

GZIPInputStream A DeflaterInputStream that
decompresses data that has been stored in
the GZIP file format

Although there are many compression algorithms, Zip and GZIP are possibly the most
commonly used. Thus you can easily manipulate your compressed data with the many tools
available for reading and writing these formats.

Simple compression with GZIP
The GZIP interface is simple and thus is probably more appropriate when you have a single
stream of data that you want to compress (rather than a collection of dissimilar pieces of
data). Here’s an example that compresses a single file:

//: GZIPcompress.java



Chapter 10: The Java IO System 391

// Uses Java 1.1 GZIP compression to compress
// a file whose name is passed on the command
// line.
import java.io.*;
import java.util.zip.*;

public class GZIPcompress {
  public static void main(String[] args) {
    try {
      BufferedReader in =
        new BufferedReader(
          new FileReader(args[0]));
      BufferedOutputStream out =
        new BufferedOutputStream(
          new GZIPOutputStream(
            new FileOutputStream("test.gz")));
      System.out.println("Writing file");
      int c;
      while((c = in.read()) != -1)
        out.write(c);
      in.close();
      out.close();
      System.out.println("Reading file");
      BufferedReader in2 =
        new BufferedReader(
          new InputStreamReader(
            new GZIPInputStream(
              new FileInputStream("test.gz"))));
      String s;
      while((s = in2.readLine()) != null)
        System.out.println(s);
    } catch(Exception e) {
      e.printStackTrace();
    }
  }
} ///:~

The use of the compression classes is straightforward – you simply wrap your output
stream in a GZIPOutputStream or ZipOutputStream and your input stream in a
GZIPInputStream or ZipInputStream. All else is ordinary IO reading and writing. This is,
however, a good example of when you’re forced to mix the old IO streams with the new: in
uses the Reader classes, whereas GZIPOutputStream’s constructor can accept only an
OutputStream object, not a Writer object.

Multi-file storage with Zip
The Java 1.1 library that supports the Zip format is much more extensive. With it you can
easily store multiple files, and there’s even a separate class to make the process of reading a
Zip file easy. The library uses the standard Zip format so that it works seamlessly with all
the tools currently downloadable on the Internet. The following example has the same form
as the previous example, but it handles as many command-line arguments as you want. In
addition, it shows the use of the Checksum classes to calculate and verify the checksum for



392 Thinking in Java  www.BruceEckel.com

the file. There are two Checksum types: Adler32 (which is faster) and CRC32 (which is
slower but slightly more accurate).

//: ZipCompress.java
// Uses Java 1.1 Zip compression to compress
// any number of files whose names are passed
// on the command line.
import java.io.*;
import java.util.*;
import java.util.zip.*;

public class ZipCompress {
  public static void main(String[] args) {
    try {
      FileOutputStream f =
        new FileOutputStream("test.zip");
      CheckedOutputStream csum =
        new CheckedOutputStream(
          f, new Adler32());
      ZipOutputStream out =
        new ZipOutputStream(
          new BufferedOutputStream(csum));
      out.setComment("A test of Java Zipping");
      // Can't read the above comment, though
      for(int i = 0; i < args.length; i++) {
        System.out.println(
          "Writing file " + args[i]);
        BufferedReader in =
          new BufferedReader(
            new FileReader(args[i]));
        out.putNextEntry(new ZipEntry(args[i]));
        int c;
        while((c = in.read()) != -1)
          out.write(c);
        in.close();
      }
      out.close();
      // Checksum valid only after the file
      // has been closed!
      System.out.println("Checksum: " +
        csum.getChecksum().getValue());
      // Now extract the files:
      System.out.println("Reading file");
      FileInputStream fi =
         new FileInputStream("test.zip");
      CheckedInputStream csumi =
        new CheckedInputStream(
          fi, new Adler32());
      ZipInputStream in2 =
        new ZipInputStream(
          new BufferedInputStream(csumi));
      ZipEntry ze;
      System.out.println("Checksum: " +
        csumi.getChecksum().getValue());



Chapter 10: The Java IO System 393

      while((ze = in2.getNextEntry()) != null) {
        System.out.println("Reading file " + ze);
        int x;
        while((x = in2.read()) != -1)
          System.out.write(x);
      }
      in2.close();
      // Alternative way to open and read
      // zip files:
      ZipFile zf = new ZipFile("test.zip");
      Enumeration e = zf.entries();
      while(e.hasMoreElements()) {
        ZipEntry ze2 = (ZipEntry)e.nextElement();
        System.out.println("File: " + ze2);
        // ... and extract the data as before
      }
    } catch(Exception e) {
      e.printStackTrace();
    }
  }
} ///:~

For each file to add to the archive, you must call putNextEntry( ) and pass it a ZipEntry
object. The ZipEntry object contains an extensive interface that allows you to get and set all
the data available on that particular entry in your Zip file: name, compressed and
uncompressed sizes, date, CRC checksum, extra field data, comment, compression method,
and whether it’s a directory entry. However, even though the Zip format has a way to set a
password, this is not supported in Java’s Zip library. And although CheckedInputStream
and CheckedOutputStream support both Adler32 and CRC32 checksums, the ZipEntry
class supports only an interface for CRC. This is a restriction of the underlying Zip format,
but it might limit you from using the faster Adler32.

To extract files, ZipInputStream has a getNextEntry( ) method that returns the next
ZipEntry if there is one. As a more succinct alternative, you can read the file using a ZipFile
object, which has a method entries( ) to return an Enumeration to the ZipEntries.

In order to read the checksum you must somehow have access to the associated Checksum
object. Here, a handle to the CheckedOutputStream and CheckedInputStream objects is
retained, but you could also just hold onto a handle to the Checksum object.

A baffling method in Zip streams is setComment( ). As shown above, you can set a
comment when you’re writing a file, but there’s no way to recover the comment in the
ZipInputStream. Comments appear to be supported fully on an entry-by-entry basis only
via ZipEntry.

Of course, you are not limited to files when using the GZIP or Zip libraries – you can
compress anything, including data to be sent through a network connection.

The Java archive (jar) utility
The Zip format is also used in the Java 1.1 JAR (Java ARchive) file format, which is a way to
collect a group of files into a single compressed file, just like Zip. However, like everything
else in Java, JAR files are cross-platform so you don’t need to worry about platform issues.
You can also include audio and image files as well as class files.



394 Thinking in Java  www.BruceEckel.com

JAR files are particularly helpful when you deal with the Internet. Before JAR files, your Web
browser would have to make repeated requests of a Web server in order to download all of
the files that make up an applet. In addition, each of these files was uncompressed. By
combining all of the files for a particular applet into a single JAR file, only one server request
is necessary and the transfer is faster because of compression. And each entry in a JAR file
can be digitally signed for security (refer to the Java documentation for details).

A JAR file consists of a single file containing a collection of zipped files along with a
“manifest” that describes them. (You can create your own manifest file; otherwise the jar
program will do it for you.) You can find out more about JAR manifests in the online
documentation.

The jar utility that comes with Sun’s JDK automatically compresses the files of your choice.
You invoke it on the command line:

jar [options] destination [manifest] inputfile(s)

The options are simply a collection of letters (no hyphen or any other indicator is necessary).
These are:

c Creates a new or empty archive.
t Lists the table of contents.
x Extracts all files
x file Extracts the named file
f Says: “I’m going to give you the name of the file.” If you

don’t use this, jar assumes that its input will come from
standard input, or, if it is creating a file, its output will go to
standard output.

m Says that the first argument will be the name of the user-
created manifest file

v Generates verbose output describing what jar is doing
O Only store the files; doesn’t compress the files (use to create a

JAR file that you can put in your classpath)
M Don’t automatically create a manifest file

If a subdirectory is included in the files to be put into the JAR file, that subdirectory is
automatically added, including all of its subdirectories, etc. Path information is also
preserved.

Here are some typical ways to invoke jar:

jar cf myJarFile.jar *.class

This creates a JAR file called myJarFile.jar that contains all of the class files in the current
directory, along with an automatically-generated manifest file.

jar cmf myJarFile.jar myManifestFile.mf *.class

Like the previous example, but adding a user-created manifest file called myManifestFile.mf.

jar tf myJarFile.jar

Produces a table of contents of the files in myJarFile.jar.

jar tvf myJarFile.jar

Adds the “verbose” flag to give more detailed information about the files in myJarFile.jar.



Chapter 10: The Java IO System 395

jar cvf myApp.jar audio classes image

Assuming audio, classes, and image are subdirectories, this combines all of the
subdirectories into the file myApp.jar. The “verbose” flag is also included to give extra
feedback while the jar program is working.

If you create a JAR file using the O option, that file can be placed in your CLASSPATH:

CLASSPATH="lib1.jar;lib2.jar;"

Then Java can search lib1.jar and lib2.jar for class files.

The jar tool isn’t as useful as a zip utility. For example, you can’t add or update files to an
existing JAR file; you can create JAR files only from scratch. Also, you can’t move files into a
JAR file, erasing them as they are moved. However, a JAR file created on one platform will be
transparently readable by the jar tool on any other platform (a problem that sometimes
plagues zip utilities).

As you will see in Chapter 13, JAR files are also used to package Java Beans.

Object serialization
Java 1.1 has added an interesting feature called object serialization that allows you to take
any object that implements the Serializable interface and turn it into a sequence of bytes
that can later be restored fully into the original object. This is even true across a network,
which means that the serialization mechanism automatically compensates for differences in
operating systems. That is, you can create an object on a Windows machine, serialize it, and
send it across the network to a Unix machine where it will be correctly reconstructed. You
don’t have to worry about the data representations on the different machines, the byte
ordering, or any other details.

By itself, object serialization is interesting because it allows you to implement lightweight
persistence. Remember that persistence means an object’s lifetime is not determined by
whether a program is executing – the object lives in between invocations of the program. By
taking a serializable object and writing it to disk, then restoring that object when the
program is re-invoked, you’re able to produce the effect of persistence. The reason it’s called
“lightweight” is that you can’t simply define an object using some kind of “persistent”
keyword and let the system take care of the details (although this might happen in the
future). Instead, you must explicitly serialize and de-serialize the objects in your program.

Object serialization was added to the language to support two major features. Java 1.1’s
remote method invocation (RMI) allows objects that live on other machines to behave as if
they live on your machine. When sending messages to remote objects, object serialization is
necessary to transport the arguments and return values. RMI is discussed in Chapter 15.

Object serialization is also necessary for Java Beans, introduced in Java 1.1. When a Bean is
used, its state information is generally configured at design time. This state information
must be stored and later recovered when the program is started; object serialization
performs this task.

Serializing an object is quite simple, as long as the object implements the Serializable
interface (this interface is just a flag and has no methods). In Java 1.1, many standard
library classes have been changed so they’re serializable, including all of the wrappers for the



396 Thinking in Java  www.BruceEckel.com

primitive types, all of the collection classes, and many others. Even Class objects can be
serialized. (See Chapter 11 for the implications of this.)

To serialize an object, you create some sort of OutputStream object and then wrap it inside
an ObjectOutputStream object. At this point you need only call writeObject( ) and your
object is serialized and sent to the OutputStream. To reverse the process, you wrap an
InputStream inside an ObjectInputStream and call readObject( ). What comes back is, as
usual, a handle to an upcast Object, so you must downcast to set things straight.

A particularly clever aspect of object serialization is that it not only saves an image of your
object but it also follows all the handles contained in your object and saves those objects, and
follows all the handles in each of those objects, etc. This is sometimes referred to as the “web
of objects” that a single object can be connected to, and it includes arrays of handles to
objects as well as member objects. If you had to maintain your own object serialization
scheme, maintaining the code to follow all these links would be a bit mind–boggling.
However, Java object serialization seems to pull it off flawlessly, no doubt using an
optimized algorithm that traverses the web of objects. The following example tests the
serialization mechanism by making a “worm” of linked objects, each of which has a link to
the next segment in the worm as well as an array of handles to objects of a different class,
Data:

//: Worm.java
// Demonstrates object serialization in Java 1.1
import java.io.*;

class Data implements Serializable {
  private int i;
  Data(int x) { i = x; }
  public String toString() {
    return Integer.toString(i);
  }
}

public class Worm implements Serializable {
  // Generate a random int value:
  private static int r() {
    return (int)(Math.random() * 10);
  }
  private Data[] d = {
    new Data(r()), new Data(r()), new Data(r())
  };
  private Worm next;
  private char c;
  // Value of i == number of segments
  Worm(int i, char x) {
    System.out.println(" Worm constructor: " + i);
    c = x;
    if(--i > 0)
      next = new Worm(i, (char)(x + 1));
  }
  Worm() {
    System.out.println("Default constructor");
  }
  public String toString() {



Chapter 10: The Java IO System 397

    String s = ":" + c + "(";
    for(int i = 0; i < d.length; i++)
      s += d[i].toString();
    s += ")";
    if(next != null)
      s += next.toString();
    return s;
  }
  public static void main(String[] args) {
    Worm w = new Worm(6, 'a');
    System.out.println("w = " + w);
    try {
      ObjectOutputStream out =
        new ObjectOutputStream(
          new FileOutputStream("worm.out"));
      out.writeObject("Worm storage");
      out.writeObject(w);
      out.close(); // Also flushes output
      ObjectInputStream in =
        new ObjectInputStream(
          new FileInputStream("worm.out"));
      String s = (String)in.readObject();
      Worm w2 = (Worm)in.readObject();
      System.out.println(s + ", w2 = " + w2);
    } catch(Exception e) {
      e.printStackTrace();
    }
    try {
      ByteArrayOutputStream bout =
        new ByteArrayOutputStream();
      ObjectOutputStream out =
        new ObjectOutputStream(bout);
      out.writeObject("Worm storage");
      out.writeObject(w);
      out.flush();
      ObjectInputStream in =
        new ObjectInputStream(
          new ByteArrayInputStream(
            bout.toByteArray()));
      String s = (String)in.readObject();
      Worm w3 = (Worm)in.readObject();
      System.out.println(s + ", w3 = " + w3);
    } catch(Exception e) {
      e.printStackTrace();
    }
  }
} ///:~

To make things interesting, the array of Data objects inside Worm are initialized with
random numbers. (This way you don’t suspect the compiler of keeping some kind of meta-
information.) Each Worm segment is labeled with a char that’s automatically generated in
the process of recursively generating the linked list of Worms. When you create a Worm,
you tell the constructor how long you want it to be. To make the next handle it calls the



398 Thinking in Java  www.BruceEckel.com

Worm constructor with a length of one less, etc. The final next handle is left as null,
indicating the end of the Worm.

The point of all this was to make something reasonably complex that couldn’t easily be
serialized. The act of serializing, however, is quite simple. Once the ObjectOutputStream is
created from some other stream, writeObject( ) serializes the object. Notice the call to
writeObject( ) for a String, as well. You can also write all the primitive data types using the
same methods as DataOutputStream (they share the same interface).

There are two separate try blocks that look similar. The first writes and reads a file and the
second, for variety, writes and reads a ByteArray. You can read and write an object using
serialization to any DataInputStream or DataOutputStream including, as you will see in
the networking chapter, a network. The output from one run was:

Worm constructor: 6
Worm constructor: 5
Worm constructor: 4
Worm constructor: 3
Worm constructor: 2
Worm constructor: 1
w = :a(262):b(100):c(396):d(480):e(316):f(398)
Worm storage, w2 = :a(262):b(100):c(396):d(480):e(316):f(398)
Worm storage, w3 = :a(262):b(100):c(396):d(480):e(316):f(398)

You can see that the deserialized object really does contain all of the links that were in the
original object.

Note that no constructor, not even the default constructor, is called in the process of
deserializing a Serializable object. The entire object is restored by recovering data from the
InputStream.

Object serialization is another Java 1.1 feature that is not part of the new Reader and
Writer hierarchies, but instead uses the old InputStream and OutputStream hierarchies.
Thus you might encounter situations in which you’re forced to mix the two hierarchies.

Finding the class
You might wonder what’s necessary for an object to be recovered from its serialized state.
For example, suppose you serialize an object and send it as a file or through a network to
another machine. Could a program on the other machine reconstruct the object using only
the contents of the file?

The best way to answer this question is (as usual) by performing an experiment. The
following file goes in the subdirectory for this chapter:

//: Alien.java
// A serializable class
import java.io.*;

public class Alien implements Serializable {
} ///:~

The file that creates and serializes an Alien object goes in the same directory:

//: FreezeAlien.java



Chapter 10: The Java IO System 399

// Create a serialized output file
import java.io.*;

public class FreezeAlien {
  public static void main(String[] args)
      throws Exception {
    ObjectOutput out =
      new ObjectOutputStream(
        new FileOutputStream("file.x"));
    Alien zorcon = new Alien();
    out.writeObject(zorcon);
  }
} ///:~

Rather than catching and handling exceptions, this program takes the quick and dirty
approach of passing the exceptions out of main( ), so they’ll be reported on the command
line.

Once the program is compiled and run, copy the resulting file.x to a subdirectory called
xfiles, where the following code goes:

//: ThawAlien.java
// Try to recover a serialized file without the
// class of object that's stored in that file.
package c10.xfiles;
import java.io.*;

public class ThawAlien {
  public static void main(String[] args)
      throws Exception {
    ObjectInputStream in =
      new ObjectInputStream(
        new FileInputStream("file.x"));
    Object mystery = in.readObject();
    System.out.println(
      mystery.getClass().toString());
  }
} ///:~

This program opens the file and reads in the object mystery successfully. However, as soon
as you try to find out anything about the object – which requires the Class object for Alien –
the Java Virtual Machine (JVM) cannot find Alien.class (unless it happens to be in the
Classpath, which it shouldn’t be in this example). You’ll get a ClassNotFoundException.
(Once again, all evidence of alien life vanishes before proof of its existence can be verified!)

If you expect to do much after you’ve recovered an object that has been serialized, you must
make sure that the JVM can find the associated .class file either in the local class path or
somewhere on the Internet.

Controlling serialization
As you can see, the default serialization mechanism is trivial to use. But what if you have
special needs? Perhaps you have special security issues and you don’t want to serialize



400 Thinking in Java  www.BruceEckel.com

portions of your object, or perhaps it just doesn’t make sense for one sub-object to be
serialized if that part needs to be created anew when the object is recovered.

You can control the process of serialization by implementing the Externalizable interface
instead of the Serializable interface. The Externalizable interface extends the Serializable
interface and adds two methods, writeExternal( ) and readExternal( ), that are
automatically called for your object during serialization and deserialization so that you can
perform your special operations.

The following example shows simple implementations of the Externalizable interface
methods. Note that Blip1 and Blip2 are nearly identical except for a subtle difference (see if
you can discover it by looking at the code):

//: Blips.java
// Simple use of Externalizable & a pitfall
import java.io.*;
import java.util.*;

class Blip1 implements Externalizable {
  public Blip1() {
    System.out.println("Blip1 Constructor");
  }
  public void writeExternal(ObjectOutput out)
      throws IOException {
    System.out.println("Blip1.writeExternal");
  }
  public void readExternal(ObjectInput in)
     throws IOException, ClassNotFoundException {
    System.out.println("Blip1.readExternal");
  }
}

class Blip2 implements Externalizable {
  Blip2() {
    System.out.println("Blip2 Constructor");
  }
  public void writeExternal(ObjectOutput out)
      throws IOException {
    System.out.println("Blip2.writeExternal");
  }
  public void readExternal(ObjectInput in)
     throws IOException, ClassNotFoundException {
    System.out.println("Blip2.readExternal");
  }
}

public class Blips {
  public static void main(String[] args) {
    System.out.println("Constructing objects:");
    Blip1 b1 = new Blip1();
    Blip2 b2 = new Blip2();
    try {
      ObjectOutputStream o =
        new ObjectOutputStream(



Chapter 10: The Java IO System 401

          new FileOutputStream("Blips.out"));
      System.out.println("Saving objects:");
      o.writeObject(b1);
      o.writeObject(b2);
      o.close();
      // Now get them back:
      ObjectInputStream in =
        new ObjectInputStream(
          new FileInputStream("Blips.out"));
      System.out.println("Recovering b1:");
      b1 = (Blip1)in.readObject();
      // OOPS! Throws an exception:
//!   System.out.println("Recovering b2:");
//!   b2 = (Blip2)in.readObject();
    } catch(Exception e) {
      e.printStackTrace();
    }
  }
} ///:~

The output for this program is:

Constructing objects:
Blip1 Constructor
Blip2 Constructor
Saving objects:
Blip1.writeExternal
Blip2.writeExternal
Recovering b1:
Blip1 Constructor
Blip1.readExternal

The reason that the Blip2 object is not recovered is that trying to do so causes an exception.
Can you see the difference between Blip1 and Blip2? The constructor for Blip1 is public,
while the constructor for Blip2 is not, and that causes the exception upon recovery. Try
making Blip2’s constructor public and removing the //! comments to see the correct
results.

When b1 is recovered, the Blip1 default constructor is called. This is different from
recovering a Serializable object, in which the object is constructed entirely from its stored
bits, with no constructor calls. With an Externalizable object, all the normal default
construction behavior occurs (including the initializations at the point of field definition),
and then readExternal( ) is called. You need to be aware of this – in particular the fact that
all the default construction always takes place – to produce the correct behavior in your
Externalizable objects.

Here’s an example that shows what you must do to fully store and retrieve an
Externalizable object:

//: Blip3.java
// Reconstructing an externalizable object
import java.io.*;
import java.util.*;

class Blip3 implements Externalizable {



402 Thinking in Java  www.BruceEckel.com

  int i;
  String s; // No initialization
  public Blip3() {
    System.out.println("Blip3 Constructor");
    // s, i not initialized
  }
  public Blip3(String x, int a) {
    System.out.println("Blip3(String x, int a)");
    s = x;
    i = a;
    // s & i initialized only in non-default
    // constructor.
  }
  public String toString() { return s + i; }
  public void writeExternal(ObjectOutput out)
      throws IOException {
    System.out.println("Blip3.writeExternal");
    // You must do this:
    out.writeObject(s); out.writeInt(i);
  }
  public void readExternal(ObjectInput in)
     throws IOException, ClassNotFoundException {
    System.out.println("Blip3.readExternal");
    // You must do this:
    s = (String)in.readObject();
    i =in.readInt();
  }
  public static void main(String[] args) {
    System.out.println("Constructing objects:");
    Blip3 b3 = new Blip3("A String ", 47);
    System.out.println(b3.toString());
    try {
      ObjectOutputStream o =
        new ObjectOutputStream(
          new FileOutputStream("Blip3.out"));
      System.out.println("Saving object:");
      o.writeObject(b3);
      o.close();
      // Now get it back:
      ObjectInputStream in =
        new ObjectInputStream(
          new FileInputStream("Blip3.out"));
      System.out.println("Recovering b3:");
      b3 = (Blip3)in.readObject();
      System.out.println(b3.toString());
    } catch(Exception e) {
      e.printStackTrace();
    }
  }
} ///:~

The fields s and i are initialized only in the second constructor, but not in the default
constructor. This means that if you don’t initialize s and i in readExternal, it will be null
(since the storage for the object gets wiped to zero in the first step of object creation). If you



Chapter 10: The Java IO System 403

comment out the two lines of code following the phrases “You must do this” and run the
program, you’ll see that when the object is recovered, s is null and i is zero.

If you are inheriting from an Externalizable object, you’ll typically call the base-class
versions of writeExternal( ) and readExternal( ) to provide proper storage and retrieval of
the base-class components.

So to make things work correctly you must not only write the important data from the
object during the writeExternal( ) method (there is no default behavior that writes any of
the member objects for an Externalizable object), but you must also recover that data in the
readExternal( ) method. This can be a bit confusing at first because the default construction
behavior for an Externalizable object can make it seem like some kind of storage and
retrieval takes place automatically. It does not.

The transient keyword
When you’re controlling serialization, there might be a particular subobject that you don’t
want Java’s serialization mechanism to automatically save and restore. This is commonly
the case if that subobject represents sensitive information that you don’t want to serialize,
such as a password. Even if that information is private in the object, once it’s serialized it’s
possible for someone to access it by reading a file or intercepting a network transmission.

One way to prevent sensitive parts of your object from being serialized is to implement your
class as Externalizable, as shown previously. Then nothing is automatically serialized and
you can explicitly serialize only the necessary parts inside writeExternal( ).

If you’re working with a Serializable object, however, all serialization happens
automatically. To control this, you can turn off serialization on a field-by-field basis using
the transient keyword, which says “Don’t bother saving or restoring this – I’ll take care of
it.”

For example, consider a Login object that keeps information about a particular login session.
Suppose that, once you verify the login, you want to store the data, but without the
password. The easiest way to do this is by implementing Serializable and marking the
password field as transient. Here’s what it looks like:

//: Logon.java
// Demonstrates the "transient" keyword
import java.io.*;
import java.util.*;

class Logon implements Serializable {
  private Date date = new Date();
  private String username;
  private transient String password;
  Logon(String name, String pwd) {
    username = name;
    password = pwd;
  }
  public String toString() {
    String pwd =
      (password == null) ? "(n/a)" : password;
    return "logon info: \n   " +
      "username: " + username +
      "\n   date: " + date.toString() +



404 Thinking in Java  www.BruceEckel.com

      "\n   password: " + pwd;
  }
  public static void main(String[] args) {
    Logon a = new Logon("Hulk", "myLittlePony");
    System.out.println( "logon a = " + a);
    try {
      ObjectOutputStream o =
        new ObjectOutputStream(
          new FileOutputStream("Logon.out"));
      o.writeObject(a);
      o.close();
      // Delay:
      int seconds = 5;
      long t = System.currentTimeMillis()
             + seconds * 1000;
      while(System.currentTimeMillis() < t)
        ;
      // Now get them back:
      ObjectInputStream in =
        new ObjectInputStream(
          new FileInputStream("Logon.out"));
      System.out.println(
        "Recovering object at " + new Date());
      a = (Logon)in.readObject();
      System.out.println( "logon a = " + a);
    } catch(Exception e) {
      e.printStackTrace();
    }
  }
} ///:~

You can see that the date and username fields are ordinary (not transient), and thus are
automatically serialized. However, the password is transient, and so is not stored to disk;
also the serialization mechanism makes no attempt to recover it. The output is:

logon a = logon info:
   username: Hulk
   date: Sun Mar 23 18:25:53 PST 1997
   password: myLittlePony
Recovering object at Sun Mar 23 18:25:59 PST 1997
logon a = logon info:
   username: Hulk
   date: Sun Mar 23 18:25:53 PST 1997
   password: (n/a)

When the object is recovered, the password field is null. Note that toString( ) must check
for a null value of password because if you try to assemble a String object using the
overloaded ‘+’ operator, and that operator encounters a null handle, you’ll get a
NullPointerException. (Newer versions of Java might contain code to avoid this problem.)

You can also see that the date field is stored to and recovered from disk and not generated
anew.

Since Externalizable objects do not store any of their fields by default, the transient
keyword is for use with Serializable objects only.



Chapter 10: The Java IO System 405

An alternative to EExternalizable
If you’re not keen on implementing the Externalizable interface, there’s another approach.
You can implement the Serializable interface and add (notice I say “add” and not “override”
or “implement”) methods called writeObject( ) and readObject( ) that will automatically be
called when the object is serialized and deserialized, respectively. That is, if you provide these
two methods they will be used instead of the default serialization.

The methods must have these exact signatures:

private void
  writeObject(ObjectOutputStream stream)
    throws IOException;

private void
  readObject(ObjectInputStream stream)
    throws IOException, ClassNotFoundException

From a design standpoint, things get really weird here. First of all, you might think that
because these methods are not part of a base class or the Serializable interface, they ought
to be defined in their own interface(s). But notice that they are defined as private, which
means they are to be called only by other members of this class. However, you don’t actually
call them from other members of this class, but instead the writeObject( ) and readObject( )
methods of the ObjectOutputStream and ObjectInputStream objects call your object’s
writeObject( ) and readObject( ) methods. (Notice my tremendous restraint in not
launching into a long diatribe about using the same method names here. In a word:
confusing.) You might wonder how the ObjectOutputStream and ObjectInputStream
objects have access to private methods of your class. We can only assume that this is part of
the serialization magic.

In any event, anything defined in an interface is automatically public so if writeObject( )
and readObject( ) must be private, then they can’t be part of an interface. Since you must
follow the signatures exactly, the effect is the same as if you’re implementing an interface.

It would appear that when you call ObjectOutputStream.writeObject( ), the Serializable
object that you pass it to is interrogated (using reflection, no doubt) to see if it implements
its own writeObject( ). If so, the normal serialization process is skipped and the
writeObject( ) is called. The same sort of situation exists for readObject( ).

There’s one other twist. Inside your writeObject( ), you can choose to perform the default
writeObject( ) action by calling defaultWriteObject( ). Likewise, inside readObject( ) you
can call defaultReadObject( ). Here is a simple example that demonstrates how you can
control the storage and retrieval of a Serializable object:

//: SerialCtl.java
// Controlling serialization by adding your own
// writeObject() and readObject() methods.
import java.io.*;

public class SerialCtl implements Serializable {
  String a;
  transient String b;
  public SerialCtl(String aa, String bb) {
    a = "Not Transient: " + aa;
    b = "Transient: " + bb;



406 Thinking in Java  www.BruceEckel.com

  }
  public String toString() {
    return a + "\n" + b;
  }
  private void
    writeObject(ObjectOutputStream stream)
      throws IOException {
    stream.defaultWriteObject();
    stream.writeObject(b);
  }
  private void
    readObject(ObjectInputStream stream)
      throws IOException, ClassNotFoundException {
    stream.defaultReadObject();
    b = (String)stream.readObject();
  }
  public static void main(String[] args) {
    SerialCtl sc =
      new SerialCtl("Test1", "Test2");
    System.out.println("Before:\n" + sc);
    ByteArrayOutputStream buf =
      new ByteArrayOutputStream();
    try {
      ObjectOutputStream o =
        new ObjectOutputStream(buf);
      o.writeObject(sc);
      // Now get it back:
      ObjectInputStream in =
        new ObjectInputStream(
          new ByteArrayInputStream(
            buf.toByteArray()));
      SerialCtl sc2 = (SerialCtl)in.readObject();
      System.out.println("After:\n" + sc2);
    } catch(Exception e) {
      e.printStackTrace();
    }
  }
} ///:~

In this example, one String field is ordinary and the other is transient, to prove that the
non-transient field is saved by the defaultWriteObject( ) method and the transient field is
saved and restored explicitly. The fields are initialized inside the constructor rather than at
the point of definition to prove that they are not being initialized by some automatic
mechanism during deserialization.

If you are going to use the default mechanism to write the non-transient parts of your
object, you must call defaultWriteObject( ) as the first operation in writeObject( ) and
defaultReadObject( ) as the first operation in readObject( ). These are strange method calls.
It would appear, for example, that you are calling defaultWriteObject( ) for an
ObjectOutputStream and passing it no arguments, and yet it somehow turns around and
knows the handle to your object and how to write all the non-transient parts. Spooky.

The storage and retrieval of the transient objects uses more familiar code. And yet, think
about what happens here. In main( ), a SerialCtl object is created, and then it’s serialized to



Chapter 10: The Java IO System 407

an ObjectOutputStream. (Notice in this case that a buffer is used instead of a file – it’s all
the same to the ObjectOutputStream.) The serialization occurs in the line:

o.writeObject(sc);

The writeObject( ) method must be examining sc to see if it has its own writeObject( )
method. (Not by checking the interface – there isn’t one – or the class type, but by actually
hunting for the method using reflection.) If it does, it uses that. A similar approach holds
true for readObject( ). Perhaps this was the only practical way that they could solve the
problem, but it’s certainly strange.

Versioning
It’s possible that you might want to change the version of a serializable class (objects of the
original class might be stored in a database, for example). This is supported but you’ll
probably do it only in special cases, and it requires an extra depth of understanding that we
will not attempt to achieve here. The JDK1.1 HTML documents downloadable from Sun
(which might be part of your Java package’s online documents) cover this topic quite
thoroughly.

Using persistence
It’s quite appealing to use serialization technology to store some of the state of your
program so that you can easily restore the program to the current state later. But before you
can do this, some questions must be answered. What happens if you serialize two objects
that both have a handle to a third object? When you restore those two objects from their
serialized state, do you get only one occurrence of the third object? What if you serialize
your two objects to separate files and deserialize them in different parts of your code?

Here’s an example that shows the problem:

//: MyWorld.java
import java.io.*;
import java.util.*;

class House implements Serializable {}

class Animal implements Serializable {
  String name;
  House preferredHouse;
  Animal(String nm, House h) {
    name = nm;
    preferredHouse = h;
  }
  public String toString() {
    return name + "[" + super.toString() +
      "], " + preferredHouse + "\n";
  }
}

public class MyWorld {
  public static void main(String[] args) {
    House house = new House();
    Vector  animals = new Vector();



408 Thinking in Java  www.BruceEckel.com

    animals.addElement(
      new Animal("Bosco the dog", house));
    animals.addElement(
      new Animal("Ralph the hamster", house));
    animals.addElement(
      new Animal("Fronk the cat", house));
    System.out.println("animals: " + animals);

    try {
      ByteArrayOutputStream buf1 =
        new ByteArrayOutputStream();
      ObjectOutputStream o1 =
        new ObjectOutputStream(buf1);
      o1.writeObject(animals);
      o1.writeObject(animals); // Write a 2nd set
      // Write to a different stream:
      ByteArrayOutputStream buf2 =
        new ByteArrayOutputStream();
      ObjectOutputStream o2 =
        new ObjectOutputStream(buf2);
      o2.writeObject(animals);
      // Now get them back:
      ObjectInputStream in1 =
        new ObjectInputStream(
          new ByteArrayInputStream(
            buf1.toByteArray()));
      ObjectInputStream in2 =
        new ObjectInputStream(
          new ByteArrayInputStream(
            buf2.toByteArray()));
      Vector animals1 = (Vector)in1.readObject();
      Vector animals2 = (Vector)in1.readObject();
      Vector animals3 = (Vector)in2.readObject();
      System.out.println("animals1: " + animals1);
      System.out.println("animals2: " + animals2);
      System.out.println("animals3: " + animals3);
    } catch(Exception e) {
      e.printStackTrace();
    }
  }
} ///:~

One thing that’s interesting here is that it’s possible to use object serialization to and from a
byte array as a way of doing a “deep copy” of any object that’s Serializable. (A deep copy
means that you’re duplicating the entire web of objects, rather than just the basic object and
its handles.) Copying is covered in depth in Chapter 12.

Animal objects contain fields of type House. In main( ), a Vector of these Animals is created
and it is serialized twice to one stream and then again to a separate stream. When these are
deserialized and printed, you see the following results for one run (the objects will be in
different memory locations each run):

animals: [Bosco the dog[Animal@1cc76c], House@1cc769
, Ralph the hamster[Animal@1cc76d], House@1cc769



Chapter 10: The Java IO System 409

, Fronk the cat[Animal@1cc76e], House@1cc769
]
animals1: [Bosco the dog[Animal@1cca0c], House@1cca16
, Ralph the hamster[Animal@1cca17], House@1cca16
, Fronk the cat[Animal@1cca1b], House@1cca16
]
animals2: [Bosco the dog[Animal@1cca0c], House@1cca16
, Ralph the hamster[Animal@1cca17], House@1cca16
, Fronk the cat[Animal@1cca1b], House@1cca16
]
animals3: [Bosco the dog[Animal@1cca52], House@1cca5c
, Ralph the hamster[Animal@1cca5d], House@1cca5c
, Fronk the cat[Animal@1cca61], House@1cca5c
]

Of course you expect that the deserialized objects have different addresses from their
originals. But notice that in animals1 and animals2 the same addresses appear, including
the references to the House object that both share. On the other hand, when animals3 is
recovered the system has no way of knowing that the objects in this other stream are aliases
of the objects in the first stream, so it makes a completely different web of objects.

As long as you’re serializing everything to a single stream, you’ll be able to recover the same
web of objects that you wrote, with no accidental duplication of objects. Of course, you can
change the state of your objects in between the time you write the first and the last, but
that’s your responsibility – the objects will be written in whatever state they are in (and
with whatever connections they have to other objects) at the time you serialize them.

The safest thing to do if you want to save the state of a system is to serialize as an “atomic”
operation. If you serialize some things, do some other work, and serialize some more, etc.,
then you will not be storing the system safely. Instead, put all the objects that comprise the
state of your system in a single collection and simply write that collection out in one
operation. Then you can restore it with a single method call as well.

The following example is an imaginary computer-aided design (CAD) system that
demonstrates the approach. In addition, it throws in the issue of static fields – if you look at
the documentation you’ll see that Class is Serializable, so it should be easy to store the
static fields by simply serializing the Class object. That seems like a sensible approach,
anyway.

//: CADState.java
// Saving and restoring the state of a
// pretend CAD system.
import java.io.*;
import java.util.*;

abstract class Shape implements Serializable {
  public static final int
    RED = 1, BLUE = 2, GREEN = 3;
  private int xPos, yPos, dimension;
  private static Random r = new Random();
  private static int counter = 0;
  abstract public void setColor(int newColor);
  abstract public int getColor();
  public Shape(int xVal, int yVal, int dim) {
    xPos = xVal;



410 Thinking in Java  www.BruceEckel.com

    yPos = yVal;
    dimension = dim;
  }
  public String toString() {
    return getClass().toString() +
      " color[" + getColor() +
      "] xPos[" + xPos +
      "] yPos[" + yPos +
      "] dim[" + dimension + "]\n";
  }
  public static Shape randomFactory() {
    int xVal = r.nextInt() % 100;
    int yVal = r.nextInt() % 100;
    int dim = r.nextInt() % 100;
    switch(counter++ % 3) {
      default:
      case 0: return new Circle(xVal, yVal, dim);
      case 1: return new Square(xVal, yVal, dim);
      case 2: return new Line(xVal, yVal, dim);
    }
  }
}

class Circle extends Shape {
  private static int color = RED;
  public Circle(int xVal, int yVal, int dim) {
    super(xVal, yVal, dim);
  }
  public void setColor(int newColor) {
    color = newColor;
  }
  public int getColor() {
    return color;
  }
}

class Square extends Shape {
  private static int color;
  public Square(int xVal, int yVal, int dim) {
    super(xVal, yVal, dim);
    color = RED;
  }
  public void setColor(int newColor) {
    color = newColor;
  }
  public int getColor() {
    return color;
  }
}

class Line extends Shape {
  private static int color = RED;
  public static void
  serializeStaticState(ObjectOutputStream os)



Chapter 10: The Java IO System 411

      throws IOException {
    os.writeInt(color);
  }
  public static void
  deserializeStaticState(ObjectInputStream os)
      throws IOException {
    color = os.readInt();
  }
  public Line(int xVal, int yVal, int dim) {
    super(xVal, yVal, dim);
  }
  public void setColor(int newColor) {
    color = newColor;
  }
  public int getColor() {
    return color;
  }
}

public class CADState {
  public static void main(String[] args)
      throws Exception {
    Vector shapeTypes, shapes;
    if(args.length == 0) {
      shapeTypes = new Vector();
      shapes = new Vector();
      // Add handles to the class objects:
      shapeTypes.addElement(Circle.class);
      shapeTypes.addElement(Square.class);
      shapeTypes.addElement(Line.class);
      // Make some shapes:
      for(int i = 0; i < 10; i++)
        shapes.addElement(Shape.randomFactory());
      // Set all the static colors to GREEN:
      for(int i = 0; i < 10; i++)
        ((Shape)shapes.elementAt(i))
          .setColor(Shape.GREEN);
      // Save the state vector:
      ObjectOutputStream out =
        new ObjectOutputStream(
          new FileOutputStream("CADState.out"));
      out.writeObject(shapeTypes);
      Line.serializeStaticState(out);
      out.writeObject(shapes);
    } else { // There's a command-line argument
      ObjectInputStream in =
        new ObjectInputStream(
          new FileInputStream(args[0]));
      // Read in the same order they were written:
      shapeTypes = (Vector)in.readObject();
      Line.deserializeStaticState(in);
      shapes = (Vector)in.readObject();
    }
    // Display the shapes:



412 Thinking in Java  www.BruceEckel.com

    System.out.println(shapes);
  }
} ///:~

The Shape class implements Serializable, so anything that is inherited from Shape is
automatically Serializable as well. Each Shape contains data, and each derived Shape class
contains a static field that determines the color of all of those types of Shapes. (Placing a
static field in the base class would result in only one field, since static fields are not
duplicated in derived classes.) Methods in the base class can be overridden to set the color for
the various types (static methods are not dynamically bound, so these are normal methods).
The randomFactory( ) method creates a different Shape each time you call it, using random
values for the Shape data.

Circle and Square are straightforward extensions of Shape; the only difference is that
Circle initializes color at the point of definition and Square initializes it in the constructor.
We’ll leave the discussion of Line for later.

In main( ), one Vector is used to hold the Class objects and the other to hold the shapes. If
you don’t provide a command line argument the shapeTypes Vector is created and the Class
objects are added, and then the shapes Vector is created and Shape objects are added. Next,
all the static color values are set to GREEN, and everything is serialized to the file
CADState.out.

If you provide a command line argument (presumably CADState.out), that file is opened
and used to restore the state of the program. In both situations, the resulting Vector of
Shapes is printed out. The results from one run are:

>java CADState
[class Circle color[3] xPos[-51] yPos[-99] dim[38]
, class Square color[3] xPos[2] yPos[61] dim[-46]
, class Line color[3] xPos[51] yPos[73] dim[64]
, class Circle color[3] xPos[-70] yPos[1] dim[16]
, class Square color[3] xPos[3] yPos[94] dim[-36]
, class Line color[3] xPos[-84] yPos[-21] dim[-35]
, class Circle color[3] xPos[-75] yPos[-43] dim[22]
, class Square color[3] xPos[81] yPos[30] dim[-45]
, class Line color[3] xPos[-29] yPos[92] dim[17]
, class Circle color[3] xPos[17] yPos[90] dim[-76]
]

>java CADState CADState.out
[class Circle color[1] xPos[-51] yPos[-99] dim[38]
, class Square color[0] xPos[2] yPos[61] dim[-46]
, class Line color[3] xPos[51] yPos[73] dim[64]
, class Circle color[1] xPos[-70] yPos[1] dim[16]
, class Square color[0] xPos[3] yPos[94] dim[-36]
, class Line color[3] xPos[-84] yPos[-21] dim[-35]
, class Circle color[1] xPos[-75] yPos[-43] dim[22]
, class Square color[0] xPos[81] yPos[30] dim[-45]
, class Line color[3] xPos[-29] yPos[92] dim[17]
, class Circle color[1] xPos[17] yPos[90] dim[-76]
]

You can see that the values of xPos, yPos, and dim were all stored and recovered
successfully, but there’s something wrong with the retrieval of the static information. It’s



Chapter 10: The Java IO System 413

all ‘3’ going in, but it doesn’t come out that way. Circles have a value of 1 (RED, which is
the definition), and Squares have a value of 0 (remember, they are initialized in the
constructor). It’s as if the statics didn’t get serialized at all! That’s right – even though class
Class is Serializable, it doesn’t do what you expect. So if you want to serialize statics, you
must do it yourself.

This is what the serializeStaticState( ) and deserializeStaticState( ) static methods in Line
are for. You can see that they are explicitly called as part of the storage and retrieval process.
(Note that the order of writing to the serialize file and reading back from it must be
maintained.) Thus to make CADState.java run correctly you must (1) Add a
serializeStaticState( ) and deserializeStaticState( ) to the shapes, (2) Remove the Vector
shapeTypes and all code related to it, and (3) Add calls to the new serialize and deserialize
static methods in the shapes.

Another issue you might have to think about is security, since serialization also saves
private data. If you have a security issue, those fields should be marked as transient. But
then you have to design a secure way to store that information so that when you do a
restore you can reset those private variables.

Summary
The Java IO stream library does seem to satisfy the basic requirements: you can perform
reading and writing with the console, a file, a block of memory, or even across the Internet
(as you will see in Chapter 15). It’s possible (by inheriting from InputStream and
OutputStream) to create new types of input and output objects. And you can even add a
simple extensibility to the kinds of objects a stream will accept by redefining the toString( )
method that’s automatically called when you pass an object to a method that’s expecting a
String (Java’s limited “automatic type conversion”).

There are questions left unanswered by the documentation and design of the IO stream
library. For example, it would have been nice if you could say that you want an exception
thrown if you try to overwrite a file when opening it for output – some programming
systems allow you to specify that you want to open an output file, but only if it doesn’t
already exist. In Java, it appears that you are supposed to use a File object to determine
whether a file exists, because if you open it as an FileOutputStream or FileWriter it will
always get overwritten. By representing both files and directory paths, the File class also
suggests poor design by violating the maxim “Don’t try to do too much in a single class.”

The IO stream library brings up mixed feelings. It does much of the job and it’s portable. But
if you don’t already understand the decorator pattern, the design is non-intuitive, so there’s
extra overhead in learning and teaching it. It’s also incomplete: there’s no support for the
kind of output formatting that almost every other language’s IO package supports. (This
was not remedied in Java 1.1, which missed the opportunity to change the library design
completely, and instead added even more special cases and complexity.) The Java 1.1 changes
to the IO library haven’t been replacements, but rather additions, and it seems that the
library designers couldn’t quite get straight which features are deprecated and which are
preferred, resulting in annoying deprecation messages that show up the contradictions in the
library design.

However, once you do understand the decorator pattern and begin using the library in
situations that require its flexibility, you can begin to benefit from this design, at which
point its cost in extra lines of code may not bother you as much.



414 Thinking in Java  www.BruceEckel.com

Exercises
 1.  Open a text file so that you can read the file one line at a time. Read each line as a String

and place that String object into a Vector. Print out all of the lines in the Vector in reverse
order.

 2.  Modify Exercise 1 so that the name of the file you read is provided as a command-line
argument.

 3.  Modify Exercise 2 to also open a text file so you can write text into it. Write the lines in
the Vector, along with line numbers, out to the file.

 4.  Modify Exercise 2 to force all the lines in the Vector to upper case and send the results to
System.out.

 5.  Modify Exercise 2 to take additional arguments of words to find in the file. Print out any
lines in which the words match.

 6.  In Blips.java, copy the file and rename it to BlipCheck.java and rename the class Blip2
to BlipCheck (making it public in the process). Remove the //! marks in the file and
execute the program including the offending lines. Next, comment out the default
constructor for BlipCheck. Run it and explain why it works.

 7.  In Blip3.java, comment out the two lines after the phrases “You must do this:” and run
the program. Explain the result and why it differs from when the two lines are in the
program.

 8.  Convert the SortedWordCount.java program to use the Java 1.1 IO Streams.

 9.  Repair the program CADState.java as described in the text.

 10.  (Intermediate) In Chapter 7, locate the GreenhouseControls.java example, which consists
of three files. In GreenhouseControls.java, the Restart( ) inner class has a hard-coded set
of events. Change the program so that it reads the events and their relative times from a
text file. (Challenging: Use a factory method from Chapter 16 to build the events.)



415

9

11: Run-time type
identification

The idea of run-time type identification (RTTI) seems fairly simple at
first: it lets you find the exact type of an object when you have a handle to
only the base type.
However, the need for RTTI uncovers a whole plethora of interesting (and often perplexing)
OO design issues and raises fundamental questions of how you should structure your
programs.

This chapter looks at the ways that Java allows you to discover information about objects
and classes at run-time. This takes two forms: “traditional” RTTI, which assumes that you
have all the types available at compile-time and run-time, and the “reflection” mechanism in
Java 1.1, which allows you to discover class information solely at run-time. The
“traditional” RTTI will be covered first, followed by a discussion of reflection.

The need for RTTI
Consider the now familiar example of a class hierarchy that uses polymorphism. The generic
type is the base class Shape, and the specific derived types are Circle, Square, and Triangle:



416 Thinking in Java  www.BruceEckel.com

This is a typical class hierarchy diagram, with the base class at the top and the derived
classes growing downward. The normal goal in object-oriented programming is for the bulk
of your code to manipulate handles to the base type (Shape, in this case), so if you decide to
extend the program by adding a new class (Rhomboid, derived from Shape, for example),
the bulk of the code is not affected. In this example, the dynamically bound method in the
Shape interface is draw( ), so the intent is for the client programmer to call draw( )
through a generic Shape handle. draw( ) is overridden in all of the derived classes, and
because it is a dynamically bound method, the proper behavior will occur even though it is
called through a generic Shape handle. That’s polymorphism.

Thus, you generally create a specific object (Circle, Square, or Triangle), upcast it to a
Shape (forgetting the specific type of the object), and use that anonymous Shape handle in
the rest of the program.

As a brief review of polymorphism and upcasting, you might code the above example as
follows: (See page 94 if you have trouble executing this program.)

//: Shapes.java
package c11;
import java.util.*;

interface Shape {
  void draw();
}

class Circle implements Shape {
  public void draw() {
    System.out.println("Circle.draw()");
  }
}

class Square implements Shape {
  public void draw() {
    System.out.println("Square.draw()");
  }
}

class Triangle implements Shape {
  public void draw() {
    System.out.println("Triangle.draw()");
  }
}

Shape

draw()

Circle Square Triangle



Chapter 11: Run-Time Type Identification 417

public class Shapes {
  public static void main(String[] args) {
    Vector s = new Vector();
    s.addElement(new Circle());
    s.addElement(new Square());
    s.addElement(new Triangle());
    Enumeration e = s.elements();
    while(e.hasMoreElements())
      ((Shape)e.nextElement()).draw();
  }
} ///:~

The base class could be coded as an interface, an abstract class, or an ordinary class. Since
Shape has no concrete members (that is, members with definitions), and it’s not intended
that you ever create a plain Shape object, the most appropriate and flexible representation is
an interface. It’s also cleaner because you don’t have all those abstract keywords lying
about.

Each of the derived classes overrides the base-class draw method so it behaves differently. In
main( ), specific types of Shape are created and then added to a Vector. This is the point at
which the upcast occurs because the Vector holds only Objects. Since everything in Java
(with the exception of primitives) is an Object, a Vector can also hold Shape objects. But
during an upcast to Object, it also loses any specific information, including the fact that the
objects are shapes. To the Vector, they are just Objects.

At the point you fetch an element out of the Vector with nextElement( ), things get a little
busy. Since Vector holds only Objects, nextElement( ) naturally produces an Object handle.
But we know it’s really a Shape handle, and we want to send Shape messages to that object.
So a cast to Shape is necessary using the traditional “(Shape)” cast. This is the most basic
form of RTTI, since in Java all casts are checked at run-time for correctness. That’s exactly
what RTTI means: at run-time, the type of an object is identified.

In this case, the RTTI cast is only partial: the Object is cast to a Shape, and not all the way
to a Circle, Square, or Triangle. That’s because the only thing we know at this point is that
the Vector is full of Shapes. At compile-time, this is enforced only by your own self-imposed
rules, but at run-time the cast ensures it.

Now polymorphism takes over and the exact method that’s called for the Shape is
determined by whether the handle is for a Circle, Square, or Triangle. And in general, this
is how it should be; you want the bulk of your code to know as little as possible about
specific types of objects, and to just deal with the general representation of a family of objects
(in this case, Shape). As a result, your code will be easier to write, read, and maintain, and
your designs will be easier to implement, understand, and change. So polymorphism is the
general goal in object-oriented programming.

But what if you have a special programming problem that’s easiest to solve if you know the
exact type of a generic handle? For example, suppose you want to allow your users to
highlight all the shapes of any particular type by turning them purple. This way, they can
find all the triangles on the screen by highlighting them. This is what RTTI accomplishes:
you can ask a handle to a Shape exactly what type it’s referring to.



418 Thinking in Java  www.BruceEckel.com

The CClass object
To understand how RTTI works in Java, you must first know how type information is
represented at run time. This is accomplished through a special kind of object called the Class
object, which contains information about the class. (This is sometimes called a meta-class.) In
fact, the Class object is used to create all of the “regular” objects of your class.

There’s a Class object for each class that is part of your program. That is, each time you
write a new class, a single Class object is also created (and stored, appropriately enough, in
an identically named .class file). At run time, when you want to make an object of that
class, the Java Virtual Machine (JVM) that’s executing your program first checks to see if
the Class object for that type is loaded. If not, the JVM loads it by finding the .class file with
that name. Thus, a Java program isn’t completely loaded before it begins, which is different
from many traditional languages.

Once the Class object for that type is in memory, it is used to create all objects of that type.

If this seems shadowy or if you don’t really believe it, here’s a demonstration program to
prove it:

//: SweetShop.java
// Examination of the way the class loader works

class Candy {
  static {
    System.out.println("Loading Candy");
  }
}

class Gum {
  static {
    System.out.println("Loading Gum");
  }
}

class Cookie {
  static {
    System.out.println("Loading Cookie");
  }
}

public class SweetShop {
  public static void main(String[] args) {
    System.out.println("inside main");
    new Candy();
    System.out.println("After creating Candy");
    try {
      Class.forName("Gum");
    } catch(ClassNotFoundException e) {
      e.printStackTrace();
    }
    System.out.println(
      "After Class.forName(\"Gum\")");
    new Cookie();



Chapter 11: Run-Time Type Identification 419

    System.out.println("After creating Cookie");
  }
} ///:~

Each of the classes Candy, Gum, and Cookie has a static clause that is executed as the class
is loaded for the first time. Information will be printed out to tell you when loading occurs
for that class. In main( ), the object creations are spread out between print statements to
help detect the time of loading.

A particularly interesting line is:

Class.forName("Gum");

This method is a static member of Class (to which all Class objects belong). A Class object is
like any other object and so you can get and manipulate a handle to it. (That’s what the
loader does.) One of the ways to get a handle to the Class object is forName( ), which takes
a String containing the textual name (watch the spelling and capitalization!) of the
particular class you want a handle for. It returns a Class handle.

The output of this program for one JVM is:

inside main
Loading Candy
After creating Candy
Loading Gum
After Class.forName("Gum")
Loading Cookie
After creating Cookie

You can see that each Class object is loaded only when it’s needed, and the static
initialization is performed upon class loading.

Interestingly enough, a different JVM yielded:

Loading Candy
Loading Cookie
inside main
After creating Candy
Loading Gum
After Class.forName("Gum")
After creating Cookie

It appears that this JVM anticipated the need for Candy and Cookie by examining the code
in main( ), but could not see Gum because it was created by a call to forName( ) and not
through a more typical call to new. While this JVM produces the desired effect because it
does get the classes loaded before they’re needed, it’s uncertain whether the behavior shown
is precisely correct.

Class literals
In Java 1.1 you have a second way to produce the handle to the Class object: use the class
literal. In the above program this would look like:

Gum.class;

which is not only simpler, but also safer since it’s checked at compile time. Because it
eliminates the method call, it’s also more efficient.



420 Thinking in Java  www.BruceEckel.com

Class literals work with regular classes as well as interfaces, arrays, and primitive types. In
addition, there’s a standard field called TYPE that exists for each of the primitive wrapper
classes. The TYPE field produces a handle to the Class object for the associated primitive
type, such that:

… is equivalent to …
boolean.class Boolean.TYPE
char.class Character.TYPE
byte.class Byte.TYPE
short.class Short.TYPE
int.class Integer.TYPE
long.class Long.TYPE
float.class Float.TYPE
double.class Double.TYPE
void.class Void.TYPE

Checking before a cast
So far, you’ve seen RTTI forms including:

1. The classic cast, e.g. “(Shape),” which uses RTTI to make sure the cast is correct and
throws a ClassCastException if you’ve performed a bad cast.

2. The Class object representing the type of your object. The Class object can be queried for
useful runtime information.

In C++, the classic cast “(Shape)” does not perform RTTI. It simply tells the compiler to treat
the object as the new type. In Java, which does perform the type check, this cast is often
called a “type safe downcast.” The reason for the term “downcast” is the historical
arrangement of the class hierarchy diagram. If casting a Circle to a Shape is an upcast, then
casting a Shape to a Circle is a downcast. However, you know a Circle is also a Shape, and
the compiler freely allows an upcast assignment, but you don’t know that a Shape is
necessarily a Circle, so the compiler doesn’t allow you to perform a downcast assignment
without using an explicit cast.

There’s a third form of RTTI in Java. This is the keyword instanceof that tells you if an
object is an instance of a particular type. It returns a boolean so you use it in the form of a
question, like this:

if(x instanceof Dog)
  ((Dog)x).bark();

The above if statement checks to see if the object x belongs to the class Dog before casting x
to a Dog. It’s important to use instanceof before a downcast when you don’t have other
information that tells you the type of the object; otherwise you’ll end up with a
ClassCastException.

Ordinarily, you might be hunting for one type (triangles to turn purple, for example), but
the following program shows how to tally all of the objects using instanceof.

//: PetCount.java
// Using instanceof
package c11.petcount;
import java.util.*;



Chapter 11: Run-Time Type Identification 421

class Pet {}
class Dog extends Pet {}
class Pug extends Dog {}
class Cat extends Pet {}
class Rodent extends Pet {}
class Gerbil extends Rodent {}
class Hamster extends Rodent {}

class Counter { int i; }

public class PetCount {
  static String[] typenames = {
    "Pet", "Dog", "Pug", "Cat",
    "Rodent", "Gerbil", "Hamster",
  };
  public static void main(String[] args) {
    Vector pets = new Vector();
    try {
      Class[] petTypes = {
        Class.forName("c11.petcount.Dog"),
        Class.forName("c11.petcount.Pug"),
        Class.forName("c11.petcount.Cat"),
        Class.forName("c11.petcount.Rodent"),
        Class.forName("c11.petcount.Gerbil"),
        Class.forName("c11.petcount.Hamster"),
      };
      for(int i = 0; i < 15; i++)
        pets.addElement(
          petTypes[
            (int)(Math.random()*petTypes.length)]
            .newInstance());
    } catch(InstantiationException e) {}
      catch(IllegalAccessException e) {}
      catch(ClassNotFoundException e) {}
    Hashtable h = new Hashtable();
    for(int i = 0; i < typenames.length; i++)
      h.put(typenames[i], new Counter());
    for(int i = 0; i < pets.size(); i++) {
      Object o = pets.elementAt(i);
      if(o instanceof Pet)
        ((Counter)h.get("Pet")).i++;
      if(o instanceof Dog)
        ((Counter)h.get("Dog")).i++;
      if(o instanceof Pug)
        ((Counter)h.get("Pug")).i++;
      if(o instanceof Cat)
        ((Counter)h.get("Cat")).i++;
      if(o instanceof Rodent)
        ((Counter)h.get("Rodent")).i++;
      if(o instanceof Gerbil)
        ((Counter)h.get("Gerbil")).i++;
      if(o instanceof Hamster)
        ((Counter)h.get("Hamster")).i++;
    }



422 Thinking in Java  www.BruceEckel.com

    for(int i = 0; i < pets.size(); i++)
      System.out.println(
        pets.elementAt(i).getClass().toString());
    for(int i = 0; i < typenames.length; i++)
      System.out.println(
        typenames[i] + " quantity: " +
        ((Counter)h.get(typenames[i])).i);
  }
} ///:~

There’s a rather narrow restriction on instanceof in Java 1.0: You can compare it to a
named type only, and not to a Class object. In the example above you might feel that it’s
tedious to write out all of those instanceof expressions, and you’re right. But in Java 1.0
there is no way to cleverly automate it by creating a Vector of Class objects and comparing
it to those instead. This isn’t as great a restriction as you might think, because you’ll
eventually understand that your design is probably flawed if you end up writing a lot of
instanceof expressions.

Of course this example is contrived – you’d probably put a static data member in each type
and increment it in the constructor to keep track of the counts. You would do something like
that if you had control of the source code for the class and could change it. Since this is not
always the case, RTTI can come in handy.

Using class literals
It’s interesting to see how the PetCount.java example can be rewritten using Java 1.1 class
literals. The result is cleaner in many ways:

//: PetCount2.java
// Using Java 1.1 class literals
package c11.petcount2;
import java.util.*;

class Pet {}
class Dog extends Pet {}
class Pug extends Dog {}
class Cat extends Pet {}
class Rodent extends Pet {}
class Gerbil extends Rodent {}
class Hamster extends Rodent {}

class Counter { int i; }

public class PetCount2 {
  public static void main(String[] args) {
    Vector pets = new Vector();
    Class[] petTypes = {
      // Class literals work in Java 1.1+ only:
      Pet.class,
      Dog.class,
      Pug.class,
      Cat.class,
      Rodent.class,
      Gerbil.class,



Chapter 11: Run-Time Type Identification 423

      Hamster.class,
    };
    try {
      for(int i = 0; i < 15; i++) {
        // Offset by one to eliminate Pet.class:
        int rnd = 1 + (int)(
          Math.random() * (petTypes.length - 1));
        pets.addElement(
          petTypes[rnd].newInstance());
      }
    } catch(InstantiationException e) {}
      catch(IllegalAccessException e) {}
    Hashtable h = new Hashtable();
    for(int i = 0; i < petTypes.length; i++)
      h.put(petTypes[i].toString(),
        new Counter());
    for(int i = 0; i < pets.size(); i++) {
      Object o = pets.elementAt(i);
      if(o instanceof Pet)
        ((Counter)h.get(
          "class c11.petcount2.Pet")).i++;
      if(o instanceof Dog)
        ((Counter)h.get(
          "class c11.petcount2.Dog")).i++;
      if(o instanceof Pug)
        ((Counter)h.get(
          "class c11.petcount2.Pug")).i++;
      if(o instanceof Cat)
        ((Counter)h.get(
          "class c11.petcount2.Cat")).i++;
      if(o instanceof Rodent)
        ((Counter)h.get(
          "class c11.petcount2.Rodent")).i++;
      if(o instanceof Gerbil)
        ((Counter)h.get(
          "class c11.petcount2.Gerbil")).i++;
      if(o instanceof Hamster)
        ((Counter)h.get(
          "class c11.petcount2.Hamster")).i++;
    }
    for(int i = 0; i < pets.size(); i++)
      System.out.println(
        pets.elementAt(i).getClass().toString());
    Enumeration keys = h.keys();
    while(keys.hasMoreElements()) {
      String nm = (String)keys.nextElement();
      Counter cnt = (Counter)h.get(nm);
      System.out.println(
        nm.substring(nm.lastIndexOf('.') + 1) +
        " quantity: " + cnt.i);
    }
  }
} ///:~



424 Thinking in Java  www.BruceEckel.com

Here, the typenames array has been removed in favor of getting the type name strings from
the Class object. Notice the extra work for this: the class name is not, for example, Gerbil,
but instead c11.petcount2.Gerbil since the package name is included. Notice also that the
system can distinguish between classes and interfaces.

You can also see that the creation of petTypes does not need to be surrounded by a try block
since it’s evaluated at compile time and thus won’t throw any exceptions, unlike
Class.forName( ).

When the Pet objects are dynamically created, you can see that the random number is
restricted so it is between 1 and petTypes.length and does not include zero. That’s because
zero refers to Pet.class, and presumably a generic Pet object is not interesting. However,
since Pet.class is part of petTypes the result is that all of the pets get counted.

A dynamic iinstanceof
Java 1.1 has added the isInstance method to the class Class. This allows you to dynamically
call the instanceof operator, which you could do only statically in Java 1.0 (as previously
shown). Thus, all those tedious instanceof statements can be removed in the PetCount
example:

//: PetCount3.java
// Using Java 1.1 isInstance()
package c11.petcount3;
import java.util.*;

class Pet {}
class Dog extends Pet {}
class Pug extends Dog {}
class Cat extends Pet {}
class Rodent extends Pet {}
class Gerbil extends Rodent {}
class Hamster extends Rodent {}

class Counter { int i; }

public class PetCount3 {
  public static void main(String[] args) {
    Vector pets = new Vector();
    Class[] petTypes = {
      Pet.class,
      Dog.class,
      Pug.class,
      Cat.class,
      Rodent.class,
      Gerbil.class,
      Hamster.class,
    };
    try {
      for(int i = 0; i < 15; i++) {
        // Offset by one to eliminate Pet.class:
        int rnd = 1 + (int)(
          Math.random() * (petTypes.length - 1));
        pets.addElement(



Chapter 11: Run-Time Type Identification 425

          petTypes[rnd].newInstance());
      }
    } catch(InstantiationException e) {}
      catch(IllegalAccessException e) {}
    Hashtable h = new Hashtable();
    for(int i = 0; i < petTypes.length; i++)
      h.put(petTypes[i].toString(),
        new Counter());
    for(int i = 0; i < pets.size(); i++) {
      Object o = pets.elementAt(i);
      // Using isInstance to eliminate individual
      // instanceof expressions:
      for (int j = 0; j < petTypes.length; ++j)
        if (petTypes[j].isInstance(o)) {
          String key = petTypes[j].toString();
          ((Counter)h.get(key)).i++;
        }
    }
    for(int i = 0; i < pets.size(); i++)
      System.out.println(
        pets.elementAt(i).getClass().toString());
    Enumeration keys = h.keys();
    while(keys.hasMoreElements()) {
      String nm = (String)keys.nextElement();
      Counter cnt = (Counter)h.get(nm);
      System.out.println(
        nm.substring(nm.lastIndexOf('.') + 1) +
        " quantity: " + cnt.i);
    }
  }
} ///:~

You can see that the Java 1.1 isInstance( ) method has eliminated the need for the
instanceof expressions. In addition, this means that you can add new types of pets simply
by changing the petTypes array; the rest of the program does not need modification (as it
did when using the instanceof expressions).

RTTI syntax
Java performs its RTTI using the Class object, even if you’re doing something like a cast. The
class Class also has a number of other ways you can use RTTI.

First, you must get a handle to the appropriate Class object. One way to do this, as shown in
the previous example, is to use a string and the Class.forName( ) method. This is convenient
because you don’t need an object of that type in order to get the Class handle. However, if
you do already have an object of the type you’re interested in, you can fetch the Class
handle by calling a method that’s part of the Object root class: getClass( ). This returns the
Class handle representing the actual type of the object. Class has several interesting and
sometimes useful methods, demonstrated in the following example:

//: ToyTest.java
// Testing class Class



426 Thinking in Java  www.BruceEckel.com

interface HasBatteries {}
interface Waterproof {}
interface ShootsThings {}
class Toy {
  // Comment out the following default
  // constructor to see
  // NoSuchMethodError from (*1*)
  Toy() {}
  Toy(int i) {}
}

class FancyToy extends Toy
    implements HasBatteries,
      Waterproof, ShootsThings {
  FancyToy() { super(1); }
}

public class ToyTest {
  public static void main(String[] args) {
    Class c = null;
    try {
      c = Class.forName("FancyToy");
    } catch(ClassNotFoundException e) {}
    printInfo(c);
    Class[] faces = c.getInterfaces();
    for(int i = 0; i < faces.length; i++)
      printInfo(faces[i]);
    Class cy = c.getSuperclass();
    Object o = null;
    try {
      // Requires default constructor:
      o = cy.newInstance(); // (*1*)
    } catch(InstantiationException e) {}
      catch(IllegalAccessException e) {}
    printInfo(o.getClass());
  }
  static void printInfo(Class cc) {
    System.out.println(
      "Class name: " + cc.getName() +
      " is interface? [" +
      cc.isInterface() + "]");
  }
} ///:~

You can see that class FancyToy is quite complicated, since it inherits from Toy and
implements the interfaces of HasBatteries, Waterproof, and ShootsThings. In main( ), a
Class handle is created and initialized to the FancyToy Class using forName( ) inside an
appropriate try block.

The Class.getInterfaces( ) method returns an array of Class objects representing the
interfaces that are contained in the Class object of interest.



Chapter 11: Run-Time Type Identification 427

If you have a Class object you can also ask it for its direct base class using getSuperclass( ).
This, of course, returns a Class handle that you can further query. This means that, at run
time, you can discover an object’s entire class hierarchy.

The newInstance( ) method of Class can, at first, seem like just another way to clone( ) an
object. However, you can create a new object with newInstance( ) without an existing object,
as seen here, because there is no Toy object, only cy, which is a handle to y’s Class object.
This is a way to implement a “virtual constructor,” which allows you to say “I don’t know
exactly what type you are, but create yourself properly anyway.” In the example above, cy
is just a Class handle with no further type information known at compile time. And when
you create a new instance, you get back an Object handle. But that handle is pointing to a
Toy object. Of course, before you can send any messages other than those accepted by
Object, you have to investigate it a bit and do some casting. In addition, the class that’s
being created with newInstance( ) must have a default constructor. There’s no way to use
newInstance( ) to create objects that have non-default constructors, so this can be a bit
limiting in Java 1. However, the reflection API in Java 1.1 (discussed in the next section)
allows you to dynamically use any constructor in a class.

The final method in the listing is printInfo( ), which takes a Class handle and gets its name
with getName( ), and finds out whether it’s an interface with isInterface( ).

The output from this program is:

Class name: FancyToy is interface? [false]
Class name: HasBatteries is interface? [true]
Class name: Waterproof is interface? [true]
Class name: ShootsThings is interface? [true]
Class name: Toy is interface? [false]

Thus, with the Class object you can find out just about everything you want to know about
an object.

Reflection: run-time
class information
If you don’t know the precise type of an object, RTTI will tell you. However, there’s a
limitation: the type must be known at compile time in order for you to be able to detect it
using RTTI and do something useful with the information. Put another way, the compiler
must know about all the classes you’re working with for RTTI.

This doesn’t seem like that much of a limitation at first, but suppose you’re given a handle
to an object that’s not in your program space. In fact, the class of the object isn’t even
available to your program at compile time. For example, suppose you get a bunch of bytes
from a disk file or from a network connection and you’re told that those bytes represent a
class. Since the compiler can’t know about the class while it’s compiling the code, how can
you possibly use such a class?

In a traditional programming environment this seems like a far-fetched scenario. But as we
move into a larger programming world there are important cases in which this happens. The
first is component-based programming in which you build projects using Rapid Application
Development (RAD) in an application builder tool. This is a visual approach to creating a
program (which you see on the screen as a form) by moving icons that represent components



428 Thinking in Java  www.BruceEckel.com

onto the form. These components are then configured by setting some of their values at
program time. This design-time configuration requires that any component be instantiable
and that it expose some part of itself and allow its values to be read and set. In addition,
components that handle GUI events must expose information about appropriate methods so
that the RAD environment can assist the programmer in overriding these event-handling
methods. Reflection provides the mechanism to detect the available methods and produce the
method names. Java 1.1 provides a structure for component-based programming through
Java Beans (described in Chapter 13).

Another compelling motivation for discovering class information at run-time is to provide
the ability to create and execute objects on remote platforms across a network. This is called
Remote Method Invocation (RMI) and it allows a Java program (version 1.1 and higher) to
have objects distributed across many machines. This distribution can happen for a number
of reasons: perhaps you’re doing a computation-intensive task and you want to break it up
and put pieces on machines that are idle in order to speed things up. In some situations you
might want to place code that handles particular types of tasks (e.g. “Business Rules” in a
multi-tier client/server architecture) on a particular machine so that machine becomes a
common repository describing those actions and it can be easily changed to affect everyone
in the system. (This is an interesting development since the machine exists solely to make
software changes easy!) Along these lines, distributed computing also supports specialized
hardware that might be good at a particular task – matrix inversions, for example – but
inappropriate or too expensive for general purpose programming.

In Java 1.1, the class Class (described previously in this chapter) is extended to support the
concept of reflection, and there’s an additional library, java.lang.reflect, with classes Field,
Method, and Constructor (each of which implement the Member interface). Objects of
these types are created by the JVM at run-time to represent the corresponding member in
the unknown class. You can then use the Constructors to create new objects, the get( ) and
set( ) methods to read and modify the fields associated with Field objects, and the invoke( )
method to call a method associated with a Method object. In addition, you can call the
convenience methods getFields( ), getMethods( ), getConstructors( ), etc., to return arrays
of the objects representing the fields, methods, and constructors. (You can find out more by
looking up the class Class in your online documentation.) Thus, the class information for
anonymous objects can be completely determined at run time, and nothing need be known
at compile time.

It’s important to realize that there’s nothing magic about reflection. When you’re using
reflection to interact with an object of an unknown type, the JVM will simply look at the
object and see that it belongs to a particular class (just like ordinary RTTI) but then, before it
can do anything else, the Class object must be loaded. Thus, the .class file for that particular
type must still be available to the JVM, either on the local machine or across the network. So
the true difference between RTTI and reflection is that with RTTI, the compiler opens and
examines the .class file at compile time. Put another way, you can call all the methods of an
object in the “normal” way. With reflection, the .class file is unavailable at compile time; it is
opened and examined by the run-time environment.

A class method extractor
You’ll rarely need to use the reflection tools directly; they’re in the language to support the
other Java features such as object serialization (described in Chapter 10), Java Beans, and
RMI (described later in the book). However, there are times when it’s quite useful to be able
to dynamically extract information about a class. One extremely useful tool is a class
method extractor. As mentioned before, looking at a class definition source code or online
documentation shows only the methods that are defined or overridden within that class



Chapter 11: Run-Time Type Identification 429

definition. But there could be dozens more available to you that have come from base classes.
To locate these is both tedious and time consuming. Fortunately, reflection provides a way to
write a simple tool that will automatically show you the entire interface. Here’s the way it
works:

//: ShowMethods.java
// Using Java 1.1 reflection to show all the
// methods of a class, even if the methods are
// defined in the base class.
import java.lang.reflect.*;

public class ShowMethods {
  static final String usage =
    "usage: \n" +
    "ShowMethods qualified.class.name\n" +
    "To show all methods in class or: \n" +
    "ShowMethods qualified.class.name word\n" +
    "To search for methods involving 'word'";
  public static void main(String[] args) {
    if(args.length < 1) {
      System.out.println(usage);
      System.exit(0);
    }
    try {
      Class c = Class.forName(args[0]);
      Method[] m = c.getMethods();
      Constructor[] ctor = c.getConstructors();
      if(args.length == 1) {
        for (int i = 0; i < m.length; i++)
          System.out.println(m[i].toString());
        for (int i = 0; i < ctor.length; i++)
          System.out.println(ctor[i].toString());
      }
      else {
        for (int i = 0; i < m.length; i++)
          if(m[i].toString()
             .indexOf(args[1])!= -1)
            System.out.println(m[i].toString());
        for (int i = 0; i < ctor.length; i++)
          if(ctor[i].toString()
             .indexOf(args[1])!= -1)
          System.out.println(ctor[i].toString());
      }
    } catch (ClassNotFoundException e) {
      System.out.println("No such class: " + e);
    }
  }
} ///:~

The Class methods getMethods( ) and getConstructors( ) return an array of Method and
Constructor, respectively. Each of these classes has further methods to dissect the names,
arguments, and return values of the methods they represent. But you can also just use
toString( ), as is done here, to produce a String with the entire method signature. The rest



430 Thinking in Java  www.BruceEckel.com

of the code is just for extracting command line information, determining if a particular
signature matches with your target string (using indexOf( )), and printing the results.

This shows reflection in action, since the result produced by Class.forName( ) cannot be
known at compile-time, and therefore all the method signature information is being
extracted at run-time. If you investigate your online documentation on reflection, you’ll see
that there is enough support to actually set up and make a method call on an object that’s
totally unknown at compile-time. Again, this is something you’ll probably never need to do
yourself – the support is there for Java and so a programming environment can manipulate
Java Beans – but it’s interesting.

An interesting experiment is to run java ShowMethods ShowMethods. This produces a
listing that includes a public default constructor, even though you can see from the code
that no constructor was defined. The constructor you see is the one that’s automatically
synthesized by the compiler. If you then make ShowMethods a non-public class (that is,
friendly), the synthesized default constructor no longer shows up in the output. The
synthesized default constructor is automatically given the same access as the class.

The output for ShowMethods is still a little tedious. For example, here’s a portion of the
output produced by invoking java ShowMethods java.lang.String:

public boolean
  java.lang.String.startsWith(java.lang.String,int)
public boolean
  java.lang.String.startsWith(java.lang.String)
public boolean
  java.lang.String.endsWith(java.lang.String)

It would be even nicer if the qualifiers like java.lang could be stripped off. The
StreamTokenizer class introduced in the previous chapter can help solve this problem:

//: ShowMethodsClean.java
// ShowMethods with the qualifiers stripped
// to make the results easier to read
import java.lang.reflect.*;
import java.io.*;

public class ShowMethodsClean {
  static final String usage =
    "usage: \n" +
    "ShowMethodsClean qualified.class.name\n" +
    "To show all methods in class or: \n" +
    "ShowMethodsClean qualif.class.name word\n" +
    "To search for methods involving 'word'";
  public static void main(String[] args) {
    if(args.length < 1) {
      System.out.println(usage);
      System.exit(0);
    }
    try {
      Class c = Class.forName(args[0]);
      Method[] m = c.getMethods();
      Constructor[] ctor = c.getConstructors();
      // Convert to an array of cleaned Strings:
      String[] n =



Chapter 11: Run-Time Type Identification 431

        new String[m.length + ctor.length];
      for(int i = 0; i < m.length; i++) {
        String s = m[i].toString();
        n[i] = StripQualifiers.strip(s);
      }
      for(int i = 0; i < ctor.length; i++) {
        String s = ctor[i].toString();
        n[i + m.length] =
          StripQualifiers.strip(s);
      }
      if(args.length == 1)
        for (int i = 0; i < n.length; i++)
          System.out.println(n[i]);
      else
        for (int i = 0; i < n.length; i++)
          if(n[i].indexOf(args[1])!= -1)
            System.out.println(n[i]);
    } catch (ClassNotFoundException e) {
      System.out.println("No such class: " + e);
    }
  }
}

class StripQualifiers {
  private StreamTokenizer st;
  public StripQualifiers(String qualified) {
      st = new StreamTokenizer(
        new StringReader(qualified));
      st.ordinaryChar(' '); // Keep the spaces
  }
  public String getNext() {
    String s = null;
    try {
      if(st.nextToken() !=
            StreamTokenizer.TT_EOF) {
        switch(st.ttype) {
          case StreamTokenizer.TT_EOL:
            s = null;
            break;
          case StreamTokenizer.TT_NUMBER:
            s = Double.toString(st.nval);
            break;
          case StreamTokenizer.TT_WORD:
            s = new String(st.sval);
            break;
          default: // single character in ttype
            s = String.valueOf((char)st.ttype);
        }
      }
    } catch(IOException e) {
      System.out.println(e);
    }
    return s;
  }



432 Thinking in Java  www.BruceEckel.com

  public static String strip(String qualified) {
    StripQualifiers sq =
      new StripQualifiers(qualified);
    String s = "", si;
    while((si = sq.getNext()) != null) {
      int lastDot = si.lastIndexOf('.');
      if(lastDot != -1)
        si = si.substring(lastDot + 1);
      s += si;
    }
    return s;
  }
} ///:~

The class ShowMethodsClean is quite similar to the previous ShowMethods, except that it
takes the arrays of Method and Constructor and converts them into a single array of
String. Each of these String objects is then passed through StripQualifiers.Strip( ) to
remove all the method qualification. As you can see, this uses the StreamTokenizer and
String manipulation to do its work.

This tool can be a real time-saver while you’re programming, when you can’t remember if a
class has a particular method and you don’t want to go walking through the class hierarchy
in the online documentation, or if you don’t know whether that class can do anything with,
for example, Color objects.

Chapter 17 contains a GUI version of this program so you can leave it running while you’re
writing code, to allow quick lookups.

Summary
RTTI allows you to discover type information from an anonymous base-class handle. Thus,
it’s ripe for misuse by the novice since it might make sense before polymorphic method calls
do. For many people coming from a procedural background, it’s difficult not to organize
their programs into sets of switch statements. They could accomplish this with RTTI and
thus lose the important value of polymorphism in code development and maintenance. The
intent of Java is that you use polymorphic method calls throughout your code, and you use
RTTI only when you must.

However, using polymorphic method calls as they are intended requires that you have
control of the base-class definition because at some point in the extension of your program
you might discover that the base class doesn’t include the method you need. If the base class
comes from a library or is otherwise controlled by someone else, a solution to the problem is
RTTI: You can inherit a new type and add your extra method. Elsewhere in the code you can
detect your particular type and call that special method. This doesn’t destroy the
polymorphism and extensibility of the program because adding a new type will not require
you to hunt for switch statements in your program. However, when you add new code in
your main body that requires your new feature, you must use RTTI to detect your particular
type.

Putting a feature in a base class might mean that, for the benefit of one particular class, all
of the other classes derived from that base require some meaningless stub of a method. This
makes the interface less clear and annoys those who must override abstract methods when
they derive from that base class. For example, consider a class hierarchy representing



Chapter 11: Run-Time Type Identification 433

musical instruments. Suppose you wanted to clear the spit valves of all the appropriate
instruments in your orchestra. One option is to put a ClearSpitValve( ) method in the base
class Instrument, but this is confusing because it implies that Percussion and Electronic
instruments also have spit valves. RTTI provides a much more reasonable solution in this
case because you can place the method in the specific class (Wind in this case), where it’s
appropriate. However, a more appropriate solution is to put a prepareInstrument( )
method in the base class, but you might not see this when you’re first solving the problem
and could mistakenly assume that you must use RTTI.

Finally, RTTI will sometimes solve efficiency problems. If your code nicely uses
polymorphism, but it turns out that one of your objects reacts to this general purpose code
in a horribly inefficient way, you can pick out that type using RTTI and write case-specific
code to improve the efficiency.

Exercises
 1.  Write a method that takes an object and recursively prints all the classes in that object’s

hierarchy.

 2.  In ToyTest.java, comment out Toy’s default constructor and explain what happens.

 3.  Create a new type of collection that uses a Vector. Capture the type of the first object you
put in it, and then allow the user to insert objects of only that type from then on.

 4.  Write a program to determine whether an array of char is a primitive type or a true
object.

 5.  Implement clearSpitValve( ) as described in this chapter.

 6.  Implement the rotate(Shape) method described in this chapter, such that it checks to see if
it is rotating a Circle (and, if so, doesn’t perform the operation).



435

^

12: Passing and
returning objects

By this time you should be reasonably comfortable with the idea that
when you’re “passing” an object, you’re actually passing a handle.
In many programming languages, if not all of them, you can use that language’s “regular”
way to pass objects around and most of the time everything works fine. But it always seems
that there comes a point at which you must do something irregular and suddenly things get
a bit more complicated (or in the case of C++, quite complicated). Java is no exception, and
it’s important that you understand exactly what’s happening with them as you pass them
around and assign to them. This chapter will provide that insight.

Another way to pose the question of this chapter, if you’re coming from a programming
language so equipped, is “Does Java have pointers?” Some have claimed that pointers are
hard and dangerous and therefore bad, and since Java is all goodness and light and will lift
your earthly programming burdens, it cannot possibly contain such things. However, it’s
more accurate to say that Java has pointers; indeed, every object identifier in Java (except
for primitives) is one of these pointers, but their use is restricted and guarded not only by
the compiler but by the run-time system. Or to put in another way, Java has pointers, but
no pointer arithmetic. These are what I’ve been calling “handles,” and you can think of them
as “safety pointers,” not unlike the safety scissors of elementary school- they aren’t sharp so
you cannot hurt yourself without great effort, but they can sometimes be slow and tedious.



436 Thinking in Java  www.BruceEckel.com

Passing handles around
When you pass a handle into a method, you’re still pointing to the same object. A simple
experiment demonstrates this: (See page 94 if you have trouble executing this program.)

//: PassHandles.java
// Passing handles around
package c12;

public class PassHandles {
  static void f(PassHandles h) {
    System.out.println("h inside f(): " + h);
  }
  public static void main(String[] args) {
    PassHandles p = new PassHandles();
    System.out.println("p inside main(): " + p);
    f(p);
  }
} ///:~

The method toString( ) is automatically invoked in the print statements, and PassHandles
inherits directly from Object with no redefinition of toString( ). Thus, Object’s version of
toString( ) is used, which prints out the class of the object followed by the address where
that object is located (not the handle, but the actual object storage). The output looks like
this:

p inside main(): PassHandles@1653748
h inside f(): PassHandles@1653748

You can see that both p and h refer to the same object. This is far more efficient than
duplicating a new PassHandles object just so that you can send an argument to a method.
But it brings up an important issue.

Aliasing
Aliasing means that more than one handle is tied to the same object, as in the above
example. The problem with aliasing occurs when someone writes to that object. If the
owners of the other handles aren’t expecting that object to change, they’ll be surprised. This
can be demonstrated with a simple example:

//: Alias1.java
// Aliasing two handles to one object

public class Alias1 {
  int i;
  Alias1(int ii) { i = ii; }
  public static void main(String[] args) {
    Alias1 x = new Alias1(7);
    Alias1 y = x; // Assign the handle
    System.out.println("x: " + x.i);
    System.out.println("y: " + y.i);
    System.out.println("Incrementing x");
    x.i++;



Chapter 12: Passing & Returning Objects 437

    System.out.println("x: " + x.i);
    System.out.println("y: " + y.i);
  }
} ///:~

In the line:

Alias1 y = x; // Assign the handle

a new Alias1 handle is created, but instead of being assigned to a fresh object created with
new, it’s assigned to an existing handle. So the contents of handle x, which is the address of
the object x is pointing to, is assigned to y, and thus both x and y are attached to the same
object. So when x’s i is incremented in the statement:

x.i++;

y’s i will be affected as well. This can be seen in the output:

x: 7
y: 7
Incrementing x
x: 8
y: 8

One good solution in this case is to simply not do it: don’t consciously alias more than one
handle to an object at the same scope. Your code will be much easier to understand and
debug. However, when you’re passing a handle in as an argument – which is the way Java is
supposed to work – you automatically alias because the local handle that’s created can
modify the “outside object” (the object that was created outside the scope of the method).
Here’s an example:

//: Alias2.java
// Method calls implicitly alias their
// arguments.

public class Alias2 {
  int i;
  Alias2(int ii) { i = ii; }
  static void f(Alias2 handle) {
    handle.i++;
  }
  public static void main(String[] args) {
    Alias2 x = new Alias2(7);
    System.out.println("x: " + x.i);
    System.out.println("Calling f(x)");
    f(x);
    System.out.println("x: " + x.i);
  }
} ///:~

The output is:

x: 7
Calling f(x)
x: 8



438 Thinking in Java  www.BruceEckel.com

The method is changing its argument, the outside object. When this kind of situation arises,
you must decide whether it makes sense, whether the user expects it, and whether it’s going
to cause problems.

In general, you call a method in order to produce a return value and/or a change of state in
the object that the method is called for. (A method is how you “send a message” to that
object.) It’s much less common to call a method in order to manipulate its arguments; this is
referred to as “calling a method for its side effects.” Thus, when you create a method that
modifies its arguments the user must be clearly instructed and warned about the use of that
method and its potential surprises. Because of the confusion and pitfalls, it’s much better to
avoid changing the argument.

If you need to modify an argument during a method call and you don’t intend to modify the
outside argument, then you should protect that argument by making a copy inside your
method. That’s the subject of much of this chapter.

Making local copies
To review: all argument passing in Java is performed by passing handles. That is, when you
pass “an object,” you’re really passing only a handle to an object that lives outside the
method, so if you perform any modifications with that handle, you modify the outside
object. In addition:

• Aliasing happens automatically during argument passing.

• There are no local objects, only local handles.

• Handles have scopes, objects do not.

• Object lifetime is never an issue in Java.

• There is no language support (e.g. const) to prevent objects from being modified (to
prevent negative effects of aliasing).

If you’re only reading information from an object and not modifying it, passing a handle is
the most efficient form of argument passing. This is nice; the default way of doing things is
also the most efficient. However, sometimes it’s necessary to be able to treat the object as if it
were “local” so that changes you make affect only a local copy and do not modify the
outside object. Many programming languages support the ability to automatically make a
local copy of the outside object, inside the method.1 Java does not, but it allows you to
produce this effect.

Pass by value
This brings up the terminology issue, which always seems good for an argument. The term
is “pass by value,” and the meaning depends on how you perceive the operation of the
program. The general meaning is that you get a local copy of whatever you’re passing, but

                                                

1 In C, which generally handles small bits of data, the default is pass-by-value. C++ had to follow this
form, but with objects pass-by-value isn’t usually the most efficient way. In addition, coding classes to
support pass-by-value in C++ is a big headache.



Chapter 12: Passing & Returning Objects 439

the real question is how you think about what you’re passing. When it comes to the
meaning of “pass by value,” there are two fairly distinct camps:

1. Java passes everything by value. When you’re passing primitives into a method, you get
a distinct copy of the primitive. When you’re passing a handle into a method, you get a
copy of the handle. Ergo, everything is pass by value. Of course, the assumption is that
you’re always thinking (and caring) that handles are being passed, but it seems like the
Java design has gone a long way toward allowing you to ignore (most of the time) that
you’re working with a handle. That is, it seems to allow you to think of the handle as
“the object,” since it implicitly dereferences it whenever you make a method call.

2. Java passes primitives by value (no argument there), but objects are passed by reference.
This is the world view that the handle is an alias for the object, so you don’t think about
passing handles, but instead say “I’m passing the object.” Since you don’t get a local
copy of the object when you pass it into a method, objects are clearly not passed by
value. There appears to be some support for this view within Sun, since one of the
“reserved but not implemented” keywords is byvalue. (There’s no knowing, however,
whether that keyword will ever see the light of day.)

Having given both camps a good airing and after saying “It depends on how you think of a
handle,” I will attempt to sidestep the issue for the rest of the book. In the end, it isn’t that
important – what is important is that you understand that passing a handle allows the
caller’s object to be changed unexpectedly.

Cloning objects
The most likely reason for making a local copy of an object is if you’re going to modify that
object and you don’t want to modify the caller’s object. If you decide that you want to make
a local copy, you simply use the clone( ) method to perform the operation. This is a method
that’s defined as protected in the base class Object and which you must override as public
in any derived classes that you want to clone. For example, the standard library class Vector
overrides clone( ), so we can call clone( ) for Vector:

//: Cloning.java
// The clone() operation works for only a few
// items in the standard Java library.
import java.util.*;

class Int {
  private int i;
  public Int(int ii) { i = ii; }
  public void increment() { i++; }
  public String toString() {
    return Integer.toString(i);
  }
}

public class Cloning {
  public static void main(String[] args) {
    Vector v = new Vector();
    for(int i = 0; i < 10; i++ )
      v.addElement(new Int(i));
    System.out.println("v: " + v);
    Vector v2 = (Vector)v.clone();



440 Thinking in Java  www.BruceEckel.com

    // Increment all v2's elements:
    for(Enumeration e = v2.elements();
        e.hasMoreElements(); )
      ((Int)e.nextElement()).increment();
    // See if it changed v's elements:
    System.out.println("v: " + v);
  }
} ///:~

The clone( ) method produces an Object, which must then be recast to the proper type. This
example shows how Vector’s clone( ) method does not automatically try to clone each of the
objects that the Vector contains – the old Vector and the cloned Vector are aliased to the
same objects. This is often called a shallow copy, since it’s copying only the “surface” portion
of an object. The actual object consists of this “surface” plus all the objects that the handles
are pointing to, plus all the objects those objects are pointing to, etc. This is often referred to
as the “web of objects.” Copying the entire mess is called a deep copy.

You can see the effect of the shallow copy in the output, where the actions performed on v2
affect v:

v: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
v: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Not trying to clone( ) the objects contained in the Vector is probably a fair assumption
because there’s no guarantee that those objects are cloneable.2

Adding cloneability to a class
Even though the clone method is defined in the base-of-all-classes Object, cloning is not
automatically available in every class.3 This would seem to be counterintuitive to the idea
that base-class methods are always available in derived classes. Cloning in Java goes against
this idea; if you want it to exist for a class, you must specifically add code to make cloning
work.

Using a trick with pprotected
To prevent default clonability in every class you create, the clone( ) method is protected in
the base class Object. Not only does this mean that it’s not available by default to the client

                                                

2 This is not the dictionary spelling of the word, but it’s what is used in the Java library, so I’ve used it
here, too, in some hopes of reducing confusion.

3 You can apparently create a simple counter-example to this statement, like this:
public class Cloneit implements Cloneable {

  public static void main (String[] args)

  throws CloneNotSupportedException {

    Cloneit a = new Cloneit();

    Cloneit b = (Cloneit)a.clone();

  }

}
However, this only works because main( ) is a method of Cloneit and thus has permission to call the
protected base-class method clone( ). If you call it from a different class, it won’t compile.



Chapter 12: Passing & Returning Objects 441

programmer who is simply using the class (not subclassing it), but it also means that you
cannot call clone( ) via a handle to the base class. (Although that might seem to be useful in
some situations, such as to polymorphically clone a bunch of Objects.) It is in effect a way
to give you, at compile time, the information that your object is not cloneable – and oddly
enough most classes in the standard Java library are not cloneable. Thus, if you say:

    Integer x = new Integer(1);
    x = x.clone();

You will get, at compile time, an error message that says clone( ) is not accessible (since
Integer doesn’t override it and it defaults to the protected version).

If, however, you’re in a class derived from Object (as all classes are), then you have
permission to call Object.clone( ) because it’s protected and you’re an inheritor. The base
class clone( ) has useful functionality – it performs the actual bitwise duplication of the
derived-class object, thus acting as the common cloning operation. However, you then need to
make your clone operation public for it to be accessible. So two key issues when you clone
are: virtually always call super.clone( ) and make your clone public.

You’ll probably want to override clone( ) in any further derived classes, otherwise your
(now public) clone( ) will be used, and that might not do the right thing (although, since
Object.clone( ) makes a copy of the actual object, it might). The protected trick works only
once, the first time you inherit from a class that has no clonability and you want to make a
class that’s cloneable. In any classes inherited from your class the clone( ) method is
available since it’s not possible in Java to reduce the access of a method during derivation.
That is, once a class is cloneable, everything derived from it is cloneable unless you use
provided mechanisms (described later) to “turn off” cloning.

Implementing the CCloneable interface
There’s one more thing you need to do to complete the clonability of an object: implement
the Cloneable interface. This interface is a bit strange because it’s empty!

interface Cloneable {}

The reason for implementing this empty interface is obviously not because you are going to
upcast to Cloneable and call one of its methods. The use of interface here is considered by
some to be a “hack” because it’s using a feature for something other than its original intent.
Implementing the Cloneable interface acts as a kind of a flag, wired into the type of the
class.

There are two reasons for the existence of the Cloneable interface. First, you might have an
upcast handle to a base type and not know whether it’s possible to clone that object. In this
case, you can use the instanceof keyword (described in Chapter 11) to find out whether the
handle is connected to an object that can be cloned:

if(myHandle instanceof Cloneable) // ...

The second reason is that mixed into this design for clonability was the thought that maybe
you didn’t want all types of objects to be cloneable. So Object.clone( ) verifies that a class
implements the Cloneable interface. If not, it throws a CloneNotSupportedException
exception. So in general, you’re forced to implement Cloneable as part of support for
cloning.



442 Thinking in Java  www.BruceEckel.com

Successful cloning
Once you understand the details of implementing the clone( ) method, you’re able to create
classes that can be easily duplicated to provide a local copy:

//: LocalCopy.java
// Creating local copies with clone()
import java.util.*;

class MyObject implements Cloneable {
  int i;
  MyObject(int ii) { i = ii; }
  public Object clone() {
    Object o = null;
    try {
      o = super.clone();
    } catch (CloneNotSupportedException e) {
      System.out.println("MyObject can't clone");
    }
    return o;
  }
  public String toString() {
    return Integer.toString(i);
  }
}

public class LocalCopy {
  static MyObject g(MyObject v) {
    // Passing a handle, modifies outside object:
    v.i++;
    return v;
  }
  static MyObject f(MyObject v) {
    v = (MyObject)v.clone(); // Local copy
    v.i++;
    return v;
  }
  public static void main(String[] args) {
    MyObject a = new MyObject(11);
    MyObject b = g(a);
    // Testing handle equivalence,
    // not object equivalence:
    if(a == b)
      System.out.println("a == b");
    else
      System.out.println("a != b");
    System.out.println("a = " + a);
    System.out.println("b = " + b);
    MyObject c = new MyObject(47);
    MyObject d = f(c);
    if(c == d)
      System.out.println("c == d");
    else



Chapter 12: Passing & Returning Objects 443

      System.out.println("c != d");
    System.out.println("c = " + c);
    System.out.println("d = " + d);
  }
} ///:~

First of all, clone( ) must be accessible so you must make it public. Second, for the initial
part of your clone( ) operation you should call the base-class version of clone( ). The
clone( ) that’s being called here is the one that’s predefined inside Object, and you can call it
because it’s protected and thereby accessible in derived classes.

Object.clone( ) figures out how big the object is, creates enough memory for a new one, and
copies all the bits from the old to the new. This is called a bitwise copy, and is typically what
you’d expect a clone( ) method to do. But before Object.clone( ) performs its operations, it
first checks to see if a class is Cloneable, that is, whether it implements the Cloneable
interface. If it doesn’t, Object.clone( ) throws a CloneNotSupportedException to indicate
that you can’t clone it. Thus, you’ve got to surround your call to super.clone( ) with a try-
catch block, to catch an exception that should never happen (because you’ve implemented
the Cloneable interface).

In LocalCopy, the two methods g( ) and f( ) demonstrate the difference between the two
approaches for argument passing. g( ) shows passing by reference in which it modifies the
outside object and returns a reference to that outside object, while f( ) clones the argument,
thereby decoupling it and leaving the original object alone. It can then proceed to do
whatever it wants, and even to return a handle to this new object without any ill effects to
the original. Notice the somewhat curious-looking statement:

v = (MyObject)v.clone();

This is where the local copy is created. To prevent confusion by such a statement, remember
that this rather strange coding idiom is perfectly feasible in Java because everything that has
a name is actually a handle. So the handle v is used to clone( ) a copy of what it refers to,
and this returns a handle to the base type Object (because it’s defined that way in
Object.clone( )) that must then be cast to the proper type.

In main( ), the difference between the effects of the two different argument-passing
approaches in the two different methods is tested. The output is:

a == b
a = 12
b = 12
c != d
c = 47
d = 48

It’s important to notice that the equivalence tests in Java do not look inside the objects being
compared to see if their values are the same. The == and != operators are simply comparing
the contents of the handles. If the addresses inside the handles are the same, the handles are
pointing to the same object and are therefore “equal.” So what the operators are really
testing is whether the handles are aliased to the same object!

The effect of OObject.clone( )
What actually happens when Object.clone( ) is called that makes it so essential to call
super.clone( ) when you override clone( ) in your class? The clone( ) method in the root



444 Thinking in Java  www.BruceEckel.com

class is responsible for creating the correct amount of storage and making the bitwise copy
of the bits from the original object into the new object’s storage. That is, it doesn’t just make
storage and copy an Object – it actually figures out the size of the precise object that’s being
copied and duplicates that. Since all this is happening from the code in the clone( ) method
defined in the root class (that has no idea what’s being inherited from it), you can guess that
the process involves RTTI to determine the actual object that’s being cloned. This way, the
clone( ) method can create the proper amount of storage and do the correct bitcopy for that
type.

Whatever you do, the first part of the cloning process should normally be a call to
super.clone( ). This establishes the groundwork for the cloning operation by making an
exact duplicate. At this point you can perform other operations necessary to complete the
cloning.

To know for sure what those other operations are, you need to understand exactly what
Object.clone( ) buys you. In particular, does it automatically clone the destination of all the
handles? The following example tests this:

//: Snake.java
// Tests cloning to see if destination of
// handles are also cloned.

public class Snake implements Cloneable {
  private Snake next;
  private char c;
  // Value of i == number of segments
  Snake(int i, char x) {
    c = x;
    if(--i > 0)
      next = new Snake(i, (char)(x + 1));
  }
  void increment() {
    c++;
    if(next != null)
      next.increment();
  }
  public String toString() {
    String s = ":" + c;
    if(next != null)
      s += next.toString();
    return s;
  }
  public Object clone() {
    Object o = null;
    try {
      o = super.clone();
    } catch (CloneNotSupportedException e) {}
    return o;
  }
  public static void main(String[] args) {
    Snake s = new Snake(5, 'a');
    System.out.println("s = " + s);
    Snake s2 = (Snake)s.clone();
    System.out.println("s2 = " + s2);



Chapter 12: Passing & Returning Objects 445

    s.increment();
    System.out.println(
      "after s.increment, s2 = " + s2);
  }
} ///:~

A Snake is made up of a bunch of segments, each of type Snake. Thus, it’s a singly-linked
list. The segments are created recursively, decrementing the first constructor argument for
each segment until zero is reached. To give each segment a unique tag, the second argument,
a char, is incremented for each recursive constructor call.

The increment( ) method recursively increments each tag so you can see the change, and the
toString( ) recursively prints each tag. The output is:

s = :a:b:c:d:e
s2 = :a:b:c:d:e
after s.increment, s2 = :a:c:d:e:f

This means that only the first segment is duplicated by Object.clone( ), so it does a shallow
copy. If you want the whole snake to be duplicated – a deep copy – you must perform the
additional operations inside your overridden clone( ).

You’ll typically call super.clone( ) in any class derived from a cloneable class to make sure
that all of the base-class operations (including Object.clone( )) take place. This is followed
by an explicit call to clone( ) for every handle in your object; otherwise those handles will be
aliased to those of the original object. It’s analogous to the way constructors are called –
base-class constructor first, then the next-derived constructor, and so on to the most-derived
constructor. The difference is that clone( ) is not a constructor so there’s nothing to make it
happen automatically. You must make sure to do it yourself.

Cloning a composed object
There’s a problem you’ll encounter when trying to deep copy a composed object. You must
assume that the clone( ) method in the member objects will in turn perform a deep copy on
their handles, and so on. This is quite a commitment. It effectively means that for a deep
copy to work you must either control all of the code in all of the classes, or at least have
enough knowledge about all of the classes involved in the deep copy to know that they are
performing their own deep copy correctly.

This example shows what you must do to accomplish a deep copy when dealing with a
composed object:

//: DeepCopy.java
// Cloning a composed object

class DepthReading implements Cloneable {
  private double depth;
  public DepthReading(double depth) {
    this.depth = depth;
  }
  public Object clone() {
    Object o = null;
    try {
      o = super.clone();
    } catch (CloneNotSupportedException e) {



446 Thinking in Java  www.BruceEckel.com

      e.printStackTrace();
    }
    return o;
  }
}

class TemperatureReading implements Cloneable {
  private long time;
  private double temperature;
  public TemperatureReading(double temperature) {
    time = System.currentTimeMillis();
    this.temperature = temperature;
  }
  public Object clone() {
    Object o = null;
    try {
      o = super.clone();
    } catch (CloneNotSupportedException e) {
      e.printStackTrace();
    }
    return o;
  }
}

class OceanReading implements Cloneable {
  private DepthReading depth;
  private TemperatureReading temperature;
  public OceanReading(double tdata, double ddata){
    temperature = new TemperatureReading(tdata);
    depth = new DepthReading(ddata);
  }
  public Object clone() {
    OceanReading o = null;
    try {
      o = (OceanReading)super.clone();
    } catch (CloneNotSupportedException e) {
      e.printStackTrace();
    }
    // Must clone handles:
    o.depth = (DepthReading)o.depth.clone();
    o.temperature =
      (TemperatureReading)o.temperature.clone();
    return o; // Upcasts back to Object
  }
}

public class DeepCopy {
  public static void main(String[] args) {
    OceanReading reading =
      new OceanReading(33.9, 100.5);
    // Now clone it:
    OceanReading r =
      (OceanReading)reading.clone();
  }



Chapter 12: Passing & Returning Objects 447

} ///:~

DepthReading and TemperatureReading are quite similar; they both contain only
primitives. Therefore, the clone( ) method can be quite simple: it calls super.clone( ) and
returns the result. Note that the clone( ) code for both classes is identical.

OceanReading is composed of DepthReading and TemperatureReading objects and so, to
produce a deep copy, its clone( ) must clone the handles inside OceanReading. To
accomplish this, the result of super.clone( ) must be cast to an OceanReading object (so
you can access the depth and temperature handles).

A deep copy with VVector
Let’s revisit the Vector example from earlier in this chapter. This time the Int2 class is
cloneable so the Vector can be deep copied:

//: AddingClone.java
// You must go through a few gyrations to
// add cloning to your own class.
import java.util.*;

class Int2 implements Cloneable {
  private int i;
  public Int2(int ii) { i = ii; }
  public void increment() { i++; }
  public String toString() {
    return Integer.toString(i);
  }
  public Object clone() {
    Object o = null;
    try {
      o = super.clone();
    } catch (CloneNotSupportedException e) {
      System.out.println("Int2 can't clone");
    }
    return o;
  }
}

// Once it's cloneable, inheritance
// doesn't remove cloneability:
class Int3 extends Int2 {
  private int j; // Automatically duplicated
  public Int3(int i) { super(i); }
}

public class AddingClone {
  public static void main(String[] args) {
    Int2 x = new Int2(10);
    Int2 x2 = (Int2)x.clone();
    x2.increment();
    System.out.println(
      "x = " + x + ", x2 = " + x2);
    // Anything inherited is also cloneable:



448 Thinking in Java  www.BruceEckel.com

    Int3 x3 = new Int3(7);
    x3 = (Int3)x3.clone();

    Vector v = new Vector();
    for(int i = 0; i < 10; i++ )
      v.addElement(new Int2(i));
    System.out.println("v: " + v);
    Vector v2 = (Vector)v.clone();
    // Now clone each element:
    for(int i = 0; i < v.size(); i++)
      v2.setElementAt(
        ((Int2)v2.elementAt(i)).clone(), i);
    // Increment all v2's elements:
    for(Enumeration e = v2.elements();
        e.hasMoreElements(); )
      ((Int2)e.nextElement()).increment();
    // See if it changed v's elements:
    System.out.println("v: " + v);
    System.out.println("v2: " + v2);
  }
} ///:~

Int3 is inherited from Int2 and a new primitive member int j is added. You might think that
you’d need to override clone( ) again to make sure j is copied, but that’s not the case. When
Int2’s clone( ) is called as Int3’s clone( ), it calls Object.clone( ), which determines that it’s
working with an Int3 and duplicates all the bits in the Int3. As long as you don’t add
handles that need to be cloned, the one call to Object.clone( ) performs all of the necessary
duplication, regardless of how far down in the hierarchy clone( ) is defined.

You can see what’s necessary in order to do a deep copy of a Vector: after the Vector is
cloned, you have to step through and clone each one of the objects pointed to by the Vector.
You’d have to do something similar to this to do a deep copy of a Hashtable.

The remainder of the example shows that the cloning did happen by showing that, once an
object is cloned, you can change it and the original object is left untouched.

Deep copy via serialization
When you consider Java 1.1 object serialization (introduced in Chapter 10), you might
observe that an object that’s serialized and then deserialized is, in effect, cloned.

So why not use serialization to perform deep copying? Here’s an example that compares the
two approaches by timing them:

//: Compete.java
import java.io.*;

class Thing1 implements Serializable {}
class Thing2 implements Serializable {
  Thing1 o1 = new Thing1();
}

class Thing3 implements Cloneable {
  public Object clone() {



Chapter 12: Passing & Returning Objects 449

    Object o = null;
    try {
      o = super.clone();
    } catch (CloneNotSupportedException e) {
      System.out.println("Thing3 can't clone");
    }
    return o;
  }
}

class Thing4 implements Cloneable {
  Thing3 o3 = new Thing3();
  public Object clone() {
    Thing4 o = null;
    try {
      o = (Thing4)super.clone();
    } catch (CloneNotSupportedException e) {
      System.out.println("Thing4 can't clone");
    }
    // Clone the field, too:
    o.o3 = (Thing3)o3.clone();
    return o;
  }
}

public class Compete {
  static final int SIZE = 5000;
  public static void main(String[] args) {
    Thing2[] a = new Thing2[SIZE];
    for(int i = 0; i < a.length; i++)
      a[i] = new Thing2();
    Thing4[] b = new Thing4[SIZE];
    for(int i = 0; i < b.length; i++)
      b[i] = new Thing4();
    try {
      long t1 = System.currentTimeMillis();
      ByteArrayOutputStream buf =
        new ByteArrayOutputStream();
      ObjectOutputStream o =
        new ObjectOutputStream(buf);
      for(int i = 0; i < a.length; i++)
        o.writeObject(a[i]);
      // Now get copies:
      ObjectInputStream in =
        new ObjectInputStream(
          new ByteArrayInputStream(
            buf.toByteArray()));
      Thing2[] c = new Thing2[SIZE];
      for(int i = 0; i < c.length; i++)
        c[i] = (Thing2)in.readObject();
      long t2 = System.currentTimeMillis();
      System.out.println(
        "Duplication via serialization: " +
        (t2 - t1) + " Milliseconds");



450 Thinking in Java  www.BruceEckel.com

      // Now try cloning:
      t1 = System.currentTimeMillis();
      Thing4[] d = new Thing4[SIZE];
      for(int i = 0; i < d.length; i++)
        d[i] = (Thing4)b[i].clone();
      t2 = System.currentTimeMillis();
      System.out.println(
        "Duplication via cloning: " +
        (t2 - t1) + " Milliseconds");
    } catch(Exception e) {
      e.printStackTrace();
    }
  }
} ///:~

Thing2 and Thing4 contain member objects so that there’s some deep copying going on. It’s
interesting to notice that while Serializable classes are easy to set up, there’s much more
work going on to duplicate them. Cloning involves a lot of work to set up the class, but the
actual duplication of objects is relatively simple. The results really tell the tale. Here is the
output from three different runs:

Duplication via serialization: 3400 Milliseconds
Duplication via cloning: 110 Milliseconds

Duplication via serialization: 3410 Milliseconds
Duplication via cloning: 110 Milliseconds

Duplication via serialization: 3520 Milliseconds
Duplication via cloning: 110 Milliseconds

Despite the obviously huge time difference between serialization and cloning, you’ll also
notice that the serialization technique seems to vary significantly in its duration, while
cloning takes the same amount of time every time.

Adding cloneability
further down a hierarchy

If you create a new class, its base class defaults to Object, which defaults to non-clonability
(as you’ll see in the next section). As long as you don’t explicitly add clonability, you won’t
get it. But you can add it in at any layer and it will then be cloneable from that layer
downward, like this:

//: HorrorFlick.java
// You can insert Cloneability at any
// level of inheritance.
import java.util.*;

class Person {}
class Hero extends Person {}
class Scientist extends Person
    implements Cloneable {
  public Object clone() {
    try {



Chapter 12: Passing & Returning Objects 451

      return super.clone();
    } catch (CloneNotSupportedException e) {
      // this should never happen:
      // It's Cloneable already!
      throw new InternalError();
    }
  }
}
class MadScientist extends Scientist {}

public class HorrorFlick {
  public static void main(String[] args) {
    Person p = new Person();
    Hero h = new Hero();
    Scientist s = new Scientist();
    MadScientist m = new MadScientist();

    // p = (Person)p.clone(); // Compile error
    // h = (Hero)h.clone(); // Compile error
    s = (Scientist)s.clone();
    m = (MadScientist)m.clone();
  }
} ///:~

Before clonability was added, the compiler stopped you from trying to clone things. When
clonability is added in Scientist, then Scientist and all its descendants are cloneable.

Why this strange design?
If all this seems to be a strange scheme, that’s because it is. You might wonder why it
worked out this way. What is the meaning behind this design? What follows is not a
substantiated story – probably because much of the marketing around Java makes it out to
be a perfectly-designed language – but it does go a long way toward explaining how things
ended up the way they did.

Originally, Java was designed as a language to control hardware boxes, and definitely not
with the Internet in mind. In a general-purpose language like this, it makes sense that the
programmer be able to clone any object. Thus, clone( ) was placed in the root class Object,
but it was a public method so you could always clone any object. This seemed to be the
most flexible approach, and after all, what could it hurt?

Well, when Java was seen as the ultimate Internet programming language, things changed.
Suddenly, there are security issues, and of course, these issues are dealt with using objects,
and you don’t necessarily want anyone to be able to clone your security objects. So what
you’re seeing is a lot of patches applied on the original simple and straightforward scheme:
clone( ) is now protected in Object. You must override it and implement Cloneable and
deal with the exceptions.

It’s worth noting that you must use the Cloneable interface only if you’re going to call
Object’s clone( ), method, since that method checks at run-time to make sure that your
class implements Cloneable. But for consistency (and since Cloneable is empty anyway)
you should implement it.



452 Thinking in Java  www.BruceEckel.com

Controlling cloneability
You might suggest that, to remove clonability, the clone( ) method simply be made private,
but this won’t work since you cannot take a base-class method and make it more private in
a derived class. So it’s not that simple. And yet, it’s necessary to be able to control whether
an object can be cloned. There are actually a number of attitudes you can take to this in a
class that you design:

1. Indifference. You don’t do anything about cloning, which means that your class can’t be
cloned but a class that inherits from you can add cloning if it wants. This works only if
the default Object.clone( ) will do something reasonable with all the fields in your class.

2. Support clone( ). Follow the standard practice of implementing Cloneable and
overriding clone( ). In the overridden clone( ), you call super.clone( ) and catch all
exceptions (so your overridden clone( ) doesn’t throw any exceptions).

3. Support cloning conditionally. If your class holds handles to other objects that might or
might not be cloneable (an example of this is a collection class), you can try to clone all
of the objects that you have handles to as part of your cloning, and if they throw
exceptions just pass them through. For example, consider a special sort of Vector that
tries to clone all the objects it holds. When you write such a Vector, you don’t know
what sort of objects the client programmer might put into your Vector, so you don’t
know whether they can be cloned.

4. Don’t implement Cloneable but override clone( ) as protected, producing the correct
copying behavior for any fields. This way, anyone inheriting from this class can override
clone( ) and call super.clone( ) to produce the correct copying behavior. Note that your
implementation can and should invoke super.clone( ) even though that method expects
a Cloneable object (it will throw an exception otherwise), because no one will directly
invoke it on an object of your type. It will get invoked only through a derived class,
which, if it is to work successfully, implements Cloneable.

5. Try to prevent cloning by not implementing Cloneable and overriding clone( ) to throw
an exception. This is successful only if any class derived from this calls super.clone( ) in
its redefinition of clone( ). Otherwise, a programmer may be able to get around it.

6. Prevent cloning by making your class final. If clone( ) has not been overridden by any
of your ancestor classes, then it can’t be. If it has, then override it again and throw
CloneNotSupportedException. Making the class final is the only way to guarantee that
cloning is prevented. In addition, when dealing with security objects or other situations
in which you want to control the number of objects created you should make all
constructors private and provide one or more special methods for creating objects. That
way, these methods can restrict the number of objects created and the conditions in
which they’re created. (A particular case of this is the singleton pattern shown in Chapter
16.)

Here’s an example that shows the various ways cloning can be implemented and then, later
in the hierarchy, “turned off:”

//: CheckCloneable.java
// Checking to see if a handle can be cloned

// Can't clone this because it doesn't
// override clone():



Chapter 12: Passing & Returning Objects 453

class Ordinary {}

// Overrides clone, but doesn't implement
// Cloneable:
class WrongClone extends Ordinary {
  public Object clone()
      throws CloneNotSupportedException {
    return super.clone(); // Throws exception
  }
}

// Does all the right things for cloning:
class IsCloneable extends Ordinary
    implements Cloneable {
  public Object clone()
      throws CloneNotSupportedException {
    return super.clone();
  }
}

// Turn off cloning by throwing the exception:
class NoMore extends IsCloneable {
  public Object clone()
      throws CloneNotSupportedException {
    throw new CloneNotSupportedException();
  }
}

class TryMore extends NoMore {
  public Object clone()
      throws CloneNotSupportedException {
    // Calls NoMore.clone(), throws exception:
    return super.clone();
  }
}

class BackOn extends NoMore {
  private BackOn duplicate(BackOn b) {
    // Somehow make a copy of b
    // and return that copy. This is a dummy
    // copy, just to make the point:
    return new BackOn();
  }
  public Object clone() {
    // Doesn't call NoMore.clone():
    return duplicate(this);
  }
}

// Can't inherit from this, so can't override
// the clone method like in BackOn:
final class ReallyNoMore extends NoMore {}

public class CheckCloneable {



454 Thinking in Java  www.BruceEckel.com

  static Ordinary tryToClone(Ordinary ord) {
    String id = ord.getClass().getName();
    Ordinary x = null;
    if(ord instanceof Cloneable) {
      try {
        System.out.println("Attempting " + id);
        x = (Ordinary)((IsCloneable)ord).clone();
        System.out.println("Cloned " + id);
      } catch(CloneNotSupportedException e) {
        System.out.println(
          "Could not clone " + id);
      }
    }
    return x;
  }
  public static void main(String[] args) {
    // Upcasting:
    Ordinary[] ord = {
      new IsCloneable(),
      new WrongClone(),
      new NoMore(),
      new TryMore(),
      new BackOn(),
      new ReallyNoMore(),
    };
    Ordinary x = new Ordinary();
    // This won't compile, since clone() is
    // protected in Object:
    //! x = (Ordinary)x.clone();
    // tryToClone() checks first to see if
    // a class implements Cloneable:
    for(int i = 0; i < ord.length; i++)
      tryToClone(ord[i]);
  }
} ///:~

The first class, Ordinary, represents the kinds of classes we’ve seen throughout the book: no
support for cloning, but as it turns out, no prevention of cloning either. But if you have a
handle to an Ordinary object that might have been upcast from a more derived class, you
can’t tell if it can be cloned or not.

The class WrongClone shows an incorrect way to implement cloning. It does override
Object.clone( ) and makes that method public, but it doesn’t implement Cloneable, so
when super.clone( ) is called (which results in a call to Object.clone( )),
CloneNotSupportedException is thrown so the cloning doesn’t work.

In IsCloneable you can see all the right actions performed for cloning: clone( ) is overridden
and Cloneable is implemented. However, this clone( ) method and several others that follow
in this example do not catch CloneNotSupportedException, but instead pass it through to
the caller, who must then put a try-catch block around it. In your own clone( ) methods
you will typically catch CloneNotSupportedException inside clone( ) rather than passing it
through. As you’ll see, in this example it’s more informative to pass the exceptions through.



Chapter 12: Passing & Returning Objects 455

Class NoMore attempts to “turn off” cloning in the way that the Java designers intended: in
the derived class clone( ), you throw CloneNotSupportedException. The clone( ) method in
class TryMore properly calls super.clone( ), and this resolves to NoMore.clone( ), which
throws an exception and prevents cloning.

But what if the programmer doesn’t follow the “proper” path of calling super.clone( ) inside
the overridden clone( ) method? In BackOn, you can see how this can happen. This class
uses a separate method duplicate( ) to make a copy of the current object and calls this
method inside clone( ) instead of calling super.clone( ). The exception is never thrown and
the new class is cloneable. You can’t rely on throwing an exception to prevent making a
cloneable class. The only sure-fire solution is shown in ReallyNoMore, which is final and
thus cannot be inherited. That means if clone( ) throws an exception in the final class, it
cannot be modified with inheritance and the prevention of cloning is assured. (You cannot
explicitly call Object.clone( ) from a class that has an arbitrary level of inheritance; you are
limited to calling super.clone( ), which has access to only the direct base class.) Thus, if you
make any objects that involve security issues, you’ll want to make those classes final.

The first method you see in class CheckCloneable is tryToClone( ), which takes any
Ordinary object and checks to see whether it’s cloneable with instanceof. If so, it casts the
object to an IsCloneable, calls clone( ) and casts the result back to Ordinary, catching any
exceptions that are thrown. Notice the use of run-time type identification (see Chapter 11) to
print out the class name so you can see what’s happening.

In main( ), different types of Ordinary objects are created and upcast to Ordinary in the
array definition. The first two lines of code after that create a plain Ordinary object and try
to clone it. However, this code will not compile because clone( ) is a protected method in
Object. The remainder of the code steps through the array and tries to clone each object,
reporting the success or failure of each. The output is:

Attempting IsCloneable
Cloned IsCloneable
Attempting NoMore
Could not clone NoMore
Attempting TryMore
Could not clone TryMore
Attempting BackOn
Cloned BackOn
Attempting ReallyNoMore
Could not clone ReallyNoMore

So to summarize, if you want a class to be cloneable:

1. Implement the Cloneable interface.

2. Override clone( ).

3. Call super.clone( ) inside your clone( ).

4. Capture exceptions inside your clone( ).

This will produce the most convenient effects.



456 Thinking in Java  www.BruceEckel.com

The copy-constructor
Cloning can seem to be a complicated process to set up. It might seem like there should be an
alternative. One approach that might occur to you (especially if you’re a C++ programmer)
is to make a special constructor whose job it is to duplicate an object. In C++, this is called
the copy constructor. At first, this seems like the obvious solution. Here’s an example:

//: CopyConstructor.java
// A constructor for copying an object
// of the same type, as an attempt to create
// a local copy.

class FruitQualities {
  private int weight;
  private int color;
  private int firmness;
  private int ripeness;
  private int smell;
  // etc.
  FruitQualities() { // Default constructor
    // do something meaningful...
  }
  // Other constructors:
  // ...
  // Copy constructor:
  FruitQualities(FruitQualities f) {
    weight = f.weight;
    color = f.color;
    firmness = f.firmness;
    ripeness = f.ripeness;
    smell = f.smell;
    // etc.
  }
}

class Seed {
  // Members...
  Seed() { /* Default constructor */ }
  Seed(Seed s) { /* Copy constructor */ }
}

class Fruit {
  private FruitQualities fq;
  private int seeds;
  private Seed[] s;
  Fruit(FruitQualities q, int seedCount) {
    fq = q;
    seeds = seedCount;
    s = new Seed[seeds];
    for(int i = 0; i < seeds; i++)
      s[i] = new Seed();
  }
  // Other constructors:



Chapter 12: Passing & Returning Objects 457

  // ...
  // Copy constructor:
  Fruit(Fruit f) {
    fq = new FruitQualities(f.fq);
    seeds = f.seeds;
    // Call all Seed copy-constructors:
    for(int i = 0; i < seeds; i++)
      s[i] = new Seed(f.s[i]);
    // Other copy-construction activities...
  }
  // To allow derived constructors (or other
  // methods) to put in different qualities:
  protected void addQualities(FruitQualities q) {
    fq = q;
  }
  protected FruitQualities getQualities() {
    return fq;
  }
}

class Tomato extends Fruit {
  Tomato() {
    super(new FruitQualities(), 100);
  }
  Tomato(Tomato t) { // Copy-constructor
    super(t); // Upcast for base copy-constructor
    // Other copy-construction activities...
  }
}

class ZebraQualities extends FruitQualities {
  private int stripedness;
  ZebraQualities() { // Default constructor
    // do something meaningful...
  }
  ZebraQualities(ZebraQualities z) {
    super(z);
    stripedness = z.stripedness;
  }
}

class GreenZebra extends Tomato {
  GreenZebra() {
    addQualities(new ZebraQualities());
  }
  GreenZebra(GreenZebra g) {
    super(g); // Calls Tomato(Tomato)
    // Restore the right qualities:
    addQualities(new ZebraQualities());
  }
  void evaluate() {
    ZebraQualities zq =
      (ZebraQualities)getQualities();
    // Do something with the qualities



458 Thinking in Java  www.BruceEckel.com

    // ...
  }
}

public class CopyConstructor {
  public static void ripen(Tomato t) {
    // Use the "copy constructor":
    t = new Tomato(t);
    System.out.println("In ripen, t is a " +
      t.getClass().getName());
  }
  public static void slice(Fruit f) {
    f = new Fruit(f); // Hmmm... will this work?
    System.out.println("In slice, f is a " +
      f.getClass().getName());
  }
  public static void main(String[] args) {
    Tomato tomato = new Tomato();
    ripen(tomato); // OK
    slice(tomato); // OOPS!
    GreenZebra g = new GreenZebra();
    ripen(g); // OOPS!
    slice(g); // OOPS!
    g.evaluate();
  }
} ///:~

This seems a bit strange at first. Sure, fruit has qualities, but why not just put data members
representing those qualities directly into the Fruit class? There are two potential reasons.
The first is that you might want to easily insert or change the qualities. Note that Fruit has
a protected addQualities( ) method to allow derived classes to do this. (You might think the
logical thing to do is to have a protected constructor in Fruit that takes a FruitQualities
argument, but constructors don’t inherit so it wouldn’t be available in second or greater
level classes.) By making the fruit qualities into a separate class, you have greater flexibility,
including the ability to change the qualities midway through the lifetime of a particular
Fruit object.

The second reason for making FruitQualities a separate object is in case you want to add
new qualities or to change the behavior via inheritance and polymorphism. Note that for
GreenZebra (which really is a type of tomato – I’ve grown them and they’re fabulous), the
constructor calls addQualities( ) and passes it a ZebraQualities object, which is derived
from FruitQualities so it can be attached to the FruitQualities handle in the base class. Of
course, when GreenZebra uses the FruitQualities it must downcast it to the correct type
(as seen in evaluate( )), but it always knows that type is ZebraQualities.

You’ll also see that there’s a Seed class, and that Fruit (which by definition carries its own
seeds) contains an array of Seeds.

Finally, notice that each class has a copy constructor, and that each copy constructor must
take care to call the copy constructors for the base class and member objects to produce a
deep copy. The copy constructor is tested inside the class CopyConstructor. The method
ripen( ) takes a Tomato argument and performs copy-construction on it in order to
duplicate the object:

t = new Tomato(t);



Chapter 12: Passing & Returning Objects 459

while slice( ) takes a more generic Fruit object and also duplicates it:

f = new Fruit(f);

These are tested with different kinds of Fruit in main( ). Here’s the output:

In ripen, t is a Tomato
In slice, f is a Fruit
In ripen, t is a Tomato
In slice, f is a Fruit

This is where the problem shows up. After the copy-construction that happens to the
Tomato inside slice( ), the result is no longer a Tomato object, but just a Fruit. It has lost all
of its tomato-ness. Further, when you take a GreenZebra, both ripen( ) and slice( ) turn it
into a Tomato and a Fruit, respectively. Thus, unfortunately, the copy constructor scheme is
no good to us in Java when attempting to make a local copy of an object.

Why does it work in C++ and not Java?
The copy constructor is a fundamental part of C++, since it automatically makes a local
copy of an object. Yet the example above proves that it does not work for Java. Why? In Java
everything that we manipulate is a handle, while in C++ you can have handle-like entities
and you can also pass around the objects directly. That’s what the C++ copy constructor is
for: when you want to take an object and pass it in by value, thus duplicating the object. So
it works fine in C++, but you should keep in mind that this scheme fails in Java, so don’t
use it.

Read-only classes
While the local copy produced by clone( ) gives the desired results in the appropriate cases, it
is an example of forcing the programmer (the author of the method) to be responsible for
preventing the ill effects of aliasing. What if you’re making a library that’s so general
purpose and commonly used that you cannot make the assumption that it will always be
cloned in the proper places? Or more likely, what if you want to allow aliasing for efficiency
– to prevent the needless duplication of objects – but you don’t want the negative side effects
of aliasing?

One solution is to create immutable objects which belong to read-only classes. You can define
a class such that no methods in the class cause changes to the internal state of the object. In
such a class, aliasing has no impact since you can read only the internal state, so if many
pieces of code are reading the same object there’s no problem.

As a simple example of immutable objects, Java’s standard library contains “wrapper”
classes for all the primitive types. You might have already discovered that, if you want to
store an int inside a collection such as a Vector (which takes only Object handles), you can
wrap your int inside the standard library Integer class:

//: ImmutableInteger.java
// The Integer class cannot be changed
import java.util.*;

public class ImmutableInteger {
  public static void main(String[] args) {



460 Thinking in Java  www.BruceEckel.com

    Vector v = new Vector();
    for(int i = 0; i < 10; i++)
      v.addElement(new Integer(i));
    // But how do you change the int
    // inside the Integer?
  }
} ///:~

The Integer class (as well as all the primitive “wrapper” classes) implements immutability in
a simple fashion: they have no methods that allow you to change the object.

If you do need an object that holds a primitive type that can be modified, you must create it
yourself. Fortunately, this is trivial:

//: MutableInteger.java
// A changeable wrapper class
import java.util.*;

class IntValue {
  int n;
  IntValue(int x) { n = x; }
  public String toString() {
    return Integer.toString(n);
  }
}

public class MutableInteger {
  public static void main(String[] args) {
    Vector v = new Vector();
    for(int i = 0; i < 10; i++)
      v.addElement(new IntValue(i));
    System.out.println(v);
    for(int i = 0; i < v.size(); i++)
      ((IntValue)v.elementAt(i)).n++;
    System.out.println(v);
  }
} ///:~

Note that n is friendly to simplify coding.

IntValue can be even simpler if the default initialization to zero is adequate (then you don’t
need the constructor) and you don’t care about printing it out (then you don’t need the
toString( )):

class IntValue { int n; }

Fetching the element out and casting it is a bit awkward, but that’s a feature of Vector, not
of IntValue.

Creating read-only classes
It’s possible to create your own read-only class. Here’s an example:

//: Immutable1.java
// Objects that cannot be modified



Chapter 12: Passing & Returning Objects 461

// are immune to aliasing.

public class Immutable1 {
  private int data;
  public Immutable1(int initVal) {
    data = initVal;
  }
  public int read() { return data; }
  public boolean nonzero() { return data != 0; }
  public Immutable1 quadruple() {
    return new Immutable1(data * 4);
  }
  static void f(Immutable1 i1) {
    Immutable1 quad = i1.quadruple();
    System.out.println("i1 = " + i1.read());
    System.out.println("quad = " + quad.read());
  }
  public static void main(String[] args) {
    Immutable1 x = new Immutable1(47);
    System.out.println("x = " + x.read());
    f(x);
    System.out.println("x = " + x.read());
  }
} ///:~

All data is private, and you’ll see that none of the public methods modify that data. Indeed,
the method that does appear to modify an object is quadruple( ), but this creates a new
Immutable1 object and leaves the original one untouched.

The method f( ) takes an Immutable1 object and performs various operations on it, and the
output of main( ) demonstrates that there is no change to x. Thus, x’s object could be
aliased many times without harm because the Immutable1 class is designed to guarantee
that objects cannot be changed.

The drawback to immutability
Creating an immutable class seems at first to provide an elegant solution. However,
whenever you do need a modified object of that new type you must suffer the overhead of a
new object creation, as well as potentially causing more frequent garbage collections. For
some classes this is not a problem, but for others (such as the String class) it is prohibitively
expensive.

The solution is to create a companion class that can be modified. Then when you’re doing a
lot of modifications, you can switch to using the modifiable companion class and switch
back to the immutable class when you’re done.

The example above can be modified to show this:

//: Immutable2.java
// A companion class for making changes
// to immutable objects.

class Mutable {
  private int data;



462 Thinking in Java  www.BruceEckel.com

  public Mutable(int initVal) {
    data = initVal;
  }
  public Mutable add(int x) {
    data += x;
    return this;
  }
  public Mutable multiply(int x) {
    data *= x;
    return this;
  }
  public Immutable2 makeImmutable2() {
    return new Immutable2(data);
  }
}

public class Immutable2 {
  private int data;
  public Immutable2(int initVal) {
    data = initVal;
  }
  public int read() { return data; }
  public boolean nonzero() { return data != 0; }
  public Immutable2 add(int x) {
    return new Immutable2(data + x);
  }
  public Immutable2 multiply(int x) {
    return new Immutable2(data * x);
  }
  public Mutable makeMutable() {
    return new Mutable(data);
  }
  public static Immutable2 modify1(Immutable2 y){
    Immutable2 val = y.add(12);
    val = val.multiply(3);
    val = val.add(11);
    val = val.multiply(2);
    return val;
  }
  // This produces the same result:
  public static Immutable2 modify2(Immutable2 y){
    Mutable m = y.makeMutable();
    m.add(12).multiply(3).add(11).multiply(2);
    return m.makeImmutable2();
  }
  public static void main(String[] args) {
    Immutable2 i2 = new Immutable2(47);
    Immutable2 r1 = modify1(i2);
    Immutable2 r2 = modify2(i2);
    System.out.println("i2 = " + i2.read());
    System.out.println("r1 = " + r1.read());
    System.out.println("r2 = " + r2.read());
  }
} ///:~



Chapter 12: Passing & Returning Objects 463

Immutable2 contains methods that, as before, preserve the immutability of the objects by
producing new objects whenever a modification is desired. These are the add( ) and
multiply( ) methods. The companion class is called Mutable, and it also has add( ) and
multiply( ) methods, but these modify the Mutable object rather than making a new one.
In addition, Mutable has a method to use its data to produce an Immutable2 object and
vice versa.

The two static methods modify1( ) and modify2( ) show two different approaches to
producing the same result. In modify1( ), everything is done within the Immutable2 class
and you can see that four new Immutable2 objects are created in the process. (And each
time val is reassigned, the previous object becomes garbage.)

In the method modify2( ), you can see that the first action is to take the Immutable2 y and
produce a Mutable from it. (This is just like calling clone( ) as you saw earlier, but this time
a different type of object is created.) Then the Mutable object is used to perform a lot of
change operations without requiring the creation of many new objects. Finally, it’s turned
back into an Immutable2. Here, two new objects are created (the Mutable and the result
Immutable2) instead of four.

This approach makes sense, then, when:

1. You need immutable objects and

2. You often need to make a lot of modifications or

3. It’s expensive to create new immutable objects

Immutable SStrings
Consider the following code:

//: Stringer.java

public class Stringer {
  static String upcase(String s) {
    return s.toUpperCase();
  }
  public static void main(String[] args) {
    String q = new String("howdy");
    System.out.println(q); // howdy
    String qq = upcase(q);
    System.out.println(qq); // HOWDY
    System.out.println(q); // howdy
  }
} ///:~

When q is passed in to upcase( ) it’s actually a copy of the handle to q. The object this
handle is connected to stays put in a single physical location. The handles are copied as they
are passed around.

Looking at the definition for upcase( ), you can see that the handle that’s passed in has the
name s, and it exists for only as long as the body of upcase( ) is being executed. When
upcase( ) completes, the local handle s vanishes. upcase( ) returns the result, which is the
original string with all the characters set to uppercase. Of course, it actually returns a



464 Thinking in Java  www.BruceEckel.com

handle to the result. But it turns out that the handle that it returns is for a new object, and
the original q is left alone. How does this happen?

Implicit constants
If you say:

String s = "asdf";
String x = Stringer.upcase(s);

do you really want the upcase( ) method to change the argument? In general, you don’t,
because an argument usually looks to the reader of the code as a piece of information
provided to the method, not something to be modified. This is an important guarantee, since
it makes code easier to write and understand.

In C++, the availability of this guarantee was important enough to put in a special
keyword, const, to allow the programmer to ensure that a handle (pointer or reference in
C++) could not be used to modify the original object. But then the C++ programmer was
required to be diligent and remember to use const everywhere. It can be confusing and easy
to forget.

Overloading ‘+’ and the SStringBuffer
Objects of the String class are designed to be immutable, using the technique shown
previously. If you examine the online documentation for the String class (which is
summarized a little later in this chapter), you’ll see that every method in the class that
appears to modify a String really creates and returns a brand new String object containing
the modification. The original String is left untouched. Thus, there’s no feature in Java like
C++’s const to make the compiler support the immutability of your objects. If you want it,
you have to wire it in yourself, like String does.

Since String objects are immutable, you can alias to a particular String as many times as
you want. Because it’s read-only there’s no possibility that one handle will change
something that will affect the other handles. So a read-only object solves the aliasing
problem nicely.

It also seems possible to handle all the cases in which you need a modified object by creating
a brand new version of the object with the modifications, as String does. However, for some
operations this isn’t efficient. A case in point is the operator ‘+’ that has been overloaded for
String objects. Overloading means that it has been given an extra meaning when used with a
particular class. (The ‘+’ and ‘+=‘ for String are the only operators that are overloaded in
Java and Java does not allow the programmer to overload any others4).

When used with String objects, the ‘+’ allows you to concatenate Strings together:

String s = "abc" + foo + "def" + Integer.toString(47);

                                                

4 C++ allows the programmer to overload operators at will. Because this can often be a complicated
process (see Chapter 10 of Thinking in C++ Prentice-Hall, 1995), the Java designers deemed it a “bad”
feature that shouldn’t be included in Java. It wasn’t so bad that they didn’t end up doing it themselves,
and ironically enough, operator overloading would be much easier to use in Java than in C++.



Chapter 12: Passing & Returning Objects 465

You could imagine how this might work: the String “abc” could have a method append( )
that creates a new String object containing “abc” concatenated with the contents of foo. The
new String object would then create another new String that added “def” and so on.

This would certainly work, but it requires the creation of a lot of String objects just to put
together this new String, and then you have a bunch of the intermediate String objects that
need to be garbage-collected. I suspect that the Java designers tried this approach first
(which is a lesson in software design – you don’t really know anything about a system until
you try it out in code and get something working). I also suspect they discovered that it
delivered unacceptable performance.

The solution is a mutable companion class similar to the one shown previously. For String,
this companion class is called StringBuffer, and the compiler automatically creates a
StringBuffer to evaluate certain expressions, in particular when the overloaded operators +
and += are used with String objects. This example shows what happens:

//: ImmutableStrings.java
// Demonstrating StringBuffer

public class ImmutableStrings {
  public static void main(String[] args) {
    String foo = "foo";
    String s = "abc" + foo +
      "def" + Integer.toString(47);
    System.out.println(s);
    // The "equivalent" using StringBuffer:
    StringBuffer sb =
      new StringBuffer("abc"); // Creates String!
    sb.append(foo);
    sb.append("def"); // Creates String!
    sb.append(Integer.toString(47));
    System.out.println(sb);
  }
} ///:~

In the creation of String s, the compiler is doing the rough equivalent of the subsequent code
that uses sb: a StringBuffer is created and append( ) is used to add new characters directly
into the StringBuffer object (rather than making new copies each time). While this is more
efficient, it’s worth noting that each time you create a quoted character string such as “abc”
and “def”, the compiler turns those into String objects. So there can be more objects created
than you expect, despite the efficiency afforded through StringBuffer.

The SString and SStringBuffer classes
Here is an overview of the methods available for both String and StringBuffer so you can
get a feel for the way they interact. These tables don’t contain every single method, but
rather the ones that are important to this discussion. Methods that are overloaded are
summarized in a single row.

First, the String class:

Method Arguments,
Overloading

Use

Constructor Overloaded: Creating String objects.



466 Thinking in Java  www.BruceEckel.com

Method Arguments,
Overloading

Use

Default, String,
StringBuffer,
char arrays, byte
arrays.

length( ) Number of characters in
String.

charAt() int Index The char at a location in the
String.

getChars( ),
getBytes( )

The beginning and
end from which to
copy, the array to
copy into, an
index into the
destination array.

Copy chars or bytes into an
external array.

toCharArray( ) Produces a char[] containing
the characters in the String.

equals( ), equals-
IgnoreCase( )

A String to
compare with.

An equality check on the
contents of the two Strings.

compareTo( ) A String to
compare with.

Result is negative, zero, or
positive depending on the
lexicographical ordering of
the String and the argument.
Uppercase and lowercase are
not equal!

regionMatches( ) Offset into this
String, the other
String and its
offset and length
to compare.
Overload adds
“ignore case.”

Boolean result indicates
whether the region matches.

startsWith( ) String that it
might start with.
Overload adds
offset into
argument.

Boolean result indicates
whether the String starts
with the argument.

endsWith( ) String that might
be a suffix of this
String.

Boolean result indicates
whether the argument is a
suffix.

indexOf( ),
lastIndexOf( )

Overloaded: char,
char and starting
index, String,
String, and
starting index

Returns -1 if the argument is
not found within this String,
otherwise returns the index
where the argument starts.
lastIndexOf( ) searches
backward from end.

substring( ) Overloaded:
Starting index,
starting index,
and ending index.

Returns a new String object
containing the specified
character set.

concat( ) The String to Returns a new String object



Chapter 12: Passing & Returning Objects 467

Method Arguments,
Overloading

Use

concatenate containing the original
String’s characters followed
by the characters in the
argument.

replace( ) The old character
to search for, the
new character to
replace it with.

Returns a new String object
with the replacements made.
Uses the old String if no
match is found.

toLowerCase( )
toUpperCase( )

Returns a new String object
with the case of all letters
changed. Uses the old String
if no changes need to be
made.

trim( ) Returns a new String object
with the white space
removed from each end. Uses
the old String if no changes
need to be made.

valueOf( ) Overloaded:
Object, char[],
char[] and offset
and count,
boolean, char,
int, long, float,
double.

Returns a String containing
a character representation of
the argument.

intern( ) Produces one and only one
String handle for each
unique character sequence.

You can see that every String method carefully returns a new String object when it’s
necessary to change the contents. Also notice that if the contents don’t need changing the
method will just return a handle to the original String. This saves storage and overhead.

Here’s the StringBuffer class:

Method Arguments, overloading Use
Constructor Overloaded: default, length

of buffer to create, String to
create from.

Create a new
StringBuffer object.

toString( ) Creates a String from
this StringBuffer.

length( ) Number of characters
in the StringBuffer.

capacity( ) Returns current
number of spaces
allocated.

ensure-
Capacity( )

Integer indicating desired
capacity.

Makes the
StringBuffer hold at
least the desired
number of spaces.

setLength( ) Integer indicating new length Truncates or expands



468 Thinking in Java  www.BruceEckel.com

Method Arguments, overloading Use
of character string in buffer. the previous character

string. If expanding,
pads with nulls.

charAt( ) Integer indicating the
location of the desired
element.

Returns the char at
that location in the
buffer.

setCharAt( ) Integer indicating the
location of the desired
element and the new char
value for the element.

Modifies the value at
that location.

getChars( ) The beginning and end from
which to copy, the array to
copy into, an index into the
destination array.

Copy chars into an
external array. There’s
no getBytes( ) as in
String.

append( ) Overloaded: Object, String,
char[], char[] with offset
and length, boolean, char,
int, long, float, double.

The argument is
converted to a string
and appended to the
end of the current
buffer, increasing the
buffer if necessary.

insert( ) Overloaded, each with a first
argument of the offset at
which to start inserting:
Object, String, char[],
boolean, char, int, long,
float, double.

The second argument is
converted to a string
and inserted into the
current buffer
beginning at the offset.
The buffer is increased
if necessary.

reverse( ) The order of the
characters in the buffer
is reversed.

The most commonly-used method is append( ), which is used by the compiler when
evaluating String expressions that contain the ‘+’ and ‘+=‘ operators. The insert( ) method
has a similar form, and both methods perform significant manipulations to the buffer
instead of creating new objects.

Strings are special
By now you’ve seen that the String class is not just another class in Java. There are a lot of
special cases in String, not the least of which is that it’s a built-in class and fundamental to
Java. Then there’s the fact that a quoted character string is converted to a String by the
compiler and the special overloaded operators + and +=. In this chapter you’ve seen the
remaining special case: the carefully-built immutability using the companion StringBuffer
and some extra magic in the compiler.

Summary
Because everything is a handle in Java, and because every object is created on the heap and
garbage collected only when it is no longer used, the flavor of object manipulation changes,
especially when passing and returning objects. For example, in C or C++, if you wanted to



Chapter 12: Passing & Returning Objects 469

initialize some piece of storage in a method, you’d probably request that the user pass the
address of that piece of storage into the method. Otherwise you’d have to worry about who
was responsible for destroying that storage. Thus, the interface and understanding of such
methods is more complicated. But in Java, you never have to worry about responsibility or
whether an object will still exist when it is needed, since that is always taken care of for you.
Your programs can create an object at the point that it is needed, and no sooner, and never
worry about the mechanics of passing around responsibility for that object: you simply pass
the handle. Sometimes the simplification that this provides is unnoticed, other times it is
staggering.

The downside to all this underlying magic is twofold:

1. You always take the efficiency hit for the extra memory management (although this can
be quite small), and there’s always a slight amount of uncertainty about the time
something can take to run (since the garbage collector can be forced into action
whenever you get low on memory). For most applications, the benefits outweigh the
drawbacks, and particularly time-critical sections can be written using native methods
(see Appendix A).

2. Aliasing: sometimes you can accidentally end up with two handles to the same object,
which is a problem only if both handles are assumed to point to a distinct object. This is
where you need to pay a little closer attention and, when necessary, clone( ) an object to
prevent the other handle from being surprised by an unexpected change. Alternatively,
you can support aliasing for efficiency by creating immutable objects whose operations
can return a new object of the same type or some different type, but never change the
original object so that anyone aliased to that object sees no change.

Some people say that cloning in Java is a botched design, and to heck with it, so they
implement their own version of cloning5 and never call the Object.clone( ) method, thus
eliminating the need to implement Cloneable and catch the CloneNotSupportedException.
This is certainly a reasonable approach and since clone( ) is supported so rarely within the
standard Java library, it is apparently a safe one as well. But as long as you don’t call
Object.clone( ) you don’t need to implement Cloneable or catch the exception, so that
would seem acceptable as well.

It’s interesting to notice that one of the “reserved but not implemented” keywords in Java is
byvalue. After seeing the issues of aliasing and cloning, you can imagine that byvalue
might someday be used to implement an automatic local copy in Java. This could eliminate
the more complex issues of cloning and make coding in these situations simpler and more
robust.

Exercises
 1.  Create a class myString containing a String object that you initialize in the constructor

using the constructor’s argument. Add a toString( ) method and a method concatenate( )
that appends a String object to your internal string. Implement clone( ) in myString.
Create two static methods that each take a myString x handle as an argument and call

                                                

5 Doug Lea, who was helpful in resolving this issue, suggested this to me, saying that he simply
creates a function called duplicate( ) for each class.



470 Thinking in Java  www.BruceEckel.com

x.concatenate(“test”), but in the second method call clone( ) first. Test the two methods
and show the different effects.

 2.  Create a class called Battery containing an int that is a battery number (as a unique
identifier). Make it cloneable and give it a toString( ) method. Now create a class called
Toy that contains an array of Battery and a toString( ) that prints out all the batteries.
Write a clone( ) for Toy that automatically clones all of its Battery objects. Test this by
cloning Toy and printing the result.

 3.  Change CheckCloneable.java so that all of the clone( ) methods catch the
CloneNotSupportedException rather than passing it to the caller.

 4.  Modify Compete.java to add more member objects to classes Thing2 and Thing4 and see
if you can determine how the timings vary with complexity – whether it’s a simple linear
relationship or if it seems more complicated.

 5.  Starting with Snake.java, create a deep-copy version of the snake.



471

4

13: Creating windows
and applets

The original design goal of the graphical user interface (GUI) library in
Java 1.0 was to allow the programmer to build a GUI that looks good on
all platforms.
That goal was not achieved. Instead, the Java 1.0 Abstract Window Toolkit (AWT) produces a
GUI that looks equally mediocre on all systems. In addition it’s restrictive: you can use only
four fonts and you cannot access any of the more sophisticated GUI elements that exist in
your operating system (OS). The Java 1.0 AWT programming model is also awkward and
non-object-oriented.

Much of this situation has been improved with the Java 1.1 AWT event model, which takes a
much clearer, object-oriented approach, along with the introduction of Java Beans, a
component programming model that is particularly oriented toward the easy creation of
visual programming environments. Java 1.2 finishes the transformation away from the old
Java 1.0 AWT by adding the Java Foundation Classes (JFC), the GUI portion of which is called
“Swing.” These are a rich set of easy-to-use, easy-to-understand Java Beans that can be
dragged and dropped (as well as hand programmed) to create a GUI that you can (finally) be
satisfied with. The “revision 3” rule of the software industry (a product isn’t good until
revision 3) seems to hold true with programming languages as well.

One of Java’s primary design goals is to create applets, which are little programs that run
inside a Web browser. Because they must be safe, applets are limited in what they can
accomplish. However, they are a powerful tool in supporting client-side programming, a
major issue for the Web.



472 Thinking in Java  www.BruceEckel.com

Programming within an applet is so restrictive that it’s often referred to as being “inside the
sandbox,” since you always have someone – the Java run-time security system – watching
over you. Java 1.1 offers digital signing for applets so you can choose to allow trusted
applets to have access to your machine. However, you can also step outside the sandbox and
write regular applications, in which case you can access the other features of your OS. We’ve
been writing regular applications all along in this book, but they’ve been console applications
without any graphical components. The AWT can also be used to build GUI interfaces for
regular applications.

In this chapter you’ll first learn the use of the original “old” AWT, which is still supported
and used by many of the code examples that you will come across. Although it’s a bit
painful to learn the old AWT, it’s necessary because you must read and maintain legacy code
that uses the old AWT. Sometimes you’ll even need to write old AWT code to support
environments that haven’t upgraded past Java 1.0. In the second part of the chapter you’ll
learn about the structure of the “new” AWT in Java 1.1 and see how much better the event
model is. (If you can, you should use the newest tools when you’re creating new programs.)
Finally, you’ll learn about the new JFC/Swing components, which can be added to Java 1.1
as a library – this means you can use the library without requiring a full upgrade to Java
1.2.

Most of the examples will show the creation of applets, not only because it’s easier but also
because that’s where the AWT’s primary usefulness might reside. In addition you’ll see how
things are different when you want to create a regular application using the AWT, and how
to create programs that are both applets and applications so they can be run either inside a
browser or from the command line.

Please be aware that this is not a comprehensive glossary of all the methods for the described
classes. This chapter will just get you started with the essentials. When you’re looking for
more sophistication, make sure you go to your information browser to look for the classes
and methods that will solve your problem. (If you’re using a development environment your
information browser might be built in; if you’re using the Sun JDK then you use your Web
browser and start in the java root directory.) Appendix F lists other resources for learning
library details.

Why use the AWT?
One of the problems with the “old” AWT that you’ll learn about in this chapter is that it is a
poor example of both object-oriented design and GUI development kit design. It throws us
back into the dark ages of programming (some suggest that the ‘A’ in AWT stands for
“awkward,” “awful,” “abominable,” etc.). You must write lines of code to do everything,
including tasks that are accomplished much more easily using resources in other
environments.

Many of these problems are reduced or eliminated in Java 1.1 because:

1. The new AWT in Java 1.1 is a much better programming model and a significant step
towards a better library. Java Beans is the framework for that library.

2. “GUI builders” (visual programming environments) will become de rigeur for all
development systems. Java Beans and the new AWT allow the GUI builder to write code
for you as you place components onto forms using graphical tools. Other component
technologies such as ActiveX will be supported in the same fashion.



Chapter 13: Creating Windows & Applets 473

So why learn to use the old AWT? “Because it’s there.” In this case, “there” has a much more
ominous meaning and points to a tenet of object-oriented library design: Once you publicize a
component in your library, you can never take it out. If you do, you’ll wreck somebody’s
existing code. In addition, there are many existing code examples out there that you’ll read
as you learn about Java and they all use the old AWT.

The AWT must reach into the GUI components of the native OS, which means that it
performs a task that an applet cannot otherwise accomplish. An untrusted applet cannot
make any direct calls into an OS because otherwise it could do bad things to the user’s
machine. The only way an untrusted applet can access important functionality such as
“draw a window on the screen” is through calls in the standard Java library that’s been
specially ported and safety checked for that machine. The original model that Sun created is
that this “trusted library” will be provided only by the trusted vendor of the Java system in
your Web browser, and the vendor will control what goes into that library.

But what if you want to extend the system by adding a new component that accesses
functionality in the OS? Waiting for Sun to decide that your extension should be
incorporated into the standard Java library isn’t going to solve your problem. The new
model in Java 1.1 is “trusted code” or “signed code” whereby a special server verifies that a
piece of code that you download is in fact “signed” by the stated author using a public-key
encryption system. This way, you’ll know for sure where the code comes from, that it’s
Bob’s code and not just someone pretending to be Bob. This doesn’t prevent Bob from
making mistakes or doing something malicious, but it does prevent Bob from shirking
responsibility – anonymity is what makes computer viruses possible. A digitally signed
applet – a “trusted applet” – in Java 1.1 can reach into your machine and manipulate it
directly, just like any other application you get from a “trusted” vendor and install onto
your computer.

But the point of all this is that the old AWT is there. There will always be old AWT code
floating around and new Java programmers learning from old books will encounter that
code. Also, the old AWT is worth studying as an example of poor library design. The
coverage of the old AWT given here will be relatively painless since it won’t go into depth
and enumerate every single method and class, but instead give you an overview of the old
AWT design.

The basic applet
Libraries are often grouped according to their functionality. Some libraries, for example, are
used as is, off the shelf. The standard Java library String and Vector classes are examples of
these. Other libraries are designed specifically as building blocks to build other classes. A
certain class of library is the application framework, whose goal is to help you build
applications by providing a class or set of classes that produces the basic behavior that you
need in every application of a particular type. Then, to customize the behavior to your own
needs you inherit from the application class and override the methods of interest. The
application framework’s default control mechanism will call your overridden methods at the
appropriate time. An application framework is a good example of “separating the things that
change from the things that stay the same,” since it attempts to localize all the unique parts
of a program in the overridden methods.

Applets are built using an application framework. You inherit from class Applet and override
the appropriate methods. Most of the time you’ll be concerned with only a few important
methods that have to do with how the applet is built and used on a Web page. These
methods are:



474 Thinking in Java  www.BruceEckel.com

Method Operation
init( ) Called when the applet is first created to perform first-

time initialization of the applet
start( ) Called every time the applet moves into sight on the Web

browser to allow the applet to start up its normal
operations (especially those that are shut off by stop( )).
Also called after init( ).

paint( ) Part of the base class Component (three levels of
inheritance up). Called as part of an update( ) to perform
special painting on the canvas of an applet.

stop( ) Called every time the applet moves out of sight on the
Web browser to allow the applet to shut off expensive
operations. Also called right before destroy( ).

destroy( ) Called when the applet is being unloaded from the page
to perform final release of resources when the applet is
no longer used

Consider the paint( ) method. This method is called automatically when the Component (in
this case, the applet) decides that it needs to update itself – perhaps because it’s being moved
back onto the screen or placed on the screen for the first time, or perhaps some other
window had been temporarily placed over your Web browser. The applet calls its update( )
method (defined in the base class Component), which goes about restoring everything, and
as a part of that restoration calls paint( ). You don’t have to override paint( ), but it turns
out to be an easy way to make a simple applet, so we’ll start out with paint( ).

When update( ) calls paint( ) it hands it a handle to a Graphics object that represents the
surface on which you can paint. This is important because you’re limited to the surface of
that particular component and thus cannot paint outside that area, which is a good thing or
else you’d be painting outside the lines. In the case of an applet, the surface is the area inside
the applet.

The Graphics object also has a set of operations you can perform on it. These operations
revolve around painting on the canvas, so most of them have to do with drawing images,
shapes, arcs, etc. (Note that you can look all this up in your online Java documentation if
you’re curious.) There are some methods that allow you to draw characters, however, and
the most commonly used one is drawString( ). For this, you must specify the String you
want to draw and its starting location on the applet’s drawing surface. This location is given
in pixels, so it will look different on different machines, but at least it’s portable.

With this information you can create a simple applet:

//: Applet1.java
// Very simple applet
package c13;
import java.awt.*;
import java.applet.*;

public class Applet1 extends Applet {
  public void paint(Graphics g) {
    g.drawString("First applet", 10, 10);
  }
} ///:~



Chapter 13: Creating Windows & Applets 475

Note that applets are not required to have a main( ). That’s all wired in to the application
framework; you put any startup code in init( ).

To run this program you must place it inside a Web page and view that page inside your
Java-enabled Web browser. To place an applet inside a Web page you put a special tag inside
the HTML source for that Web page1 to tell the page how to load and run the applet. This is
the applet tag, and it looks like this for Applet1:

<applet
code=Applet1
width=200
height=200>
</applet>

The code value gives the name of the .class file where the applet resides. The width and
height specify the initial size of the applet (in pixels, as before). There are other items you
can place within the applet tag: a place to find other .class files on the Internet (codebase),
alignment information (align), a special identifier that makes it possible for applets to
communicate with each other (name), and applet parameters to provide information that
the applet can retrieve. Parameters are in the form

<param name=identifier value = "information">

and there can be as many as you want.

For simple applets all you need to do is place an applet tag in the above form inside your
Web page and that will load and run the applet.

Testing applets
You can perform a simple test without any network connection by starting up your Web
browser and opening the HTML file containing the applet tag. (Sun’s JDK also contains a
tool called the appletviewer that picks the <APPLET> tags out of the HTML file and runs the
applets without displaying the surrounding HTML text.2) As the HTML file is loaded, the
browser will discover the applet tag and go hunt for the .class file specified by the code
value. Of course, it looks at the CLASSPATH to find out where to hunt, and if your .class file
isn’t in the CLASSPATH then it will give an error message on the status line of the browser to
the effect that it couldn’t find that .class file.

When you want to try this out on your Web site things are a little more complicated. First of
all, you must have a Web site, which for most people means a third-party Internet Service
Provider (ISP) at a remote location. Then you must have a way to move the HTML files and
the .class files from your site to the correct directory (your WWW directory) on the ISP
machine. This is typically done with a File Transfer Protocol (FTP) program, of which there

                                                

1 It is assumed that the reader is familiar with the basics of HTML. It’s not too hard to figure out, and
there are lots of books and resources.

2 Because the appletviewer ignores everything but APPLET tags, you can put those tags in the Java
source file as comments:
// <applet code=MyApplet.class width=200 height=100></applet>
This way, you can run "appletviewer MyApplet.java" and you don’t need to create tiny HTML files to
run tests.



476 Thinking in Java  www.BruceEckel.com

are many different types freely available. So it would seem that all you need to do is move
the files to the ISP machine with FTP, then connect to the site and HTML file using your
browser; if the applet comes up and works, then everything checks out, right?

Here’s where you can get fooled. If the browser cannot locate the .class file on the server, it
will hunt through the CLASSPATH on your local machine. Thus, the applet might not be
loading properly from the server, but to you it looks fine because the browser finds it on
your machine. When someone else logs in, however, his or her browser can’t find it. So
when you’re testing, make sure you erase the relevant .class files on your machine to be
safe.

One of the most insidious places where this happened to me is when I innocently placed an
applet inside a package. After uploading the HTML file and applet, it turned out that the
server path to the applet was confused because of the package name. However, my browser
found it in the local CLASSPATH. So I was the only one who could properly load the applet. It
took some time to discover that the package statement was the culprit. In general, you’ll
want to leave the package statement out of an applet.

A more graphical example
The example above isn’t too thrilling, so let’s try adding a slightly more interesting graphic
component:

//: Applet2.java
// Easy graphics
import java.awt.*;
import java.applet.*;

public class Applet2 extends Applet {
  public void paint(Graphics g) {
    g.drawString("Second applet", 10, 15);
    g.draw3DRect(0, 0, 100, 20, true);
  }
} ///:~

This puts a box around the string. Of course, all the numbers are hard-coded and are based
on pixels, so on some machines the box will fit nicely around the string and on others it will
probably be off, because fonts will be different on different machines.

There are other interesting things you can find in the documentation for the Graphic class.
Any sort of graphics activity is usually entertaining, so further experiments of this sort are
left to the reader.

Demonstrating
the framework methods

It’s interesting to see some of the framework methods in action. (This example will look only
at init( ), start( ), and stop( ) because paint( ) and destroy( ) are self-evident and not so
easily traceable.) The following applet keeps track of the number of times these methods are
called and displays them using paint( ):

//: Applet3.java
// Shows init(), start() and stop() activities



Chapter 13: Creating Windows & Applets 477

import java.awt.*;
import java.applet.*;

public class Applet3 extends Applet {
  String s;
  int inits = 0;
  int starts = 0;
  int stops = 0;
  public void init() { inits++; }
  public void start() { starts++; }
  public void stop() { stops++; }
  public void paint(Graphics g) {
    s = "inits: " + inits +
      ", starts: " + starts +
      ", stops: " + stops;
    g.drawString(s, 10, 10);
  }
} ///:~

Normally when you override a method you’ll want to look to see whether you need to call
the base-class version of that method, in case it does something important. For example,
with init( ) you might need to call super.init( ). However, the Applet documentation
specifically states that the init( ), start( ), and stop( ) methods in Applet do nothing, so it’s
not necessary to call them here.

When you experiment with this applet you’ll discover that if you minimize the Web browser
or cover it up with another window you might not get calls to stop( ) and start( ). (This
behavior seems to vary among implementations; you might wish to contrast the behavior of
Web browsers with that of applet viewers.) The only time the calls will occur is when you
move to a different Web page and then come back to the one containing the applet.

Making a button
Making a button is quite simple: you just call the Button constructor with the label you
want on the button. (You can also use the default constructor if you want a button with no
label, but this is not very useful.) Usually you’ll want to create a handle for the button so
you can refer to it later.

The Button is a component, like its own little window, that will automatically get repainted
as part of an update. This means that you don’t explicitly paint a button or any other kind
of control; you simply place them on the form and let them automatically take care of
painting themselves. So to place a button on a form you override init( ) instead of overriding
paint( ):

//: Button1.java
// Putting buttons on an applet
import java.awt.*;
import java.applet.*;

public class Button1 extends Applet {
  Button
    b1 = new Button("Button 1"),
    b2 = new Button("Button 2");



478 Thinking in Java  www.BruceEckel.com

  public void init() {
    add(b1);
    add(b2);
  }
} ///:~

It’s not enough to create the Button (or any other control). You must also call the Applet
add( ) method to cause the button to be placed on the applet’s form. This seems a lot simpler
than it is, because the call to add( ) actually decides, implicitly, where to place the control on
the form. Controlling the layout of a form is examined shortly.

Capturing an event
You’ll notice that if you compile and run the applet above, nothing happens when you press
the buttons. This is where you must step in and write some code to determine what will
happen. The basis of event-driven programming, which comprises a lot of what a GUI is
about, is tying events to code that responds to those events.

After working your way this far through the book and grasping some of the fundamentals
of object-oriented programming, you might think that of course there will be some sort of
object-oriented approach to handling events. For example, you might have to inherit each
button and override some “button pressed” method (this, it turns out, is too tedious and
restrictive). You might also think there’s some master “event” class that contains a method
for each event you want to respond to.

Before objects, the typical approach to handling events was the “giant switch statement.”
Each event would have a unique integer value and inside the master event handling method
you’d write a switch on that value.

The AWT in Java 1.0 doesn’t use any object-oriented approach. Neither does it use a giant
switch statement that relies on the assignment of numbers to events. Instead, you must
create a cascaded set of if statements. What you’re trying to do with the if statements is
detect the object that was the target of the event. That is, if you click on a button, then that
particular button is the target. Normally, that’s all you care about – if a button is the target
of an event, then it was most certainly a mouse click and you can continue based on that
assumption. However, events can contain other information as well. For example, if you
want to find out the pixel location where a mouse click occurred so you can draw a line to
that location, the Event object will contain the location. (You should also be aware that Java
1.0 components can be limited in the kinds of events they generate, while Java 1.1 and
Swing/JFC components produce a full set of events.)

The Java 1.0 AWT method where your cascaded if statement resides is called action( ).
Although the whole Java 1.0 Event model has been deprecated in Java 1.1, it is still widely
used for simple applets and in systems that do not yet support Java 1.1, so I recommend
you become comfortable with it, including the use of the following action() method
approach.

action( ) has two arguments: the first is of type Event and contains all the information
about the event that triggered this call to action( ). For example, it could be a mouse click, a
normal keyboard press or release, a special key press or release, the fact that the component
got or lost the focus, mouse movements, or drags, etc. The second argument is usually the
target of the event, which you’ll often ignore. The second argument is also encapsulated in
the Event object so it is redundant as an argument.



Chapter 13: Creating Windows & Applets 479

The situations in which action( ) gets called are extremely limited: When you place controls
on a form, some types of controls (buttons, check boxes, drop-down lists, menus) have a
“standard action” that occurs, which causes the call to action( ) with the appropriate Event
object. For example, with a button the action( ) method is called when the button is pressed
and at no other time. Usually this is just fine, since that’s what you ordinarily look for with
a button. However, it’s possible to deal with many other types of events via the
handleEvent( ) method as we will see later in this chapter.

The previous example can be extended to handle button clicks as follows:

//: Button2.java
// Capturing button presses
import java.awt.*;
import java.applet.*;

public class Button2 extends Applet {
  Button
    b1 = new Button("Button 1"),
    b2 = new Button("Button 2");
  public void init() {
    add(b1);
    add(b2);
  }
  public boolean action(Event evt, Object arg) {
    if(evt.target.equals(b1))
      getAppletContext().showStatus("Button 1");
    else if(evt.target.equals(b2))
      getAppletContext().showStatus("Button 2");
    // Let the base class handle it:
    else
      return super.action(evt, arg);
    return true; // We've handled it here
  }
} ///:~

To see what the target is, ask the Event object what its target member is and then use the
equals( ) method to see if it matches the target object handle you’re interested in. When
you’ve written handlers for all the objects you’re interested in you must call
super.action(evt, arg) in the else statement at the end, as shown above. Remember from
Chapter 7 (polymorphism) that your overridden method is called instead of the base class
version. However, the base-class version contains code to handle all of the cases that you’re
not interested in, and it won’t get called unless you call it explicitly. The return value
indicates whether you’ve handled it or not, so if you do match an event you should return
true, otherwise return whatever the base-class event( ) returns.

For this example, the simplest action is to print what button is pressed. Some systems allow
you to pop up a little window with a message in it, but applets discourage this. However,
you can put a message at the bottom of the Web browser window on its status line by
calling the Applet method getAppletContext( ) to get access to the browser and then
showStatus( ) to put a string on the status line.3 You can print out a complete description of

                                                

3 ShowStatus( ) is also a method of Applet, so you can call it directly, without calling
getAppletContext( ).



480 Thinking in Java  www.BruceEckel.com

an event the same way, with getAppletContext().showStatus(evt + "" ). (The empty String
forces the compiler to convert evt to a String.) Both of these reports are really useful only
for testing and debugging since the browser might overwrite your message.

Strange as it might seem, you can also match an event to the text that’s on a button through
the second argument in event( ). Using this technique, the example above becomes:

//: Button3.java
// Matching events on button text
import java.awt.*;
import java.applet.*;

public class Button3 extends Applet {
  Button
    b1 = new Button("Button 1"),
    b2 = new Button("Button 2");
  public void init() {
    add(b1);
    add(b2);
  }
  public boolean action (Event evt, Object arg) {
    if(arg.equals("Button 1"))
      getAppletContext().showStatus("Button 1");
    else if(arg.equals("Button 2"))
      getAppletContext().showStatus("Button 2");
    // Let the base class handle it:
    else
      return super.action(evt, arg);
    return true; // We've handled it here
  }
} ///:~

It’s difficult to know exactly what the equals( ) method is doing here. The biggest problem
with this approach is that most new Java programmers who start with this technique spend
at least one frustrating session discovering that they’ve gotten the capitalization or spelling
wrong when comparing to the text on a button. (I had this experience.) Also, if you change
the text of the button, the code will no longer work (but you won’t get any compile-time or
run-time error messages). You should avoid this approach if possible.

Text fields
A TextField is a one line area that allows the user to enter and edit text. TextField is
inherited from TextComponent, which lets you select text, get the selected text as a String,
get or set the text, and set whether the TextField is editable, along with other associated
methods that you can find in your online reference. The following example demonstrates
some of the functionality of a TextField; you can see that the method names are fairly
obvious:

//: TextField1.java
// Using the text field control
import java.awt.*;
import java.applet.*;



Chapter 13: Creating Windows & Applets 481

public class TextField1 extends Applet {
  Button
    b1 = new Button("Get Text"),
    b2 = new Button("Set Text");
  TextField
    t = new TextField("Starting text", 30);
  String s = new String();
  public void init() {
    add(b1);
    add(b2);
    add(t);
  }
  public boolean action (Event evt, Object arg) {
    if(evt.target.equals(b1)) {
      getAppletContext().showStatus(t.getText());
      s = t.getSelectedText();
      if(s.length() == 0) s = t.getText();
      t.setEditable(true);
    }
    else if(evt.target.equals(b2)) {
      t.setText("Inserted by Button 2: " + s);
      t.setEditable(false);
    }
    // Let the base class handle it:
    else
      return super.action(evt, arg);
    return true; // We've handled it here
  }
} ///:~

There are several ways to construct a TextField; the one shown here provides an initial
string and sets the size of the field in characters.

Pressing button 1 either gets the text you’ve selected with the mouse or it gets all the text in
the field and places the result in String s. It also allows the field to be edited. Pressing button
2 puts a message and s into the text field and prevents the field from being edited (although
you can still select the text). The editability of the text is controlled by passing setEditable( )
a true or false.

Text areas
A TextArea is like a TextField except that it can have multiple lines and has significantly
more functionality. In addition to what you can do with a TextField, you can append text
and insert or replace text at a given location. It seems like this functionality could be useful
for TextField as well, so it’s a little confusing to try to detect how the distinction is made.
You might think that if you want TextArea functionality everywhere you can simply use a
one line TextArea in places where you would otherwise use a TextField. In Java 1.0, you
also got scroll bars with a TextArea even when they weren’t appropriate; that is, you got
both vertical and horizontal scroll bars for a one line TextArea. In Java 1.1 this was
remedied with an extra constructor that allows you to select which scroll bars (if any) are
present. The following example shows only the Java 1.0 behavior, in which the scrollbars are
always on. Later in the chapter you’ll see an example that demonstrates Java 1.1 TextAreas.



482 Thinking in Java  www.BruceEckel.com

//: TextArea1.java
// Using the text area control
import java.awt.*;
import java.applet.*;

public class TextArea1 extends Applet {
  Button b1 = new Button("Text Area 1");
  Button b2 = new Button("Text Area 2");
  Button b3 = new Button("Replace Text");
  Button b4 = new Button("Insert Text");
  TextArea t1 = new TextArea("t1", 1, 30);
  TextArea t2 = new TextArea("t2", 4, 30);
  public void init() {
    add(b1);
    add(t1);
    add(b2);
    add(t2);
    add(b3);
    add(b4);
  }
  public boolean action (Event evt, Object arg) {
    if(evt.target.equals(b1))
      getAppletContext().showStatus(t1.getText());
    else if(evt.target.equals(b2)) {
      t2.setText("Inserted by Button 2");
      t2.appendText(": " + t1.getText());
      getAppletContext().showStatus(t2.getText());
    }
    else if(evt.target.equals(b3)) {
      String s = " Replacement ";
      t2.replaceText(s, 3, 3 + s.length());
    }
    else if(evt.target.equals(b4))
      t2.insertText(" Inserted ", 10);
    // Let the base class handle it:
    else
      return super.action(evt, arg);
    return true; // We've handled it here
  }
} ///:~

There are several different TextArea constructors, but the one shown here gives a starting
string and the number of rows and columns. The different buttons show getting, appending,
replacing, and inserting text.

Labels
A Label does exactly what it sounds like it should: places a label on the form. This is
particularly important for text fields and text areas that don’t have labels of their own, and
can also be useful if you simply want to place textual information on a form. You can, as
shown in the first example in this chapter, use drawString( ) inside paint( ) to place text in
an exact location. When you use a Label it allows you to (approximately) associate the text



Chapter 13: Creating Windows & Applets 483

with some other component via the layout manager (which will be discussed later in this
chapter).

With the constructor you can create a blank label, a label with initial text in it (which is
what you’ll typically do), and a label with an alignment of CENTER, LEFT, or RIGHT (static
final ints defined in class Label). You can also change the label and its alignment with
setText( ) and setAlignment( ), and if you’ve forgotten what you’ve set these to you can
read the values with getText( ) and getAlignment( ). This example shows what you can do
with labels:

//: Label1.java
// Using labels
import java.awt.*;
import java.applet.*;

public class Label1 extends Applet {
  TextField t1 = new TextField("t1", 10);
  Label labl1 = new Label("TextField t1");
  Label labl2 = new Label("                   ");
  Label labl3 = new Label("                    ",
    Label.RIGHT);
  Button b1 = new Button("Test 1");
  Button b2 = new Button("Test 2");
  public void init() {
    add(labl1); add(t1);
    add(b1); add(labl2);
    add(b2); add(labl3);
  }
  public boolean action (Event evt, Object arg) {
    if(evt.target.equals(b1))
      labl2.setText("Text set into Label");
    else if(evt.target.equals(b2)) {
      if(labl3.getText().trim().length() == 0)
        labl3.setText("labl3");
      if(labl3.getAlignment() == Label.LEFT)
        labl3.setAlignment(Label.CENTER);
      else if(labl3.getAlignment()==Label.CENTER)
        labl3.setAlignment(Label.RIGHT);
      else if(labl3.getAlignment() == Label.RIGHT)
        labl3.setAlignment(Label.LEFT);
    }
    else
      return super.action(evt, arg);
    return true;
  }
} ///:~

The first use of the label is the most typical: labeling a TextField or TextArea. In the second
part of the example, a bunch of empty spaces are reserved and when you press the “Test 1”
button setText( ) is used to insert text into the field. Because a number of blank spaces do
not equal the same number of characters (in a proportionally-spaced font) you’ll see that the
text gets truncated when inserted into the label.



484 Thinking in Java  www.BruceEckel.com

The third part of the example reserves empty space, then the first time you press the “Test 2”
button it sees that there are no characters in the label (since trim( ) removes all of the blank
spaces at each end of a String) and inserts a short label, which is initially left-aligned. The
rest of the times you press the button it changes the alignment so you can see the effect.

You might think that you could create an empty label and then later put text in it with
setText( ). However, you cannot put text into an empty label – presumably because it has
zero width – so creating a label with no text seems to be a useless thing to do. In the example
above, the “blank” label is filled with empty spaces so it has enough width to hold text that’s
placed inside later.

Similarly, setAlignment( ) has no effect on a label that you’d typically create with text in
the constructor. The label width is the width of the text, so changing the alignment doesn’t
do anything. However, if you start with a long label and then change it to a shorter one you
can see the effect of the alignment.

These behaviors occur because of the default layout manager that’s used for applets, which
causes things to be squished together to their smallest size. Layout managers will be covered
later in this chapter, when you’ll see that other layouts don’t have the same effect.

Check boxes
A check box provides a way to make a single on-off choice; it consists of a tiny box and a
label. The box typically holds a little ‘x’ (or some other indication that it is set) or is empty
depending on whether that item was selected.

You’ll normally create a Checkbox using a constructor that takes the label as an argument.
You can get and set the state, and also get and set the label if you want to read or change it
after the Checkbox has been created. Note that the capitalization of Checkbox is inconsistent
with the other controls, which could catch you by surprise since you might expect it to be
“CheckBox.”

Whenever a Checkbox is set or cleared an event occurs, which you can capture the same
way you do a button. The following example uses a TextArea to enumerate all the check
boxes that have been checked:

//: CheckBox1.java
// Using check boxes
import java.awt.*;
import java.applet.*;

public class CheckBox1 extends Applet {
  TextArea t = new TextArea(6, 20);
  Checkbox cb1 = new Checkbox("Check Box 1");
  Checkbox cb2 = new Checkbox("Check Box 2");
  Checkbox cb3 = new Checkbox("Check Box 3");
  public void init() {
    add(t); add(cb1); add(cb2); add(cb3);
  }
  public boolean action (Event evt, Object arg) {
    if(evt.target.equals(cb1))
      trace("1", cb1.getState());
    else if(evt.target.equals(cb2))
      trace("2", cb2.getState());



Chapter 13: Creating Windows & Applets 485

    else if(evt.target.equals(cb3))
      trace("3", cb3.getState());
    else
      return super.action(evt, arg);
    return true;
  }
  void trace(String b, boolean state) {
    if(state)
      t.appendText("Box " + b + " Set\n");
    else
      t.appendText("Box " + b + " Cleared\n");
  }
} ///:~

The trace( ) method sends the name of the selected Checkbox and its current state to the
TextArea using appendText( ) so you’ll see a cumulative list of the checkboxes that were
selected and what their state is.

Radio buttons
The concept of a radio button in GUI programming comes from pre-electronic car radios
with mechanical buttons: when you push one in, any other button that was pressed pops
out. Thus it allows you to force a single choice among many.

The AWT does not have a separate class to represent the radio button; instead it reuses the
Checkbox. However, to put the Checkbox in a radio button group (and to change its shape
so it’s visually different from an ordinary Checkbox) you must use a special constructor
that takes a CheckboxGroup object as an argument. (You can also call
setCheckboxGroup( ) after the Checkbox has been created.)

A CheckboxGroup has no constructor argument; its sole reason for existence is to collect
some Checkboxes into a group of radio buttons. One of the Checkbox objects must have its
state set to true before you try to display the group of radio buttons; otherwise you’ll get
an exception at run time. If you try to set more than one radio button to true then only the
final one set will be true.

Here’s a simple example of the use of radio buttons. Note that you capture radio button
events like all others:

//: RadioButton1.java
// Using radio buttons
import java.awt.*;
import java.applet.*;

public class RadioButton1 extends Applet {
  TextField t =
    new TextField("Radio button 2", 30);
  CheckboxGroup g = new CheckboxGroup();
  Checkbox
    cb1 = new Checkbox("one", g, false),
    cb2 = new Checkbox("two", g, true),
    cb3 = new Checkbox("three", g, false);
  public void init() {



486 Thinking in Java  www.BruceEckel.com

    t.setEditable(false);
    add(t);
    add(cb1); add(cb2); add(cb3);
  }
  public boolean action (Event evt, Object arg) {
    if(evt.target.equals(cb1))
      t.setText("Radio button 1");
    else if(evt.target.equals(cb2))
      t.setText("Radio button 2");
    else if(evt.target.equals(cb3))
      t.setText("Radio button 3");
    else
      return super.action(evt, arg);
    return true;
  }
} ///:~

To display the state, an text field is used. This field is set to non-editable because it’s used
only to display data, not to collect it. This is shown as an alternative to using a Label. Notice
the text in the field is initialized to “Radio button 2” since that’s the initial selected radio
button.

You can have any number of CheckboxGroups on a form.

Drop-down lists
Like a group of radio buttons, a drop-down list is a way to force the user to select only one
element from a group of possibilities. However, it’s a much more compact way to
accomplish this, and it’s easier to change the elements of the list without surprising the user.
(You can change radio buttons dynamically, but that tends to be visibly jarring).

Java’s Choice box is not like the combo box in Windows, which lets you select from a list or
type in your own selection. With a Choice box you choose one and only one element from
the list. In the following example, the Choice box starts with a certain number of entries and
then new entries are added to the box when a button is pressed. This allows you to see some
interesting behaviors in Choice boxes:

//: Choice1.java
// Using drop-down lists
import java.awt.*;
import java.applet.*;

public class Choice1 extends Applet {
  String[] description = { "Ebullient", "Obtuse",
    "Recalcitrant", "Brilliant", "Somnescent",
    "Timorous", "Florid", "Putrescent" };
  TextField t = new TextField(30);
  Choice c = new Choice();
  Button b = new Button("Add items");
  int count = 0;
  public void init() {
    t.setEditable(false);
    for(int i = 0; i < 4; i++)



Chapter 13: Creating Windows & Applets 487

      c.addItem(description[count++]);
    add(t);
    add(c);
    add(b);
  }
  public boolean action (Event evt, Object arg) {
    if(evt.target.equals(c))
      t.setText("index: " +  c.getSelectedIndex()
        + "   " + (String)arg);
    else if(evt.target.equals(b)) {
      if(count < description.length)
        c.addItem(description[count++]);
    }
    else
      return super.action(evt, arg);
    return true;
  }
} ///:~

The TextField displays the “selected index,” which is the sequence number of the currently
selected element, as well as the String representation of the second argument of action( ),
which is in this case the string that was selected.

When you run this applet, pay attention to the determination of the size of the Choice box:
in Windows, the size is fixed from the first time you drop down the list. This means that if
you drop down the list, then add more elements to the list, the elements will be there but the
drop-down list won’t get any longer4 (you can scroll through the elements). However, if you
add all the elements before the first time the list is dropped down, then it will be sized
correctly. Of course, the user will expect to see the whole list when it’s dropped down, so this
behavior puts some significant limitations on adding elements to Choice boxes.

List boxes
List boxes are significantly different from Choice boxes, and not just in appearance. While a
Choice box drops down when you activate it, a List occupies some fixed number of lines on
a screen all the time and doesn’t change. In addition, a List allows multiple selection: if you
click on more than one item the original item stays highlighted and you can select as many
as you want. If you want to see the items in a list, you simply call getSelectedItems( ),
which produces an array of String of the items that have been selected. To remove an item
from a group you have to click it again.

A problem with a List is that the default action is double clicking, not single clicking. A
single click adds or removes elements from the selected group and a double click calls
action( ). One way around this is to re-educate your user, which is the assumption made in
the following program:

//: List1.java
// Using lists with action()
import java.awt.*;

                                                

4 This behavior is apparently a bug and will be fixed in a later version of Java.



488 Thinking in Java  www.BruceEckel.com

import java.applet.*;

public class List1 extends Applet {
  String[] flavors = { "Chocolate", "Strawberry",
    "Vanilla Fudge Swirl", "Mint Chip",
    "Mocha Almond Fudge", "Rum Raisin",
    "Praline Cream", "Mud Pie" };
  // Show 6 items, allow multiple selection:
  List lst = new List(6, true);
  TextArea t = new TextArea(flavors.length, 30);
  Button b = new Button("test");
  int count = 0;
  public void init() {
    t.setEditable(false);
    for(int i = 0; i < 4; i++)
      lst.addItem(flavors[count++]);
    add(t);
    add(lst);
    add(b);
  }
  public boolean action (Event evt, Object arg) {
    if(evt.target.equals(lst)) {
      t.setText("");
      String[] items = lst.getSelectedItems();
      for(int i = 0; i < items.length; i++)
        t.appendText(items[i] + "\n");
    }
    else if(evt.target.equals(b)) {
      if(count < flavors.length)
        lst.addItem(flavors[count++], 0);
    }
    else
      return super.action(evt, arg);
    return true;
  }
} ///:~

When you press the button it adds items to the top of the list (because of the second
argument 0 to addItem( )). Adding elements to a List is more reasonable than the Choice
box because users expect to scroll a list box (for one thing, it has a built-in scroll bar) but
they don’t expect to have to figure out how to get a drop-down list to scroll, as in the
previous example.

However, the only way for action( ) to be called is through a double-click. If you need to
monitor other activities that the user is doing on your List (in particular, single clicks) you
must take an alternative approach.

handleEvent( )
So far we’ve been using action( ), but there’s another method that gets first crack at
everything: handleEvent( ). Any time an event happens, it happens “over” or “to” a
particular object. The handleEvent( ) method for that object is automatically called and an
Event object is created and passed to handleEvent( ). The default handleEvent( ) (which is



Chapter 13: Creating Windows & Applets 489

defined in Component, the base class for virtually all the “controls” in the AWT) will call
either action( ), as we’ve been using, or other similar methods to indicate mouse activity,
keyboard activity, or to indicate that the focus has moved. We’ll look at those later in this
chapter.

What if these other methods – action( ) in particular – don’t satisfy your needs? In the case
of List, for example, what if you want to catch single mouse clicks but action( ) responds to
only double clicks? The solution is to override handleEvent( ) for your applet, which after
all is derived from Applet and can therefore override any non-final methods. When you
override handleEvent( ) for the applet you’re getting all the applet events before they are
routed, so you cannot just assume “This has to do with my button so I can assume it’s been
pressed,” since that’s true only for action( ). Inside handleEvent( ) it’s possible that the
button has the focus and someone is typing to it. Whether it makes sense or not, those are
events that you can detect and act upon in handleEvent( ).

To modify the List example so that it will react to single mouse clicks, the button detection
will be left in action( ) but the code to handle the List will be moved into handleEvent( ) as
follows:

//: List2.java
// Using lists with handleEvent()
import java.awt.*;
import java.applet.*;

public class List2 extends Applet {
  String[] flavors = { "Chocolate", "Strawberry",
    "Vanilla Fudge Swirl", "Mint Chip",
    "Mocha Almond Fudge", "Rum Raisin",
    "Praline Cream", "Mud Pie" };
  // Show 6 items, allow multiple selection:
  List lst = new List(6, true);
  TextArea t = new TextArea(flavors.length, 30);
  Button b = new Button("test");
  int count = 0;
  public void init() {
    t.setEditable(false);
    for(int i = 0; i < 4; i++)
      lst.addItem(flavors[count++]);
    add(t);
    add(lst);
    add(b);
  }
  public boolean handleEvent(Event evt) {
    if(evt.id == Event.LIST_SELECT ||
       evt.id == Event.LIST_DESELECT) {
      if(evt.target.equals(lst)) {
        t.setText("");
        String[] items = lst.getSelectedItems();
        for(int i = 0; i < items.length; i++)
          t.appendText(items[i] + "\n");
      }
      else
        return super.handleEvent(evt);
    }



490 Thinking in Java  www.BruceEckel.com

    else
      return super.handleEvent(evt);
    return true;
  }
  public boolean action(Event evt, Object arg) {
    if(evt.target.equals(b)) {
      if(count < flavors.length)
        lst.addItem(flavors[count++], 0);
    }
    else
      return super.action(evt, arg);
    return true;
  }
} ///:~

The example is the same as before except for the addition of handleEvent( ). Inside, a check
is made to see whether a list selection or deselection has occurred. Now remember,
handleEvent( ) is being overridden for the applet, so this occurrence could be anywhere on
the form and it could be happening to another list. Thus, you must also check to see what
the target is. (Although in this case there’s only one list on the applet so we could have made
the assumption that all list events must be about that list. This is bad practice since it’s going
to be a problem as soon as another list is added.) If the list matches the one we’re interested
in, the same code as before will do the trick.

Note that the form for handleEvent( ) is similar to action( ): if you deal with a particular
event you return true, but if you’re not interested in any of the other events via
handleEvent( ) you must return super.handleEvent(evt). This is vital because if you don’t
do this, none of the other event-handling code will get called. For example, try commenting
out the return super.handleEvent(evt) in the code above. You’ll discover that action( )
never gets called, certainly not what you want. For both action( ) and handleEvent( ) it’s
important to follow the format above and always return the base-class version of the
method when you do not handle the event yourself (in which case you should return true).
(Fortunately, these kinds of bug-prone details are relegated to Java 1.0. The new design in
Java 1.1 that you will see later in the chapter eliminates these kinds of issues.)

In Windows, a list box automatically allows multiple selections if you hold down the shift
key. This is nice because it allows the user to choose a single or multiple selection rather than
fixing it during programming. You might think you’ll be clever and implement this yourself
by checking to see if the shift key is held down when a mouse click was made by testing for
evt.shiftDown( ). Alas, the design of the AWT stymies you – you’d have to be able to know
which item was clicked on if the shift key wasn’t pressed so you could deselect all the rest
and select only that one. However, you cannot figure that out in Java 1.0. (Java 1.1 sends all
mouse, keyboard, and focus events to a List, so you’ll be able to accomplish this.)

Controlling layout
The way that you place components on a form in Java is probably different from any other
GUI system you’ve used. First, it’s all code; there are no “resources” that control placement
of components. Second, the way components are placed on a form is controlled by a “layout
manager” that decides how the components lie based on the order that you add( ) them. The
size, shape, and placement of components will be remarkably different from one layout
manager to another. In addition, the layout managers adapt to the dimensions of your
applet or application window, so if that window dimension is changed (for example, in the



Chapter 13: Creating Windows & Applets 491

HTML page’s applet specification) the size, shape, and placement of the components could
change.

Both the Applet and Frame classes are derived from Container, whose job it is to contain
and display Components. (The Container is a Component so it can also react to events.) In
Container, there’s a method called setLayout( ) that allows you to choose a different layout
manager.

In this section we’ll explore the various layout managers by placing buttons in them (since
that’s the simplest thing to do). There won’t be any capturing of button events since this is
just intended to show how the buttons are laid out.

FlowLayout
So far, all the applets that have been created seem to have laid out their components using
some mysterious internal logic. That’s because the applet uses a default layout scheme: the
FlowLayout. This simply “flows” the components onto the form, from left to right until the
top space is full, then moves down a row and continues flowing the components.

Here’s an example that explicitly (redundantly) sets the layout manager in an applet to
FlowLayout and then places buttons on the form. You’ll notice that with FlowLayout the
components take on their “natural” size. A Button, for example, will be the size of its string.

//: FlowLayout1.java
// Demonstrating the FlowLayout
import java.awt.*;
import java.applet.*;

public class FlowLayout1 extends Applet {
  public void init() {
    setLayout(new FlowLayout());
    for(int i = 0; i < 20; i++)
      add(new Button("Button " + i));
  }
} ///:~

All components will be compacted to their smallest size in a FlowLayout, so you might get a
little bit of surprising behavior. For example, a label will be the size of its string, so right-
justifying it yields an unchanged display.

BorderLayout
This layout manager has the concept of four border regions and a center area. When you
add something to a panel that’s using a BorderLayout you must use an add( ) method that
takes a String object as its first argument, and that string must specify (with proper
capitalization) “North” (top), “South” (bottom), “East” (right), “West” (left), or “Center.” If
you misspell or mis-capitalize, you won’t get a compile-time error, but the applet simply
won’t do what you expect. Fortunately, as you will see shortly, there’s a much-improved
approach in Java 1.1.

Here’s a simple example:

//: BorderLayout1.java
// Demonstrating the BorderLayout



492 Thinking in Java  www.BruceEckel.com

import java.awt.*;
import java.applet.*;

public class BorderLayout1 extends Applet {
  public void init() {
    int i = 0;
    setLayout(new BorderLayout());
    add("North", new Button("Button " + i++));
    add("South", new Button("Button " + i++));
    add("East", new Button("Button " + i++));
    add("West", new Button("Button " + i++));
    add("Center", new Button("Button " + i++));
  }
} ///:~

For every placement but “Center,” the element that you add is compressed to fit in the
smallest amount of space along one dimension while it is stretched to the maximum along
the other dimension. “Center,” however, spreads out along both dimensions to occupy the
middle.

The BorderLayout is the default layout manager for applications and dialogs.

GridLayout
A GridLayout allows you to build a table of components, and as you add them they are
placed left-to-right and top-to-bottom in the grid. In the constructor you specify the
number of rows and columns that you need and these are laid out in equal proportions.

//: GridLayout1.java
// Demonstrating the FlowLayout
import java.awt.*;
import java.applet.*;

public class GridLayout1 extends Applet {
  public void init() {
    setLayout(new GridLayout(7,3));
    for(int i = 0; i < 20; i++)
      add(new Button("Button " + i));
  }
} ///:~

In this case there are 21 slots but only 20 buttons. The last slot is left empty; no “balancing”
goes on with a GridLayout.

CardLayout
The CardLayout allows you to create the rough equivalent of a “tabbed dialog,” which in
more sophisticated environments has actual file-folder tabs running across one edge, and all
you have to do is press a tab to bring forward a different dialog. Not so in the AWT: The
CardLayout is simply a blank space and you’re responsible for bringing forward new cards.
(The JFC/Swing library contains tabbed panes that look much better and take care of all the
details for you.)



Chapter 13: Creating Windows & Applets 493

Combining layouts
This example will combine more than one layout type, which seems rather difficult at first
since only one layout manager can be operating for an applet or application. This is true,
but if you create more Panel objects, each one of those Panels can have its own layout
manager and then be integrated into the applet or application as simply another component,
using the applet or application’s layout manager. This gives you much greater flexibility as
seen in the following example:

//: CardLayout1.java
// Demonstrating the CardLayout
import java.awt.*;
import java.applet.Applet;

class ButtonPanel extends Panel {
  ButtonPanel(String id) {
    setLayout(new BorderLayout());
    add("Center", new Button(id));
  }
}

public class CardLayout1 extends Applet {
  Button
    first = new Button("First"),
    second = new Button("Second"),
    third = new Button("Third");
  Panel cards = new Panel();
  CardLayout cl = new CardLayout();
  public void init() {
    setLayout(new BorderLayout());
    Panel p = new Panel();
    p.setLayout(new FlowLayout());
    p.add(first);
    p.add(second);
    p.add(third);
    add("North", p);
    cards.setLayout(cl);
    cards.add("First card",
      new ButtonPanel("The first one"));
    cards.add("Second card",
      new ButtonPanel("The second one"));
    cards.add("Third card",
      new ButtonPanel("The third one"));
    add("Center", cards);
  }
  public boolean action(Event evt, Object arg) {
    if (evt.target.equals(first)) {
      cl.first(cards);
    }
    else if (evt.target.equals(second)) {
      cl.first(cards);
      cl.next(cards);
    }
    else if (evt.target.equals(third)) {



494 Thinking in Java  www.BruceEckel.com

      cl.last(cards);
    }
    else
      return super.action(evt, arg);
    return true;
  }
} ///:~

This example begins by creating a new kind of Panel: a ButtonPanel. This contains a single
button, placed at the center of a BorderLayout, which means that it will expand to fill the
entire panel. The label on the button will let you know which panel you’re on in the
CardLayout.

In the applet, both the Panel cards where the cards will live and the layout manager cl for
the CardLayout must be members of the class because you need to have access to those
handles when you want to manipulate the cards.

The applet is changed to use a BorderLayout instead of its default FlowLayout, a Panel is
created to hold three buttons (using a FlowLayout), and this panel is placed at the “North”
end of the applet. The cards panel is added to the “Center” of the applet, effectively
occupying the rest of the real estate.

When you add the ButtonPanels (or whatever other components you want) to the panel of
cards, the add( ) method’s first argument is not “North,” “South,” etc. Instead, it’s a string
that describes the card. Although this string doesn’t show up anywhere on the card, you can
use it if you want to flip that card using the string. This approach is not used in action( );
instead the first( ), next( ), and last( ) methods are used. Check your documentation for the
other approach.

In Java, the use of some sort of “tabbed panel” mechanism is quite important because (as
you’ll see later) in applet programming the use of pop-up dialogs is heavily discouraged. For
Java 1.0 applets, the CardLayout is the only viable way for the applet to have a number of
different forms that “pop up” on command.

GridBagLayout
Some time ago, it was believed that all the stars, planets, the sun, and the moon revolved
around the earth. It seemed intuitive from observation. But then astronomers became more
sophisticated and started tracking the motion of individual objects, some of which seemed at
times to go backward in their paths. Since it was known that everything revolved around
the earth, those astronomers spent large amounts of time coming up with equations and
theories to explain the motion of the stellar objects.

When trying to work with GridBagLayout, you can consider yourself the analog of one of
those early astronomers. The basic precept (decreed, interestingly enough, by the designers
at “Sun”) is that everything should be done in code. The Copernican revolution (again
dripping with irony, the discovery that the planets in the solar system revolve around the
sun) is the use of resources to determine the layout and make the programmer’s job easy.
Until these are added to Java, you’re stuck (to continue the metaphor) in the Spanish
Inquisition of GridBagLayout and GridBagConstraints.

My recommendation is to avoid GridBagLayout. Instead, use the other layout managers
and especially the technique of combining several panels using different layout managers
within a single program. Your applets won’t look that different; at least not enough to
justify the trouble that GridBagLayout entails. For my part, it’s just too painful to come up



Chapter 13: Creating Windows & Applets 495

with an example for this (and I wouldn’t want to encourage this kind of library design).
Instead, I’ll refer you to Core Java by Cornell & Horstmann (2nd ed., Prentice-Hall, 1997) to
get started.

There’s another light on the horizon: in the JFC/Swing library there is a new layout
manager that uses Smalltalk’s popular “Springs and Struts,” and this could significantly
reduce the need for GridBagLayout.

Alternatives to actionaction
As noted previously, action( ) isn’t the only method that’s automatically called by
handleEvent( ) once it sorts everything out for you. There are three other sets of methods
that are called, and if you want to capture certain types of events (keyboard, mouse, and
focus events) all you have to do is override the provided method. These methods are defined
in the base class Component, so they’re available in virtually all the controls that you might
place on a form. However, you should be aware that this approach is deprecated in Java 1.1,
so although you might see legacy code using this technique you should use the Java 1.1
approaches (described later in this chapter) instead.

Component method When it’s called
action (Event evt, Object what) When the “typical” event

occurs for this component (for
example, when a button is
pushed or a drop-down list
item is selected)

keyDown (Event evt, int key) A key is pressed when this
component has the focus. The
second argument is the key
that was pressed and is
redundantly copied from
evt.key.

keyUp(Event evt, int key) A key is released when this
component has the focus.

lostFocus(Event evt, Object what) The focus has moved away
from the target. Normally,
what is redundantly copied
from evt.arg.

gotFocus(Event evt, Object what) The focus has moved into the
target.

mouseDown(Event evt,
  int x, int y)

A mouse down has occurred
over the component, at the
coordinates x, y.

mouseUp(Event evt, int x, int y) A mouse up has occurred over
the component.

mouseMove(Event evt, int x, int y) The mouse has moved while
it’s over the component.

mouseDrag(Event evt, int x, int y) The mouse is being dragged
after a mouseDown occurred
over the component. All drag
events are reported to the
component in which the
mouseDown occurred until



496 Thinking in Java  www.BruceEckel.com

Component method When it’s called
there is a mouseUp.

mouseEnter(Event evt, int x, int y) The mouse wasn’t over the
component before, but now it
is.

mouseExit(Event evt, int x, int y) The mouse used to be over the
component, but now it isn’t.

You can see that each method receives an Event object along with some information that
you’ll typically need when you’re handling that particular situation – with a mouse event,
for example, it’s likely that you’ll want to know the coordinates where the mouse event
occurred. It’s interesting to note that when Component’s handleEvent( ) calls any of these
methods (the typical case), the extra arguments are always redundant as they are contained
within the Event object. In fact, if you look at the source code for
Component.handleEvent( ) you can see that it explicitly plucks the additional arguments
out of the Event object. (This might be considered inefficient coding in some languages, but
remember that Java’s focus is on safety, not necessarily speed.)

To prove to yourself that these events are in fact being called and as an interesting
experiment, it’s worth creating an applet that overrides each of the methods above (except
for action( ), which is overridden in many other places in this chapter) and displays data
about each of the events as they happen.

This example also shows you how to make your own button object because that’s what is
used as the target of all the events of interest. You might first (naturally) assume that to
make a new button, you’d inherit from Button. But this doesn’t work. Instead, you inherit
from Canvas (a much more generic component) and paint your button on that canvas by
overriding the paint( ) method. As you’ll see, it’s really too bad that overriding Button
doesn’t work, since there’s a bit of code involved to paint the button. (If you don’t believe
me, try exchanging Button for Canvas in this example, and remember to call the base-class
constructor super(label). You’ll see that the button doesn’t get painted and the events don’t
get handled.)

The myButton class is specific: it works only with an AutoEvent “parent window” (not a
base class, but the window in which this button is created and lives). With this knowledge,
myButton can reach into the parent window and manipulate its text fields, which is what’s
necessary to be able to write the status information into the fields of the parent. Of course
this is a much more limited solution, since myButton can be used only in conjunction with
AutoEvent. This kind of code is sometimes called “highly coupled.” However, to make
myButton more generic requires a lot more effort that isn’t warranted for this example (and
possibly for many of the applets that you will write). Again, keep in mind that the following
code uses APIs that are deprecated in Java 1.1.

//: AutoEvent.java
// Alternatives to action()
import java.awt.*;
import java.applet.*;
import java.util.*;

class MyButton extends Canvas {
  AutoEvent parent;
  Color color;
  String label;
  MyButton(AutoEvent parent,



Chapter 13: Creating Windows & Applets 497

           Color color, String label) {
    this.label = label;
    this.parent = parent;
    this.color = color;
  }
  public void paint(Graphics  g) {
    g.setColor(color);
    int rnd = 30;
    g.fillRoundRect(0, 0, size().width,
                    size().height, rnd, rnd);
    g.setColor(Color.black);
    g.drawRoundRect(0, 0, size().width,
                    size().height, rnd, rnd);
    FontMetrics fm = g.getFontMetrics();
    int width = fm.stringWidth(label);
    int height = fm.getHeight();
    int ascent = fm.getAscent();
    int leading = fm.getLeading();
    int horizMargin = (size().width - width)/2;
    int verMargin = (size().height - height)/2;
    g.setColor(Color.white);
    g.drawString(label, horizMargin,
                 verMargin + ascent + leading);
  }
  public boolean keyDown(Event evt, int key) {
    TextField t =
      (TextField)parent.h.get("keyDown");
    t.setText(evt.toString());
    return true;
  }
  public boolean keyUp(Event evt, int key) {
    TextField t =
      (TextField)parent.h.get("keyUp");
    t.setText(evt.toString());
    return true;
  }
  public boolean lostFocus(Event evt, Object w) {
    TextField t =
      (TextField)parent.h.get("lostFocus");
    t.setText(evt.toString());
    return true;
  }
  public boolean gotFocus(Event evt, Object w) {
    TextField t =
      (TextField)parent.h.get("gotFocus");
    t.setText(evt.toString());
    return true;
  }
  public boolean
  mouseDown(Event evt,int x,int y) {
    TextField t =
      (TextField)parent.h.get("mouseDown");
    t.setText(evt.toString());
    return true;



498 Thinking in Java  www.BruceEckel.com

  }
  public boolean
  mouseDrag(Event evt,int x,int y) {
    TextField t =
      (TextField)parent.h.get("mouseDrag");
    t.setText(evt.toString());
    return true;
  }
  public boolean
  mouseEnter(Event evt,int x,int y) {
    TextField t =
      (TextField)parent.h.get("mouseEnter");
    t.setText(evt.toString());
    return true;
  }
  public boolean
  mouseExit(Event evt,int x,int y) {
    TextField t =
      (TextField)parent.h.get("mouseExit");
    t.setText(evt.toString());
    return true;
  }
  public boolean
  mouseMove(Event evt,int x,int y) {
    TextField t =
      (TextField)parent.h.get("mouseMove");
    t.setText(evt.toString());
    return true;
  }
  public boolean mouseUp(Event evt,int x,int y) {
    TextField t =
      (TextField)parent.h.get("mouseUp");
    t.setText(evt.toString());
    return true;
  }
}

public class AutoEvent extends Applet {
  Hashtable h = new Hashtable();
  String[] event = {
    "keyDown", "keyUp", "lostFocus",
    "gotFocus", "mouseDown", "mouseUp",
    "mouseMove", "mouseDrag", "mouseEnter",
    "mouseExit"
  };
  MyButton
    b1 = new MyButton(this, Color.blue, "test1"),
    b2 = new MyButton(this, Color.red, "test2");
  public void init() {
    setLayout(new GridLayout(event.length+1,2));
    for(int i = 0; i < event.length; i++) {
      TextField t = new TextField();
      t.setEditable(false);
      add(new Label(event[i], Label.CENTER));



Chapter 13: Creating Windows & Applets 499

      add(t);
      h.put(event[i], t);
    }
    add(b1);
    add(b2);
  }
} ///:~

You can see the constructor uses the technique of using the same name for the argument as
what it’s assigned to, and differentiating between the two using this:

this.label = label;

The paint( ) method starts out simple: it fills a “round rectangle” with the button’s color,
and then draws a black line around it. Notice the use of size( ) to determine the width and
height of the component (in pixels, of course). After this, paint( ) seems quite complicated
because there’s a lot of calculation going on to figure out how to center the button’s label
inside the button using the “font metrics.” You can get a pretty good idea of what’s going on
by looking at the method call, and it turns out that this is pretty stock code, so you can just
cut and paste it when you want to center a label inside any component.

You can’t understand exactly how the keyDown( ), keyUp( ), etc. methods work until you
look down at the AutoEvent class. This contains a Hashtable to hold the strings
representing the type of event and the TextField where information about that event is held.
Of course, these could have been created statically rather than putting them in a Hashtable,
but I think you’ll agree that it’s a lot easier to use and change. In particular, if you need to
add or remove a new type of event in AutoEvent, you simply add or remove a string in the
event array – everything else happens automatically.

The place where you look up the strings is in the keyDown( ), keyUp( ), etc. methods back
in MyButton. Each of these methods uses the parent handle to reach back to the parent
window. Since that parent is an AutoEvent it contains the Hashtable h, and the get( )
method, when provided with the appropriate String, will produce a handle to an Object that
we happen to know is a TextField – so it is cast to that. Then the Event object is converted to
its String representation, which is displayed in the TextField.

It turns out this example is rather fun to play with since you can really see what’s going on
with the events in your program.

Applet restrictions
For safety’s sake, applets are quite restricted and there are many things you can’t do. You
can generally answer the question of what an applet is able to do by looking at what it is
supposed to do: extend the functionality of a Web page in a browser. Since, as a net surfer,
you never really know if a Web page is from a friendly place or not, you want any code that
it runs to be safe. So the biggest restrictions you’ll notice are probably:

1) An applet can’t touch the local disk. This means writing or reading, since you wouldn’t
want an applet to read and transmit important information about you across the Web.
Writing is prevented, of course, since that would be an open invitation to a virus. These
restrictions can be relaxed when digital signing is fully implemented.

2) An applet can’t have menus. (Note: this is fixed in Swing) This is probably less oriented
toward safety and more toward reducing confusion. You might have noticed that an applet



500 Thinking in Java  www.BruceEckel.com

looks like it blends right in as part of a Web page; you often don’t see the boundaries of the
applet. There’s no frame or title bar to hang the menu from, other than the one belonging to
the Web browser. Perhaps the design could be changed to allow you to merge your applet
menu with the browser menu – that would be complicated and would also get a bit too close
to the edge of safety by allowing the applet to affect its environment.

3) Dialog boxes are “untrusted.” In Java, dialog boxes present a bit of a quandary. First of all,
they’re not exactly disallowed in applets but they’re heavily discouraged. If you pop up a
dialog box from within an applet you’ll get an “untrusted applet” message attached to that
dialog. This is because, in theory, it would be possible to fool the user into thinking that
they’re dealing with a regular native application and to get them to type in their credit card
number, which then goes across the Web. After seeing the kinds of GUIs that the AWT
produces you might have a hard time believing anybody could be fooled that way. But an
applet is always attached to a Web page and visible within your Web browser, while a dialog
box is detached so in theory it could be possible. As a result it will be rare to see an applet
that uses a dialog box.

Many applet restrictions are relaxed for trusted applets (those signed by a trusted source) in
newer browsers.

There are other issues when thinking about applet development:

� Applets take longer to download since you must download the whole thing every time,
including a separate server hit for each different class. Your browser can cache the applet,
but there are no guarantees. One improvement in Java 1.1 is the JAR (Java ARchive) file
that allows packaging of all the applet components (including other .class files as well as
images and sounds) together into a single compressed file that can be downloaded in a
single server transaction. “Digital signing” (the ability to verify the creator of a class) is
available for each individual entry in the JAR file.

� Because of security issues you must work harder to do certain things such as accessing
databases and sending email. In addition, the security restrictions make accessing
multiple hosts difficult, since everything has to be routed through the Web server, which
then becomes a performance bottleneck and a single failure point that can stop the entire
process.

� An applet within the browser doesn’t have the same kind of control that a native
application does. For example, you can’t have a modal dialog box within an applet, since
the user can always switch the page. When the user does change from a Web page or
even exit the browser, the results can be catastrophic for your applet – there’s no way to
save the state so if you’re in the middle of a transaction or other operation the
information can be lost. In addition, different browsers do different things to your applet
when you leave a Web page so the results are essentially undefined.

Applet advantages
If you can live within the restrictions, applets have definite advantages, especially when
building client/server or other networked applications:

� There is no installation issue. An applet has true platform independence (including the
ability to easily play audio files, etc.) so you don’t need to make any changes in your
code for different platforms nor does anyone have to perform any “tweaking” upon
installation. In fact, installation is automatic every time the user loads the Web page
along with the applets, so updates happen silently and automatically. In traditional



Chapter 13: Creating Windows & Applets 501

client/server systems, building and installing a new version of the client software is
often a nightmare.

� Because of the security built into the core Java language and the applet structure, you
don’t have to worry about bad code causing damage to someone’s system. This, along
with the previous point, makes Java (as well as alternative client-side Web programming
tools like JavaScript and VBScript) popular for so-called Intranet client/server
applications that live only within the company and don’t move out onto the Internet.

� Because applets are automatically integrated with HTML, you have a built-in platform-
independent documentation system to support the applet. It’s an interesting twist, since
we’re used to having the documentation part of the program rather than vice versa.

Windowed applications
It’s possible to see that for safety’s sake you can have only limited behavior within an applet.
In a real sense, the applet is a temporary extension to the Web browser so its functionality
must be limited along with its knowledge and control. There are times, however, when you’d
like to make a windowed program do something else than sit on a Web page, and perhaps
you’d like it to do some of the things a “regular” application can do and yet have the
vaunted instant portability provided by Java. In previous chapters in this book we’ve made
command-line applications, but in some operating environments (the Macintosh, for
example) there isn’t a command line. So for any number of reasons you’d like to build a
windowed, non-applet program using Java. This is certainly a reasonable desire.

A Java windowed application can have menus and dialog boxes (impossible or difficult with
an applet), and yet if you’re using an older version of Java you sacrifice the native operating
environment’s look and feel. The JFC/Swing library allows you to make an application that
preserves the look and feel of the underlying operating environment. If you want to build
windowed applications, it makes sense to do so only if you can use the latest version of Java
and associated tools so you can deliver applications that won’t confound your users. If for
some reason you’re forced to use an older version of Java, think hard before committing to
building a significant windowed application.

Menus
It’s impossible to put a menu directly on an applet (in Java 1.0 and Java 1.1; the Swing
library does allow it), so they’re for applications. Go ahead, try it if you don’t believe me and
you’re sure that it would make sense to have menus on applets. There’s no setMenuBar( )
method in Applet and that’s the way a menu is attached. (You’ll see later that it’s possible to
spawn a Frame from within an Applet, and the Frame can contain menus.)

There are four different types of MenuComponent, all derived from that abstract class:
MenuBar (you can have one MenuBar only on a particular Frame), Menu to hold one
individual drop-down menu or submenu, MenuItem to represent one single element on a
menu, and CheckboxMenuItem, which is derived from MenuItem and produces a
checkmark to indicate whether that menu item is selected.

Unlike a system that uses resources, with Java and the AWT you must hand assemble all the
menus in source code. Here are the ice cream flavors again, used to create menus:

//: Menu1.java
// Menus work only with Frames.



502 Thinking in Java  www.BruceEckel.com

// Shows submenus, checkbox menu items
// and swapping menus.
import java.awt.*;

public class Menu1 extends Frame {
  String[] flavors = { "Chocolate", "Strawberry",
    "Vanilla Fudge Swirl", "Mint Chip",
    "Mocha Almond Fudge", "Rum Raisin",
    "Praline Cream", "Mud Pie" };
  TextField t = new TextField("No flavor", 30);
  MenuBar mb1 = new MenuBar();
  Menu f = new Menu("File");
  Menu m = new Menu("Flavors");
  Menu s = new Menu("Safety");
  // Alternative approach:
  CheckboxMenuItem[] safety = {
    new CheckboxMenuItem("Guard"),
    new CheckboxMenuItem("Hide")
  };
  MenuItem[] file = {
    new MenuItem("Open"),
    new MenuItem("Exit")
  };
  // A second menu bar to swap to:
  MenuBar mb2 = new MenuBar();
  Menu fooBar = new Menu("fooBar");
  MenuItem[] other = {
    new MenuItem("Foo"),
    new MenuItem("Bar"),
    new MenuItem("Baz"),
  };
  Button b = new Button("Swap Menus");
  public Menu1() {
    for(int i = 0; i < flavors.length; i++) {
      m.add(new MenuItem(flavors[i]));
      // Add separators at intervals:
      if((i+1) % 3 == 0)
        m.addSeparator();
    }
    for(int i = 0; i < safety.length; i++)
      s.add(safety[i]);
    f.add(s);
    for(int i = 0; i < file.length; i++)
      f.add(file[i]);
    mb1.add(f);
    mb1.add(m);
    setMenuBar(mb1);
    t.setEditable(false);
    add("Center", t);
    // Set up the system for swapping menus:
    add("North", b);
    for(int i = 0; i < other.length; i++)
      fooBar.add(other[i]);
    mb2.add(fooBar);



Chapter 13: Creating Windows & Applets 503

  }
  public boolean handleEvent(Event evt) {
    if(evt.id == Event.WINDOW_DESTROY)
      System.exit(0);
    else
      return super.handleEvent(evt);
    return true;
  }
  public boolean action(Event evt, Object arg) {
    if(evt.target.equals(b)) {
      MenuBar m = getMenuBar();
      if(m == mb1) setMenuBar(mb2);
      else if (m == mb2) setMenuBar(mb1);
    }
    else if(evt.target instanceof MenuItem) {
      if(arg.equals("Open")) {
        String s = t.getText();
        boolean chosen = false;
        for(int i = 0; i < flavors.length; i++)
          if(s.equals(flavors[i])) chosen = true;
        if(!chosen)
          t.setText("Choose a flavor first!");
        else
          t.setText("Opening "+ s +". Mmm, mm!");
      }
      else if(evt.target.equals(file[1]))
        System.exit(0);
      // CheckboxMenuItems cannot use String
      // matching; you must match the target:
      else if(evt.target.equals(safety[0]))
        t.setText("Guard the Ice Cream! " +
          "Guarding is " + safety[0].getState());
      else if(evt.target.equals(safety[1]))
        t.setText("Hide the Ice Cream! " +
          "Is it cold? " + safety[1].getState());
      else
        t.setText(arg.toString());
    }
    else
      return super.action(evt, arg);
    return true;
  }
  public static void main(String[] args) {
    Menu1 f = new Menu1();
    f.resize(300,200);
    f.show();
  }
} ///:~

In this program I avoided the typical long lists of add( ) calls for each menu because that
seemed like a lot of unnecessary typing. Instead, I placed the menu items into arrays and
then simply stepped through each array calling add( ) in a for loop. This makes adding or
subtracting a menu item less tedious.



504 Thinking in Java  www.BruceEckel.com

As an alternative approach (which I find less desirable since it requires more typing), the
CheckboxMenuItems are created in an array of handles called safety; this is true for the
arrays file and other as well.

This program creates not one but two MenuBars to demonstrate that menu bars can be
actively swapped while the program is running. You can see how a MenuBar is made up of
Menus, and each Menu is made up of MenuItems, CheckboxMenuItems, or even other
Menus (which produce submenus). When a MenuBar is assembled it can be installed into
the current program with the setMenuBar( ) method. Note that when the button is pressed,
it checks to see which menu is currently installed using getMenuBar( ), then puts the other
menu bar in its place.

When testing for “Open,” notice that spelling and capitalization are critical, but Java signals
no error if there is no match with “Open.” This kind of string comparison is a clear source of
programming errors.

The checking and un-checking of the menu items is taken care of automatically, but dealing
with CheckboxMenuItems can be a bit surprising since for some reason they don’t allow
string matching. (Although string matching isn’t a good approach, this seems inconsistent.)
So you can match only the target object and not its label. As shown, the getState( ) method
can be used to reveal the state. You can also change the state of a CheckboxMenuItem with
setState( ).

You might think that one menu could reasonably reside on more than one menu bar. This
does seem to make sense because all you’re passing to the MenuBar add( ) method is a
handle. However, if you try this, the behavior will be strange and not what you expect. (It’s
difficult to know if this is a bug or if they intended it to work this way.)

This example also shows what you need to do to create an application instead of an applet.
(Again, because an application can support menus and an applet cannot directly have a
menu.) Instead of inheriting from Applet, you inherit from Frame. Instead of init( ) to set
things up, you make a constructor for your class. Finally, you create a main( ) and in that
you build an object of your new type, resize it, and then call show( ). It’s different from an
applet in only a few small places, but it’s now a standalone windowed application and
you’ve got menus.

Dialog boxes
A dialog box is a window that pops up out of another window. Its purpose is to deal with
some specific issue without cluttering the original window with those details. Dialog boxes
are heavily used in windowed programming environments, but as mentioned previously,
rarely used in applets.

To create a dialog box, you inherit from Dialog, which is just another kind of Window, like
a Frame. Unlike a Frame, a Dialog cannot have a menu bar or change the cursor, but other
than that they’re quite similar. A dialog has a layout manager (which defaults to
BorderLayout) and you override action( ) etc., or handleEvent( ) to deal with events. One
significant difference you’ll want to note in handleEvent( ): when the WINDOW_DESTROY
event occurs, you don’t want to shut down the application! Instead, you release the
resources used by the dialog’s window by calling dispose( ).

In the following example, the dialog box is made up of a grid (using GridLayout) of a special
kind of button that is defined here as class ToeButton. This button draws a frame around
itself and, depending on its state, a blank, an “x,” or an “o” in the middle. It starts out blank,
and then depending on whose turn it is, changes to an “x” or an “o.” However, it will also



Chapter 13: Creating Windows & Applets 505

flip back and forth between “x” and “o” when you click on the button. (This makes the tic-
tac-toe concept only slightly more annoying than it already is.) In addition, the dialog box
can be set up for any number of rows and columns by changing numbers in the main
application window.

//: ToeTest.java
// Demonstration of dialog boxes
// and creating your own components
import java.awt.*;

class ToeButton extends Canvas {
  int state = ToeDialog.BLANK;
  ToeDialog parent;
  ToeButton(ToeDialog parent) {
    this.parent = parent;
  }
  public void paint(Graphics  g) {
    int x1 = 0;
    int y1 = 0;
    int x2 = size().width - 1;
    int y2 = size().height - 1;
    g.drawRect(x1, y1, x2, y2);
    x1 = x2/4;
    y1 = y2/4;
    int wide = x2/2;
    int high = y2/2;
    if(state == ToeDialog.XX) {
      g.drawLine(x1, y1, x1 + wide, y1 + high);
      g.drawLine(x1, y1 + high, x1 + wide, y1);
    }
    if(state == ToeDialog.OO) {
      g.drawOval(x1, y1, x1+wide/2, y1+high/2);
    }
  }
  public boolean
  mouseDown(Event evt, int x, int y) {
    if(state == ToeDialog.BLANK) {
      state = parent.turn;
      parent.turn= (parent.turn == ToeDialog.XX ?
        ToeDialog.OO : ToeDialog.XX);
    }
    else
      state = (state == ToeDialog.XX ?
        ToeDialog.OO : ToeDialog.XX);
    repaint();
    return true;
  }
}

class ToeDialog extends Dialog {
  // w = number of cells wide
  // h = number of cells high
  static final int BLANK = 0;
  static final int XX = 1;



506 Thinking in Java  www.BruceEckel.com

  static final int OO = 2;
  int turn = XX; // Start with x's turn
  public ToeDialog(Frame parent, int w, int h) {
    super(parent, "The game itself", false);
    setLayout(new GridLayout(w, h));
    for(int i = 0; i < w * h; i++)
      add(new ToeButton(this));
    resize(w * 50, h * 50);
  }
  public boolean handleEvent(Event evt) {
    if(evt.id == Event.WINDOW_DESTROY)
      dispose();
    else
      return super.handleEvent(evt);
    return true;
  }
}

public class ToeTest extends Frame {
  TextField rows = new TextField("3");
  TextField cols = new TextField("3");
  public ToeTest() {
    setTitle("Toe Test");
    Panel p = new Panel();
    p.setLayout(new GridLayout(2,2));
    p.add(new Label("Rows", Label.CENTER));
    p.add(rows);
    p.add(new Label("Columns", Label.CENTER));
    p.add(cols);
    add("North", p);
    add("South", new Button("go"));
  }
  public boolean handleEvent(Event evt) {
    if(evt.id == Event.WINDOW_DESTROY)
      System.exit(0);
    else
      return super.handleEvent(evt);
    return true;
  }
  public boolean action(Event evt, Object arg) {
    if(arg.equals("go")) {
      Dialog d = new ToeDialog(
        this,
        Integer.parseInt(rows.getText()),
        Integer.parseInt(cols.getText()));
      d.show();
    }
    else
      return super.action(evt, arg);
    return true;
  }
  public static void main(String[] args) {
    Frame f = new ToeTest();
    f.resize(200,100);



Chapter 13: Creating Windows & Applets 507

    f.show();
  }
} ///:~

The ToeButton class keeps a handle to its parent, which must be of type ToeDialog. As
before, this introduces high coupling because a ToeButton can be used only with a
ToeDialog, but it solves a number of problems, and in truth it doesn’t seem like such a bad
solution because there’s no other kind of dialog that’s keeping track of whose turn it is. Of
course, you can take another approach, which is to make ToeDialog.turn a static member
of ToeButton. This eliminates the coupling, but prevents you from having more than one
ToeDialog at a time. (More than one that works properly, anyway.)

The paint( ) method is concerned with the graphics: drawing the square around the button
and drawing the “x” or the “o.” This is full of tedious calculations, but it’s straightforward.

A mouse click is captured by the overridden mouseDown( ) method, which first checks to
see if the button has anything written on it. If not, the parent window is queried to find out
whose turn it is and that is used to establish the state of the button. Note that the button
then reaches back into the parent and changes the turn. If the button is already displaying
an “x” or an “o” then that is flopped. You can see in these calculations the convenient use of
the ternary if-else described in Chapter 3. After a button state change, the button is
repainted.

The constructor for ToeDialog is quite simple: it adds into a GridLayout as many buttons as
you request, then resizes it for 50 pixels on a side for each button. (If you don’t resize a
Window, it won’t show up!) Note that handleEvent( ) just calls dispose( ) for a
WINDOW_DESTROY so the whole application doesn’t go away.

ToeTest sets up the whole application by creating the TextFields (for inputting the rows and
columns of the button grid) and the “go” button. You’ll see in action( ) that this program
uses the less-desirable “string match” technique for detecting the button press (make sure
you get spelling and capitalization right!). When the button is pressed, the data in the
TextFields must be fetched, and, since they are in String form, turned into ints using the
static Integer.parseInt( ) method. Once the Dialog is created, the show( ) method must be
called to display and activate it.

You’ll notice that the ToeDialog object is assigned to a Dialog handle d. This is an example
of upcasting, although it really doesn’t make much difference here since all that’s happening
is the show( ) method is called. However, if you wanted to call some method that existed
only in ToeDialog you would want to assign to a ToeDialog handle and not lose the
information in an upcast.

File dialogs
Some operating systems have a number of special built-in dialog boxes to handle the
selection of things such as fonts, colors, printers, and the like. Virtually all graphical
operating systems support the opening and saving of files, however, and so Java’s
FileDialog encapsulates these for easy use. This, of course, makes no sense at all to use from
an applet since an applet can neither read nor write files on the local disk. (This will change
for trusted applets in newer browsers.)

The following application exercises the two forms of file dialogs, one for opening and one for
saving. Most of the code should by now be familiar, and all the interesting activities happen
in action( ) for the two different button clicks:

//: FileDialogTest.java



508 Thinking in Java  www.BruceEckel.com

// Demonstration of File dialog boxes
import java.awt.*;

public class FileDialogTest extends Frame {
  TextField filename = new TextField();
  TextField directory = new TextField();
  Button open = new Button("Open");
  Button save = new Button("Save");
  public FileDialogTest() {
    setTitle("File Dialog Test");
    Panel p = new Panel();
    p.setLayout(new FlowLayout());
    p.add(open);
    p.add(save);
    add("South", p);
    directory.setEditable(false);
    filename.setEditable(false);
    p = new Panel();
    p.setLayout(new GridLayout(2,1));
    p.add(filename);
    p.add(directory);
    add("North", p);
  }
  public boolean handleEvent(Event evt) {
    if(evt.id == Event.WINDOW_DESTROY)
      System.exit(0);
    else
      return super.handleEvent(evt);
    return true;
  }
  public boolean action(Event evt, Object arg) {
    if(evt.target.equals(open)) {
      // Two arguments, defaults to open file:
      FileDialog d = new FileDialog(this,
        "What file do you want to open?");
      d.setFile("*.java"); // Filename filter
      d.setDirectory("."); // Current directory
      d.show();
      String openFile;
      if((openFile = d.getFile()) != null) {
        filename.setText(openFile);
        directory.setText(d.getDirectory());
      } else {
        filename.setText("You pressed cancel");
        directory.setText("");
      }
    }
    else if(evt.target.equals(save)) {
      FileDialog d = new FileDialog(this,
        "What file do you want to save?",
        FileDialog.SAVE);
      d.setFile("*.java");
      d.setDirectory(".");
      d.show();



Chapter 13: Creating Windows & Applets 509

      String saveFile;
      if((saveFile = d.getFile()) != null) {
        filename.setText(saveFile);
        directory.setText(d.getDirectory());
      } else {
        filename.setText("You pressed cancel");
        directory.setText("");
      }
    }
    else
      return super.action(evt, arg);
    return true;
  }
  public static void main(String[] args) {
    Frame f = new FileDialogTest();
    f.resize(250,110);
    f.show();
  }
} ///:~

For an “open file” dialog, you use the constructor that takes two arguments; the first is the
parent window handle and the second is the title for the title bar of the FileDialog. The
method setFile( ) provides an initial file name – presumably the native OS supports
wildcards, so in this example all the .java files will initially be displayed. The setDirectory( )
method chooses the directory where the file selection will begin. (In general, the OS allows
the user to change directories.)

The show( ) command doesn’t return until the dialog is closed. The FileDialog object still
exists, so you can read data from it. If you call getFile( ) and it returns null it means the
user canceled out of the dialog. Both the file name and the results of getDirectory( ) are
displayed in the TextFields.

The button for saving works the same way, except that it uses a different constructor for the
FileDialog. This constructor takes three arguments and the third argument must be either
FileDialog.SAVE or FileDialog.OPEN.

The new AWT
In Java 1.1 a dramatic change has been accomplished in the creation of the new AWT. Most
of this change revolves around the new event model used in Java 1.1: as bad, awkward, and
non-object-oriented as the old event model was, the new event model is possibly the most
elegant I have seen. It’s difficult to understand how such a bad design (the old AWT) and
such a good one (the new event model) could come out of the same group. This new way of
thinking about events seems to drop so easily into your mind that the issue no longer
becomes an impediment; instead, it’s a tool that helps you design the system. It’s also
essential for Java Beans, described later in the chapter.

Instead of the non-object-oriented cascaded if statements in the old AWT, the new approach
designates objects as “sources” and “listeners” of events. As you will see, the use of inner
classes is integral to the object-oriented nature of the new event model. In addition, events
are now represented in a class hierarchy instead of a single class, and you can create your
own event types.



510 Thinking in Java  www.BruceEckel.com

You’ll also find, if you’ve programmed with the old AWT, that Java 1.1 has made a number
of what might seem like gratuitous name changes. For example, setSize( ) replaces resize( ).
This will make sense when you learn about Java Beans, because Beans use a particular
naming convention. The names had to be modified to make the standard AWT components
into Beans.

Java 1.1 continues to support the old AWT to ensure backward compatibility with existing
programs. Without fully admitting disaster, the online documents for Java 1.1 list all the
problems involved with programming the old AWT and describe how those problems are
addressed in the new AWT.

Clipboard operations are supported in 1.1, although drag-and-drop “will be supported in a
future release.” You can access the desktop color scheme so your Java program can fit in
with the rest of the desktop. Pop-up menus are available, and there are some improvements
for graphics and images. Mouseless operation is supported. There is a simple API for printing
and simplified support for scrolling.

The new event model
In the new event model a component can initiate (“fire”) an event. Each type of event is
represented by a distinct class. When an event is fired, it is received by one or more
“listeners,” which act on that event. Thus, the source of an event and the place where the
event is handled can be separate.

Each event listener is an object of a class that implements a particular type of listener
interface. So as a programmer, all you do is create a listener object and register it with the
component that’s firing the event. This registration is performed by calling a
addXXXListener( ) method in the event-firing component, in which XXX represents the type
of event listened for. You can easily know what types of events can be handled by noticing
the names of the addListener methods, and if you try to listen for the wrong events you’ll
find out your mistake at compile time. Java Beans also uses the names of the addListener
methods to determine what a Bean can do.

All of your event logic, then, will go inside a listener class. When you create a listener class,
the sole restriction is that it must implement the appropriate interface. You can create a
global listener class, but this is a situation in which inner classes tend to be quite useful, not
only because they provide a logical grouping of your listener classes inside the UI or business
logic classes they are serving, but because (as you shall see later) the fact that an inner class
object keeps a handle to its parent object provides a nice way to call across class and
subsystem boundaries.

A simple example will make this clear. Consider the Button2.java example from earlier in
this chapter.

//: Button2New.java
// Capturing button presses
import java.awt.*;
import java.awt.event.*; // Must add this
import java.applet.*;

public class Button2New extends Applet {
  Button
    b1 = new Button("Button 1"),
    b2 = new Button("Button 2");



Chapter 13: Creating Windows & Applets 511

  public void init() {
    b1.addActionListener(new B1());
    b2.addActionListener(new B2());
    add(b1);
    add(b2);
  }
  class B1 implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      getAppletContext().showStatus("Button 1");
    }
  }
  class B2 implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      getAppletContext().showStatus("Button 2");
    }
  }
  /* The old way:
  public boolean action(Event evt, Object arg) {
    if(evt.target.equals(b1))
      getAppletContext().showStatus("Button 1");
    else if(evt.target.equals(b2))
      getAppletContext().showStatus("Button 2");
    // Let the base class handle it:
    else
      return super.action(evt, arg);
    return true; // We've handled it here
  }
  */
} ///:~

So you can compare the two approaches, the old code is left in as a comment. In init( ), the
only change is the addition of the two lines:

b1.addActionListener(new B1());
b2.addActionListener(new B2());

addActionListener( ) tells a button which object to activate when the button is pressed. The
classes B1 and B2 are inner classes that implement the interface ActionListener. This
interface contains a single method actionPerformed( ) (meaning “This is the action that will
be performed when the event is fired”). Note that actionPerformed( ) does not take a
generic event, but rather a specific type of event, ActionEvent. So you don’t need to bother
testing and downcasting the argument if you want to extract specific ActionEvent
information.

One of the nicest things about actionPerformed( ) is how simple it is. It’s just a method that
gets called. Compare it to the old action( ) method, in which you must figure out what
happened and act appropriately, and also worry about calling the base class version of
action( ) and return a value to indicate whether it’s been handled. With the new event model
you know that all the event-detection logic is taken care of so you don’t have to figure that
out; you just say what happens and you’re done. If you’re don’t already prefer this
approach over the old one, you will soon.



512 Thinking in Java  www.BruceEckel.com

Event and listener types
All the AWT components have been changed to include addXXXListener( ) and
removeXXXListener( ) methods so that the appropriate types of listeners can be added and
removed from each component. You’ll notice that the “XXX” in each case also represents the
argument for the method, for example, addFooListener(FooListener fl). The following table
includes the associated events, listeners, methods, and the components that support those
particular events by providing the addXXXListener( ) and removeXXXListener( ) methods.

Event, listener interface and add-
and remove-methods

Components supporting this event

ActionEvent
ActionListener
addActionListener( )
removeActionListener( )

Button, List, TextField,
MenuItem, and its derivatives
including CheckboxMenuItem,
Menu, and PopupMenu

AdjustmentEvent
AdjustmentListener
addAdjustmentListener( )
removeAdjustmentListener( )

Scrollbar
Anything you create that
implements the Adjustable
interface

ComponentEvent
ComponentListener
addComponentListener( )
removeComponentListener( )

Component and its derivatives,
including Button, Canvas,
Checkbox, Choice, Container,
Panel, Applet, ScrollPane,
Window, Dialog, FileDialog,
Frame, Label, List, Scrollbar,
TextArea, and TextField

ContainerEvent
ContainerListener
addContainerListener( )
removeContainerListener( )

Container and its derivatives,
including Panel, Applet,
ScrollPane, Window, Dialog,
FileDialog, and Frame

FocusEvent
FocusListener
addFocusListener( )
removeFocusListener( )

Component and its derivatives,
including Button, Canvas,
Checkbox, Choice, Container,
Panel, Applet, ScrollPane,
Window, Dialog, FileDialog,
Frame Label, List, Scrollbar,
TextArea, and TextField

KeyEvent
KeyListener
addKeyListener( )
removeKeyListener( )

Component and its derivatives,
including Button, Canvas,
Checkbox, Choice, Container,
Panel, Applet, ScrollPane,
Window, Dialog, FileDialog,
Frame, Label, List, Scrollbar,
TextArea, and TextField

MouseEvent (for both clicks and
motion)
MouseListener
addMouseListener( )
removeMouseListener( )

Component and its derivatives,
including Button, Canvas,
Checkbox, Choice, Container,
Panel, Applet, ScrollPane,
Window, Dialog, FileDialog,
Frame, Label, List, Scrollbar,
TextArea, and TextField



Chapter 13: Creating Windows & Applets 513

Event, listener interface and add-
and remove-methods

Components supporting this event

MouseEvent5 (for both clicks
and motion)
MouseMotionListener
addMouseMotionListener( )
removeMouseMotionListener( )

Component and its derivatives,
including Button, Canvas,
Checkbox, Choice, Container,
Panel, Applet, ScrollPane,
Window, Dialog, FileDialog,
Frame, Label, List, Scrollbar,
TextArea, and TextField

WindowEvent
WindowListener
addWindowListener( )
removeWindowListener( )

Window and its derivatives,
including Dialog, FileDialog, and
Frame

ItemEvent
ItemListener
addItemListener( )
removeItemListener( )

Checkbox, CheckboxMenuItem,
Choice, List, and anything that
implements the ItemSelectable
interface

TextEvent
TextListener
addTextListener( )
removeTextListener( )

Anything derived from
TextComponent, including
TextArea and TextField

You can see that each type of component supports only certain types of events. It’s helpful to
see the events supported by each component, as shown in the following table:

Component type Events supported by this component
Adjustable AdjustmentEvent
Applet ContainerEvent, FocusEvent,

KeyEvent, MouseEvent,
ComponentEvent

Button ActionEvent, FocusEvent, KeyEvent,
MouseEvent, ComponentEvent

Canvas FocusEvent, KeyEvent, MouseEvent,
ComponentEvent

Checkbox ItemEvent, FocusEvent, KeyEvent,
MouseEvent, ComponentEvent

CheckboxMenuItem ActionEvent, ItemEvent
Choice ItemEvent, FocusEvent, KeyEvent,

MouseEvent, ComponentEvent
Component FocusEvent, KeyEvent, MouseEvent,

ComponentEvent
Container ContainerEvent, FocusEvent,

KeyEvent, MouseEvent,
ComponentEvent

Dialog ContainerEvent, WindowEvent,
FocusEvent, KeyEvent, MouseEvent,
ComponentEvent

FileDialog ContainerEvent, WindowEvent,

                                                

5 There is no MouseMotionEvent even though it seems like there ought to be. Clicking and motion is
combined into MouseEvent, so this second appearance of MouseEvent in the table is not an error.



514 Thinking in Java  www.BruceEckel.com

Component type Events supported by this component
FocusEvent, KeyEvent, MouseEvent,
ComponentEvent

Frame ContainerEvent, WindowEvent,
FocusEvent, KeyEvent, MouseEvent,
ComponentEvent

Label FocusEvent, KeyEvent, MouseEvent,
ComponentEvent

List ActionEvent, FocusEvent, KeyEvent,
MouseEvent, ItemEvent,
ComponentEvent

Menu ActionEvent
MenuItem ActionEvent
Panel ContainerEvent, FocusEvent,

KeyEvent, MouseEvent,
ComponentEvent

PopupMenu ActionEvent
Scrollbar AdjustmentEvent, FocusEvent,

KeyEvent, MouseEvent,
ComponentEvent

ScrollPane ContainerEvent, FocusEvent,
KeyEvent, MouseEvent,
ComponentEvent

TextArea TextEvent, FocusEvent, KeyEvent,
MouseEvent, ComponentEvent

TextComponent TextEvent, FocusEvent, KeyEvent,
MouseEvent, ComponentEvent

TextField ActionEvent, TextEvent, FocusEvent,
KeyEvent, MouseEvent,
ComponentEvent

Window ContainerEvent, WindowEvent,
FocusEvent, KeyEvent, MouseEvent,
ComponentEvent

Once you know which events a particular component supports, you don’t need to look
anything up to react to that event. You simply:

1. Take the name of the event class and remove the word “Event.” Add the word “Listener”
to what remains. This is the listener interface you need to implement in your inner class.

2. Implement the interface above and write out the methods for the events you want to
capture. For example, you might be looking for mouse movements, so you write code for
the mouseMoved( ) method of the MouseMotionListener interface. (You must
implement the other methods, of course, but there’s a shortcut for that which you’ll see
soon.)

3. Create an object of the listener class in step 2. Register it with your component with the
method produced by prefixing “add” to your listener name. For example,
addMouseMotionListener( ).

To finish what you need to know, here are the listener interfaces:



Chapter 13: Creating Windows & Applets 515

Listener interface
w/ adapter

Methods in interface

ActionListener actionPerformed(ActionEvent)
AdjustmentListener adjustmentValueChanged(

  AdjustmentEvent)
ComponentListener
ComponentAdapter

componentHidden(ComponentEvent)
componentShown(ComponentEvent)
componentMoved(ComponentEvent)
componentResized(ComponentEvent)

ContainerListener
ContainerAdapter

componentAdded(ContainerEvent)
componentRemoved(ContainerEvent)

FocusListener
FocusAdapter

focusGained(FocusEvent)
focusLost(FocusEvent)

KeyListener
KeyAdapter

keyPressed(KeyEvent)
keyReleased(KeyEvent)
keyTyped(KeyEvent)

MouseListener
MouseAdapter

mouseClicked(MouseEvent)
mouseEntered(MouseEvent)
mouseExited(MouseEvent)
mousePressed(MouseEvent)
mouseReleased(MouseEvent)

MouseMotionListener
MouseMotionAdapter

mouseDragged(MouseEvent)
mouseMoved(MouseEvent)

WindowListener
WindowAdapter

windowOpened(WindowEvent)
windowClosing(WindowEvent)
windowClosed(WindowEvent)
windowActivated(WindowEvent)
windowDeactivated(WindowEvent)
windowIconified(WindowEvent)
windowDeiconified(WindowEvent)

ItemListener itemStateChanged(ItemEvent)
TextListener textValueChanged(TextEvent)

Using listener adapters for simplicity
In the table above, you can see that some listener interfaces have only one method. These are
trivial to implement since you’ll implement them only when you want to write that
particular method. However, the listener interfaces that have multiple methods could be less
pleasant to use. For example, something you must always do when creating an application is
provide a WindowListener to the Frame so that when you get the windowClosing( ) event
you can call System.exit(0) to exit the application. But since WindowListener is an
interface, you must implement all of the other methods even if they don’t do anything. This
can be annoying.

To solve the problem, each of the listener interfaces that have more than one method are
provided with adapters, the names of which you can see in the table above. Each adapter
provides default methods for each of the interface methods. (Alas, WindowAdapter does not
have a default windowClosing( ) that calls System.exit(0).) Then all you need to do is
inherit from the adapter and override only the methods you need to change. For example,
the typical WindowListener you’ll use looks like this:

class MyWindowListener extends WindowAdapter {
  public void windowClosing(WindowEvent e) {



516 Thinking in Java  www.BruceEckel.com

    System.exit(0);
  }
}

The whole point of the adapters is to make the creation of listener classes easy.

There is a downside to adapters, however, in the form of a pitfall. Suppose you write a
WindowAdapter like the one above:

class MyWindowListener extends WindowAdapter {
  public void WindowClosing(WindowEvent e) {
    System.exit(0);
  }
}

This doesn’t work, but it will drive you crazy trying to figure out why, since everything will
compile and run fine – except that closing the window won’t exit the program. Can you see
the problem? It’s in the name of the method: WindowClosing( ) instead of
windowClosing( ). A simple slip in capitalization results in the addition of a completely new
method. However, this is not the method that’s called when the window is closing, so you
don’t get the desired results.

Making windows and applets
with the Java 1.1 AWT

Often you’ll want to be able to create a class that can be invoked as either a window or an
applet. To accomplish this, you simply add a main( ) to your applet that builds an instance
of the applet inside a Frame. As a simple example, let’s look at Button2New.java modified
to work as both an application and an applet:

//: Button2NewB.java
// An application and an applet
import java.awt.*;
import java.awt.event.*; // Must add this
import java.applet.*;

public class Button2NewB extends Applet {
  Button
    b1 = new Button("Button 1"),
    b2 = new Button("Button 2");
  TextField t = new TextField(20);
  public void init() {
    b1.addActionListener(new B1());
    b2.addActionListener(new B2());
    add(b1);
    add(b2);
    add(t);
  }
  class B1 implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      t.setText("Button 1");
    }
  }



Chapter 13: Creating Windows & Applets 517

  class B2 implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      t.setText("Button 2");
    }
  }
  // To close the application:
  static class WL extends WindowAdapter {
    public void windowClosing(WindowEvent e) {
      System.exit(0);
    }
  }
  // A main() for the application:
  public static void main(String[] args) {
    Button2NewB applet = new Button2NewB();
    Frame aFrame = new Frame("Button2NewB");
    aFrame.addWindowListener(new WL());
    aFrame.add(applet, BorderLayout.CENTER);
    aFrame.setSize(300,200);
    applet.init();
    applet.start();
    aFrame.setVisible(true);
  }
} ///:~

The inner class WL and the main( ) are the only two elements added to the applet, and the
rest of the applet is untouched. In fact, you can usually copy and paste the WL class and
main( ) into your own applets with little modification. The WL class is static so it can be
easily created in main( ). (Remember that an inner class normally needs an outer class
handle when it’s created. Making it static eliminates this need.) You can see that in main( ),
the applet is explicitly initialized and started since in this case the browser isn’t available to
do it for you. Of course, this doesn’t provide the full behavior of the browser, which also
calls stop( ) and destroy( ), but for most situations it’s acceptable. If it’s a problem, you can:

1. Make the handle applet a static member of the class (instead of a local variable of
main( )), and then:

2. Call applet.stop( ) and applet.destroy( ) inside WindowAdapter.windowClosing( )
before you call System.exit( ).

Notice the last line:

aFrame.setVisible(true);

This is one of the changes in the Java 1.1 AWT. The show( ) method is deprecated and
setVisible(true) replaces it. These sorts of seemingly capricious changes will make more
sense when you learn about Java Beans later in the chapter.

This example is also modified to use a TextField rather than printing to the console or to the
browser status line. One restriction in making a program that’s both an applet and an
application is that you must choose input and output forms that work for both situations.

There’s another small new feature of the Java 1.1 AWT shown here. You no longer need to
use the error-prone approach of specifying BorderLayout positions using a String. When
adding an element to a BorderLayout in Java 1.1, you can say:

aFrame.add(applet, BorderLayout.CENTER);



518 Thinking in Java  www.BruceEckel.com

You name the location with one of the BorderLayout constants, which can then be checked
at compile-time (rather than just quietly doing the wrong thing, as with the old form). This
is a definite improvement, and will be used throughout the rest of the book.

Making the window listener
an anonymous class
Any of the listener classes could be implemented as anonymous classes, but there’s always a
chance that you might want to use their functionality elsewhere. However, the window
listener is used here only to close the application’s window so you can safely make it an
anonymous class. Then, in main( ), the line:

aFrame.addWindowListener(new WL());

will become:

aFrame.addWindowListener(
  new WindowAdapter() {
    public void windowClosing(WindowEvent e) {
      System.exit(0);
    }
  });

This has the advantage that it doesn’t require yet another class name. You must decide for
yourself whether it makes the code easier to understand or more difficult. However, for the
remainder of the book an anonymous inner class will usually be used for the window
listener.

Packaging the applet into a JAR file
An important JAR use is to optimize applet loading. In Java 1.0, people tended to try to
cram all their code into a single Applet class so the client would need only a single server hit
to download the applet code. Not only did this result in messy, hard to read (and maintain)
programs, but the .class file was still uncompressed so downloading wasn’t as fast as it
could have been.

JAR files change all of that by compressing all of your .class files into a single file that is
downloaded by the browser. Now you don’t need to create an ugly design to minimize the
number of classes you create, and the user will get a much faster download time.

Consider the example above. It looks like Button2NewB is a single class, but in fact it
contains three inner classes, so that’s four in all. Once you’ve compiled the program, you
package it into a JAR file with the line:

jar cf Button2NewB.jar *.class

This assumes that the only .class files in the current directory are the ones from
Button2NewB.java (otherwise you’ll get extra baggage).

Now you can create an HTML page with the new archive tag to indicate the name of the
JAR file, like this:

<head><title>Button2NewB Example Applet
</title></head>
<body>



Chapter 13: Creating Windows & Applets 519

<applet code="Button2NewB.class"
        archive="Button2NewB.jar"
        width=200 height=150>
</applet>
</body>

Everything else about applet tags in HTML files remains the same.

Revisiting the earlier examples
To see a number of examples using the new event model and to study the way a program
can be converted from the old to the new event model, the following examples revisit many
of the issues demonstrated in the first part of this chapter using the old event model. In
addition, each program is now both an applet and an application so you can run it with or
without a browser.

Text fields
This is similar to TextField1.java, but it adds significant extra behavior:

//: TextNew.java
// Text fields with Java 1.1 events
import java.awt.*;
import java.awt.event.*;
import java.applet.*;

public class TextNew extends Applet {
  Button
    b1 = new Button("Get Text"),
    b2 = new Button("Set Text");
  TextField
    t1 = new TextField(30),
    t2 = new TextField(30),
    t3 = new TextField(30);
  String s = new String();
  public void init() {
    b1.addActionListener(new B1());
    b2.addActionListener(new B2());
    t1.addTextListener(new T1());
    t1.addActionListener(new T1A());
    t1.addKeyListener(new T1K());
    add(b1);
    add(b2);
    add(t1);
    add(t2);
    add(t3);
  }
  class T1 implements TextListener {
    public void textValueChanged(TextEvent e) {
      t2.setText(t1.getText());
    }
  }
  class T1A implements ActionListener {
    private int count = 0;



520 Thinking in Java  www.BruceEckel.com

    public void actionPerformed(ActionEvent e) {
      t3.setText("t1 Action Event " + count++);
    }
  }
  class T1K extends KeyAdapter {
    public void keyTyped(KeyEvent e) {
      String ts = t1.getText();
      if(e.getKeyChar() ==
          KeyEvent.VK_BACK_SPACE) {
        // Ensure it's not empty:
        if( ts.length() > 0) {
          ts = ts.substring(0, ts.length() - 1);
          t1.setText(ts);
        }
      }
      else
        t1.setText(
          t1.getText() +
            Character.toUpperCase(
              e.getKeyChar()));
      t1.setCaretPosition(
        t1.getText().length());
      // Stop regular character from appearing:
      e.consume();
    }
  }
  class B1 implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      s = t1.getSelectedText();
      if(s.length() == 0) s = t1.getText();
      t1.setEditable(true);
    }
  }
  class B2 implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      t1.setText("Inserted by Button 2: " + s);
      t1.setEditable(false);
    }
  }
  public static void main(String[] args) {
    TextNew applet = new TextNew();
    Frame aFrame = new Frame("TextNew");
    aFrame.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e) {
          System.exit(0);
        }
      });
    aFrame.add(applet, BorderLayout.CENTER);
    aFrame.setSize(300,200);
    applet.init();
    applet.start();
    aFrame.setVisible(true);
  }



Chapter 13: Creating Windows & Applets 521

} ///:~

The TextField t3 is included as a place to report when the action listener for the TextField t1
is fired. You’ll see that the action listener for a TextField is fired only when you press the
“enter” key.

The TextField t1 has several listeners attached to it. The T1 listener copies all text from t1
into t2 and the T1K listener forces all characters to upper case. You’ll notice that the two
work together, and if you add the T1K listener after you add the T1 listener, it doesn’t
matter: all characters will still be forced to upper case in both text fields. It would seem that
keyboard events are always fired before TextComponent events, and if you want the
characters in t2 to retain the original case that was typed in, you must do some extra work.

T1K has some other activities of interest. You must detect a backspace (since you’re
controlling everything now) and perform the deletion. The caret must be explicitly set to the
end of the field; otherwise it won’t behave as you expect. Finally, to prevent the original
character from being handled by the default mechanism, the event must be “consumed”
using the consume( ) method that exists for event objects. This tells the system to stop firing
the rest of the event handlers for this particular event.

This example also quietly demonstrates one of the benefits of the design of inner classes.
Note that in the inner class:

  class T1 implements TextListener {
    public void textValueChanged(TextEvent e) {
      t2.setText(t1.getText());
    }
  }

t1 and t2 are not members of T1, and yet they’re accessible without any special
qualification. This is because an object of an inner class automatically captures a handle to
the outer object that created it, so you can treat members and methods of the enclosing class
object as if they’re yours. As you can see, this is quite convenient.6

Text areas
The most significant change to text areas in Java 1.1 concerns scroll bars. With the TextArea
constructor, you can now control whether a TextArea will have scroll bars: vertical,
horizontal, both, or neither. This example modifies the earlier Java 1.0 TextArea1.java to
show the Java 1.1 scrollbar constructors:

//: TextAreaNew.java
// Controlling scrollbars with the TextArea
// component in Java 1.1
import java.awt.*;
import java.awt.event.*;
import java.applet.*;

public class TextAreaNew extends Applet {
  Button b1 = new Button("Text Area 1");
  Button b2 = new Button("Text Area 2");

                                                

6 It also solves the problem of “callbacks” without adding any awkward “method pointer” feature to
Java.



522 Thinking in Java  www.BruceEckel.com

  Button b3 = new Button("Replace Text");
  Button b4 = new Button("Insert Text");
  TextArea t1 = new TextArea("t1", 1, 30);
  TextArea t2 = new TextArea("t2", 4, 30);
  TextArea t3 = new TextArea("t3", 1, 30,
    TextArea.SCROLLBARS_NONE);
  TextArea t4 = new TextArea("t4", 10, 10,
    TextArea.SCROLLBARS_VERTICAL_ONLY);
  TextArea t5 = new TextArea("t5", 4, 30,
    TextArea.SCROLLBARS_HORIZONTAL_ONLY);
  TextArea t6 = new TextArea("t6", 10, 10,
    TextArea.SCROLLBARS_BOTH);
  public void init() {
    b1.addActionListener(new B1L());
    add(b1);
    add(t1);
    b2.addActionListener(new B2L());
    add(b2);
    add(t2);
    b3.addActionListener(new B3L());
    add(b3);
    b4.addActionListener(new B4L());
    add(b4);
    add(t3); add(t4); add(t5); add(t6);
  }
  class B1L implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      t5.append(t1.getText() + "\n");
    }
  }
  class B2L implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      t2.setText("Inserted by Button 2");
      t2.append(": " + t1.getText());
      t5.append(t2.getText() + "\n");
    }
  }
  class B3L implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      String s = " Replacement ";
      t2.replaceRange(s, 3, 3 + s.length());
    }
  }
  class B4L implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      t2.insert(" Inserted ", 10);
    }
  }
  public static void main(String[] args) {
    TextAreaNew applet = new TextAreaNew();
    Frame aFrame = new Frame("TextAreaNew");
    aFrame.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e) {



Chapter 13: Creating Windows & Applets 523

          System.exit(0);
        }
      });
    aFrame.add(applet, BorderLayout.CENTER);
    aFrame.setSize(300,725);
    applet.init();
    applet.start();
    aFrame.setVisible(true);
  }
} ///:~

You’ll notice that you can control the scrollbars only at the time of construction of the
TextArea. Also, even if a TextArea doesn’t have a scrollbar, you can move the cursor such
that scrolling will be forced. (You can see this behavior by playing with the example.)

Check boxes and radio buttons
As noted previously, check boxes and radio buttons are both created with the same class,
Checkbox, but radio buttons are Checkboxes placed into a CheckboxGroup. In either case,
the interesting event is ItemEvent, for which you create an ItemListener.

When dealing with a group of check boxes or radio buttons, you have a choice. You can
either create a new inner class to handle the event for each different Checkbox or you can
create one inner class that determines which Checkbox was clicked and register a single
object of that inner class with each Checkbox object. The following example shows both
approaches:

//: RadioCheckNew.java
// Radio buttons and Check Boxes in Java 1.1
import java.awt.*;
import java.awt.event.*;
import java.applet.*;

public class RadioCheckNew extends Applet {
  TextField t = new TextField(30);
  Checkbox[] cb = {
    new Checkbox("Check Box 1"),
    new Checkbox("Check Box 2"),
    new Checkbox("Check Box 3") };
  CheckboxGroup g = new CheckboxGroup();
  Checkbox
    cb4 = new Checkbox("four", g, false),
    cb5 = new Checkbox("five", g, true),
    cb6 = new Checkbox("six", g, false);
  public void init() {
    t.setEditable(false);
    add(t);
    ILCheck il = new ILCheck();
    for(int i = 0; i < cb.length; i++) {
      cb[i].addItemListener(il);
      add(cb[i]);
    }
    cb4.addItemListener(new IL4());
    cb5.addItemListener(new IL5());



524 Thinking in Java  www.BruceEckel.com

    cb6.addItemListener(new IL6());
    add(cb4); add(cb5); add(cb6);
  }
  // Checking the source:
  class ILCheck implements ItemListener {
    public void itemStateChanged(ItemEvent e) {
      for(int i = 0; i < cb.length; i++) {
        if(e.getSource().equals(cb[i])) {
          t.setText("Check box " + (i + 1));
          return;
        }
      }
    }
  }
  // vs. an individual class for each item:
  class IL4 implements ItemListener {
    public void itemStateChanged(ItemEvent e) {
      t.setText("Radio button four");
    }
  }
  class IL5 implements ItemListener {
    public void itemStateChanged(ItemEvent e) {
      t.setText("Radio button five");
    }
  }
  class IL6 implements ItemListener {
    public void itemStateChanged(ItemEvent e) {
      t.setText("Radio button six");
    }
  }
  public static void main(String[] args) {
    RadioCheckNew applet = new RadioCheckNew();
    Frame aFrame = new Frame("RadioCheckNew");
    aFrame.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e) {
          System.exit(0);
        }
      });
    aFrame.add(applet, BorderLayout.CENTER);
    aFrame.setSize(300,200);
    applet.init();
    applet.start();
    aFrame.setVisible(true);
  }
} ///:~

ILCheck has the advantage that it automatically adapts when you add or subtract
Checkboxes. Of course, you can use this with radio buttons as well. It should be used,
however, only when your logic is general enough to support this approach. Otherwise you’ll
end up with a cascaded if statement, a sure sign that you should revert to using independent
listener classes.



Chapter 13: Creating Windows & Applets 525

Drop-down lists
Drop-down lists (Choice) in Java 1.1 also use ItemListeners to notify you when a choice
has changed:

//: ChoiceNew.java
// Drop-down lists with Java 1.1
import java.awt.*;
import java.awt.event.*;
import java.applet.*;

public class ChoiceNew extends Applet {
  String[] description = { "Ebullient", "Obtuse",
    "Recalcitrant", "Brilliant", "Somnescent",
    "Timorous", "Florid", "Putrescent" };
  TextField t = new TextField(100);
  Choice c = new Choice();
  Button b = new Button("Add items");
  int count = 0;
  public void init() {
    t.setEditable(false);
    for(int i = 0; i < 4; i++)
      c.addItem(description[count++]);
    add(t);
    add(c);
    add(b);
    c.addItemListener(new CL());
    b.addActionListener(new BL());
  }
  class CL implements ItemListener {
    public void itemStateChanged(ItemEvent e) {
      t.setText("index: " +  c.getSelectedIndex()
        + "   " + e.toString());
    }
  }
  class BL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      if(count < description.length)
        c.addItem(description[count++]);
    }
  }
  public static void main(String[] args) {
    ChoiceNew applet = new ChoiceNew();
    Frame aFrame = new Frame("ChoiceNew");
    aFrame.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e) {
          System.exit(0);
        }
      });
    aFrame.add(applet, BorderLayout.CENTER);
    aFrame.setSize(750,100);
    applet.init();
    applet.start();



526 Thinking in Java  www.BruceEckel.com

    aFrame.setVisible(true);
  }
} ///:~

Nothing else here is particularly new (except that Java 1.1 has significantly fewer bugs in
the UI classes).

Lists
You’ll recall that one of the problems with the Java 1.0 List design is that it took extra work
to make it do what you’d expect: react to a single click on one of the list elements. Java 1.1
has solved this problem:

//: ListNew.java
// Java 1.1 Lists are easier to use
import java.awt.*;
import java.awt.event.*;
import java.applet.*;

public class ListNew extends Applet {
  String[] flavors = { "Chocolate", "Strawberry",
    "Vanilla Fudge Swirl", "Mint Chip",
    "Mocha Almond Fudge", "Rum Raisin",
    "Praline Cream", "Mud Pie" };
  // Show 6 items, allow multiple selection:
  List lst = new List(6, true);
  TextArea t = new TextArea(flavors.length, 30);
  Button b = new Button("test");
  int count = 0;
  public void init() {
    t.setEditable(false);
    for(int i = 0; i < 4; i++)
      lst.addItem(flavors[count++]);
    add(t);
    add(lst);
    add(b);
    lst.addItemListener(new LL());
    b.addActionListener(new BL());
  }
  class LL implements ItemListener {
    public void itemStateChanged(ItemEvent e) {
      t.setText("");
      String[] items = lst.getSelectedItems();
      for(int i = 0; i < items.length; i++)
        t.append(items[i] + "\n");
    }
  }
  class BL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      if(count < flavors.length)
        lst.addItem(flavors[count++], 0);
    }
  }
  public static void main(String[] args) {



Chapter 13: Creating Windows & Applets 527

    ListNew applet = new ListNew();
    Frame aFrame = new Frame("ListNew");
    aFrame.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e) {
          System.exit(0);
        }
      });
    aFrame.add(applet, BorderLayout.CENTER);
    aFrame.setSize(300,200);
    applet.init();
    applet.start();
    aFrame.setVisible(true);
  }
} ///:~

You can see that no extra logic is required to support a single click on a list item. You just
attach a listener like you do everywhere else.

Menus
The event handling for menus does seem to benefit from the Java 1.1 event model, but
Java’s approach to menus is still messy and requires a lot of hand coding. The right medium
for a menu seems to be a resource rather than a lot of code. Keep in mind that program-
building tools will generally handle the creation of menus for you, so that will reduce the
pain somewhat (as long as they will also handle the maintenance!).

In addition, you’ll find the events for menus are inconsistent and can lead to confusion:
MenuItems use ActionListeners, but CheckboxMenuItems use ItemListeners. The Menu
objects can also support ActionListeners, but that’s not usually helpful. In general, you’ll
attach listeners to each MenuItem or CheckboxMenuItem, but the following example
(revised from the earlier version) also shows ways to combine the capture of multiple menu
components into a single listener class. As you’ll see, it’s probably not worth the hassle to do
this.

//: MenuNew.java
// Menus in Java 1.1
import java.awt.*;
import java.awt.event.*;

public class MenuNew extends Frame {
  String[] flavors = { "Chocolate", "Strawberry",
    "Vanilla Fudge Swirl", "Mint Chip",
    "Mocha Almond Fudge", "Rum Raisin",
    "Praline Cream", "Mud Pie" };
  TextField t = new TextField("No flavor", 30);
  MenuBar mb1 = new MenuBar();
  Menu f = new Menu("File");
  Menu m = new Menu("Flavors");
  Menu s = new Menu("Safety");
  // Alternative approach:
  CheckboxMenuItem[] safety = {
    new CheckboxMenuItem("Guard"),
    new CheckboxMenuItem("Hide")



528 Thinking in Java  www.BruceEckel.com

  };
  MenuItem[] file = {
    // No menu shortcut:
    new MenuItem("Open"),
    // Adding a menu shortcut is very simple:
    new MenuItem("Exit",
      new MenuShortcut(KeyEvent.VK_E))
  };
  // A second menu bar to swap to:
  MenuBar mb2 = new MenuBar();
  Menu fooBar = new Menu("fooBar");
  MenuItem[] other = {
    new MenuItem("Foo"),
    new MenuItem("Bar"),
    new MenuItem("Baz"),
  };
  // Initialization code:
  {
    ML ml = new ML();
    CMIL cmil = new CMIL();
    safety[0].setActionCommand("Guard");
    safety[0].addItemListener(cmil);
    safety[1].setActionCommand("Hide");
    safety[1].addItemListener(cmil);
    file[0].setActionCommand("Open");
    file[0].addActionListener(ml);
    file[1].setActionCommand("Exit");
    file[1].addActionListener(ml);
    other[0].addActionListener(new FooL());
    other[1].addActionListener(new BarL());
    other[2].addActionListener(new BazL());
  }
  Button b = new Button("Swap Menus");
  public MenuNew() {
    FL fl = new FL();
    for(int i = 0; i < flavors.length; i++) {
      MenuItem mi = new MenuItem(flavors[i]);
      mi.addActionListener(fl);
      m.add(mi);
      // Add separators at intervals:
      if((i+1) % 3 == 0)
        m.addSeparator();
    }
    for(int i = 0; i < safety.length; i++)
      s.add(safety[i]);
    f.add(s);
    for(int i = 0; i < file.length; i++)
      f.add(file[i]);
    mb1.add(f);
    mb1.add(m);
    setMenuBar(mb1);
    t.setEditable(false);
    add(t, BorderLayout.CENTER);
    // Set up the system for swapping menus:



Chapter 13: Creating Windows & Applets 529

    b.addActionListener(new BL());
    add(b, BorderLayout.NORTH);
    for(int i = 0; i < other.length; i++)
      fooBar.add(other[i]);
    mb2.add(fooBar);
  }
  class BL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      MenuBar m = getMenuBar();
      if(m == mb1) setMenuBar(mb2);
      else if (m == mb2) setMenuBar(mb1);
    }
  }
  class ML implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      MenuItem target = (MenuItem)e.getSource();
      String actionCommand =
        target.getActionCommand();
      if(actionCommand.equals("Open")) {
        String s = t.getText();
        boolean chosen = false;
        for(int i = 0; i < flavors.length; i++)
          if(s.equals(flavors[i])) chosen = true;
        if(!chosen)
          t.setText("Choose a flavor first!");
        else
          t.setText("Opening "+ s +". Mmm, mm!");
      } else if(actionCommand.equals("Exit")) {
        dispatchEvent(
          new WindowEvent(MenuNew.this,
            WindowEvent.WINDOW_CLOSING));
      }
    }
  }
  class FL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      MenuItem target = (MenuItem)e.getSource();
      t.setText(target.getLabel());
    }
  }
  // Alternatively, you can create a different
  // class for each different MenuItem. Then you
  // Don't have to figure out which one it is:
  class FooL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      t.setText("Foo selected");
    }
  }
  class BarL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      t.setText("Bar selected");
    }
  }
  class BazL implements ActionListener {



530 Thinking in Java  www.BruceEckel.com

    public void actionPerformed(ActionEvent e) {
      t.setText("Baz selected");
    }
  }
  class CMIL implements ItemListener {
    public void itemStateChanged(ItemEvent e) {
      CheckboxMenuItem target =
        (CheckboxMenuItem)e.getSource();
      String actionCommand =
        target.getActionCommand();
      if(actionCommand.equals("Guard"))
        t.setText("Guard the Ice Cream! " +
          "Guarding is " + target.getState());
      else if(actionCommand.equals("Hide"))
        t.setText("Hide the Ice Cream! " +
          "Is it cold? " + target.getState());
    }
  }
  public static void main(String[] args) {
    MenuNew f = new MenuNew();
    f.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e) {
          System.exit(0);
        }
      });
    f.setSize(300,200);
    f.setVisible(true);
  }
} ///:~

This code is similar to the previous (Java 1.0) version, until you get to the initialization
section (marked by the opening brace right after the comment “Initialization code:”). Here
you can see the ItemListeners and ActionListeners attached to the various menu
components.

Java 1.1 supports “menu shortcuts,” so you can select a menu item using the keyboard
instead of the mouse. These are quite simple; you just use the overloaded MenuItem
constructor that takes as a second argument a MenuShortcut object. The constructor for
MenuShortcut takes the key of interest, which magically appears on the menu item when it
drops down. The example above adds Control-E to the “Exit” menu item.

You can also see the use of setActionCommand( ). This seems a bit strange because in each
case the “action command” is exactly the same as the label on the menu component. Why
not just use the label instead of this alternative string? The problem is internationalization. If
you retarget this program to another language, you want to change only the label in the
menu, and not go through the code changing all the logic that will no doubt introduce new
errors. So to make this easy for code that checks the text string associated with a menu
component, the “action command” can be immutable while the menu label can change. All
the code works with the “action command,” so it’s unaffected by changes to the menu labels.
Note that in this program, not all the menu components are examined for their action
commands, so those that aren’t don’t have their action command set.



Chapter 13: Creating Windows & Applets 531

Much of the constructor is the same as before, with the exception of a couple of calls to add
listeners. The bulk of the work happens in the listeners. In BL, the MenuBar swapping
happens as in the previous example. In ML, the “figure out who rang” approach is taken by
getting the source of the ActionEvent and casting it to a MenuItem, then getting the action
command string to pass it through a cascaded if statement. Much of this is the same as
before, but notice that if “Exit” is chosen, a new WindowEvent is created, passing in the
handle of the enclosing class object (MenuNew.this) and creating a WINDOW_CLOSING
event. This is handed to the dispatchEvent( ) method of the enclosing class object, which
then ends up calling windowClosing( ) inside the window listener for the Frame (this
listener is created as an anonymous inner class, inside main( )), just as if the message had
been generated the “normal” way. Through this mechanism, you can dispatch any message
you want in any circumstances, so it’s quite powerful.

The FL listener is simple even though it’s handling all the different flavors in the flavor
menu. This approach is useful if you have enough simplicity in your logic, but in general,
you’ll want to take the approach used with FooL, BarL, and BazL, in which they are each
attached to only a single menu component so no extra detection logic is necessary and you
know exactly who called the listener. Even with the profusion of classes generated this way,
the code inside tends to be smaller and the process is more foolproof.

Dialog boxes
This is a direct rewrite of the earlier ToeTest.java. In this version, however, everything is
placed inside an inner class. Although this completely eliminates the need to keep track of the
object that spawned any class, as was the case in ToeTest.java, it could be taking the concept
of inner classes a bit too far. At one point, the inner classes are nested four deep! This is the
kind of design in which you need to decide whether the benefit of inner classes is worth the
increased complexity. In addition, when you create a non-static inner class you’re tying that
class to its surrounding class. Sometimes a standalone class can more easily be reused.

//: ToeTestNew.java
// Demonstration of dialog boxes
// and creating your own components
import java.awt.*;
import java.awt.event.*;

public class ToeTestNew extends Frame {
  TextField rows = new TextField("3");
  TextField cols = new TextField("3");
  public ToeTestNew() {
    setTitle("Toe Test");
    Panel p = new Panel();
    p.setLayout(new GridLayout(2,2));
    p.add(new Label("Rows", Label.CENTER));
    p.add(rows);
    p.add(new Label("Columns", Label.CENTER));
    p.add(cols);
    add(p, BorderLayout.NORTH);
    Button b = new Button("go");
    b.addActionListener(new BL());
    add(b, BorderLayout.SOUTH);
  }
  static final int BLANK = 0;
  static final int XX = 1;



532 Thinking in Java  www.BruceEckel.com

  static final int OO = 2;
  class ToeDialog extends Dialog {
    // w = number of cells wide
    // h = number of cells high
    int turn = XX; // Start with x's turn
    public ToeDialog(int w, int h) {
      super(ToeTestNew.this,
        "The game itself", false);
      setLayout(new GridLayout(w, h));
      for(int i = 0; i < w * h; i++)
        add(new ToeButton());
      setSize(w * 50, h * 50);
      addWindowListener(new WindowAdapter() {
        public void windowClosing(WindowEvent e){
          dispose();
        }
      });
    }
    class ToeButton extends Canvas {
      int state = BLANK;
      ToeButton() {
        addMouseListener(new ML());
      }
      public void paint(Graphics  g) {
        int x1 = 0;
        int y1 = 0;
        int x2 = getSize().width - 1;
        int y2 = getSize().height - 1;
        g.drawRect(x1, y1, x2, y2);
        x1 = x2/4;
        y1 = y2/4;
        int wide = x2/2;
        int high = y2/2;
        if(state == XX) {
          g.drawLine(x1, y1,
            x1 + wide, y1 + high);
          g.drawLine(x1, y1 + high,
            x1 + wide, y1);
        }
        if(state == OO) {
          g.drawOval(x1, y1,
            x1 + wide/2, y1 + high/2);
        }
      }
      class ML extends MouseAdapter {
        public void mousePressed(MouseEvent e) {
          if(state == BLANK) {
            state = turn;
            turn = (turn == XX ? OO : XX);
          }
          else
            state = (state == XX ? OO : XX);
          repaint();
        }



Chapter 13: Creating Windows & Applets 533

      }
    }
  }
  class BL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      Dialog d = new ToeDialog(
        Integer.parseInt(rows.getText()),
        Integer.parseInt(cols.getText()));
      d.show();
    }
  }
  public static void main(String[] args) {
    Frame f = new ToeTestNew();
    f.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e) {
          System.exit(0);
        }
      });
    f.setSize(200,100);
    f.setVisible(true);
  }
} ///:~

Because statics can be at only the outer level of the class, inner classes cannot have static
data or static inner classes.

File dialogs
Converting from FileDialogTest.java to the new event model is straightforward:

//: FileDialogNew.java
// Demonstration of File dialog boxes
import java.awt.*;
import java.awt.event.*;

public class FileDialogNew extends Frame {
  TextField filename = new TextField();
  TextField directory = new TextField();
  Button open = new Button("Open");
  Button save = new Button("Save");
  public FileDialogNew() {
    setTitle("File Dialog Test");
    Panel p = new Panel();
    p.setLayout(new FlowLayout());
    open.addActionListener(new OpenL());
    p.add(open);
    save.addActionListener(new SaveL());
    p.add(save);
    add(p, BorderLayout.SOUTH);
    directory.setEditable(false);
    filename.setEditable(false);
    p = new Panel();
    p.setLayout(new GridLayout(2,1));



534 Thinking in Java  www.BruceEckel.com

    p.add(filename);
    p.add(directory);
    add(p, BorderLayout.NORTH);
  }
  class OpenL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      // Two arguments, defaults to open file:
      FileDialog d = new FileDialog(
        FileDialogNew.this,
        "What file do you want to open?");
      d.setFile("*.java");
      d.setDirectory("."); // Current directory
      d.show();
      String yourFile = "*.*";
      if((yourFile = d.getFile()) != null) {
        filename.setText(yourFile);
        directory.setText(d.getDirectory());
      } else {
        filename.setText("You pressed cancel");
        directory.setText("");
      }
    }
  }
  class SaveL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      FileDialog d = new FileDialog(
        FileDialogNew.this,
        "What file do you want to save?",
        FileDialog.SAVE);
      d.setFile("*.java");
      d.setDirectory(".");
      d.show();
      String saveFile;
      if((saveFile = d.getFile()) != null) {
        filename.setText(saveFile);
        directory.setText(d.getDirectory());
      } else {
        filename.setText("You pressed cancel");
        directory.setText("");
      }
    }
  }
  public static void main(String[] args) {
    Frame f = new FileDialogNew();
    f.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e) {
          System.exit(0);
        }
      });
    f.setSize(250,110);
    f.setVisible(true);
  }
} ///:~



Chapter 13: Creating Windows & Applets 535

It would be nice if all the conversions were this easy, but they’re usually easy enough, and
your code benefits from the improved readability.

Binding events dynamically
One of the benefits of the new AWT event model is flexibility. In the old model you were
forced to hard code the behavior of your program, but with the new model you can add and
remove event behavior with single method calls. The following example demonstrates this:

//: DynamicEvents.java
// The new Java 1.1 event model allows you to
// change event behavior dynamically. Also
// demonstrates multiple actions for an event.
import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class DynamicEvents extends Frame {
  Vector v = new Vector();
  int i = 0;
  Button
    b1 = new Button("Button 1"),
    b2 = new Button("Button 2");
  public DynamicEvents() {
    setLayout(new FlowLayout());
    b1.addActionListener(new B());
    b1.addActionListener(new B1());
    b2.addActionListener(new B());
    b2.addActionListener(new B2());
    add(b1);
    add(b2);
  }
  class B implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      System.out.println("A button was pressed");
    }
  }
  class CountListener implements ActionListener {
    int index;
    public CountListener(int i) { index = i; }
    public void actionPerformed(ActionEvent e) {
      System.out.println(
        "Counted Listener " + index);
    }
  }
  class B1 implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      System.out.println("Button 1 pressed");
      ActionListener a = new CountListener(i++);
      v.addElement(a);
      b2.addActionListener(a);
    }
  }



536 Thinking in Java  www.BruceEckel.com

  class B2 implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      System.out.println("Button 2 pressed");
      int end = v.size() -1;
      if(end >= 0) {
        b2.removeActionListener(
          (ActionListener)v.elementAt(end));
        v.removeElementAt(end);
      }
    }
  }
  public static void main(String[] args) {
    Frame f = new DynamicEvents();
    f.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e){
          System.exit(0);
        }
      });
    f.setSize(300,200);
    f.show();
  }
} ///:~

The new twists in this example are:

1. There is more than one listener attached to each Button. Usually, components handle
events as multicast, meaning that you can register many listeners for a single event. In
the special components in which an event is handled as unicast, you’ll get a
TooManyListenersException.

2. During the execution of the program, listeners are dynamically added and removed from
the Button b2. Adding is accomplished in the way you’ve seen before, but each
component also has a removeXXXListener( ) method to remove each type of listener.

This kind of flexibility provides much greater power in your programming.

You should notice that event listeners are not guaranteed to be called in the order they are
added (although most implementations do in fact work that way).

Separating business logic
from UI logic

In general you’ll want to design your classes so that each one does “only one thing.” This is
particularly important when user-interface code is concerned, since it’s easy to wrap up
“what you’re doing” with “how you’re displaying it.” This kind of coupling prevents code
reuse. It’s much more desirable to separate your “business logic” from the GUI. This way,
you can not only reuse the business logic more easily, it’s also easier to reuse the GUI.

Another issue is multi-tiered systems, where the “business objects” reside on a completely
separate machine. This central location of the business rules allows changes to be instantly
effective for all new transactions, and is thus a compelling way to set up a system. However,
these business objects can be used in many different applications and so should not be tied to



Chapter 13: Creating Windows & Applets 537

any particular mode of display. They should just perform the business operations and
nothing more.

The following example shows how easy it is to separate the business logic from the GUI
code:

//: Separation.java
// Separating GUI logic and business objects
import java.awt.*;
import java.awt.event.*;
import java.applet.*;

class BusinessLogic {
  private int modifier;
  BusinessLogic(int mod) {
    modifier = mod;
  }
  public void setModifier(int mod) {
    modifier = mod;
  }
  public int getModifier() {
    return modifier;
  }
  // Some business operations:
  public int calculation1(int arg) {
    return arg * modifier;
  }
  public int calculation2(int arg) {
    return arg + modifier;
  }
}

public class Separation extends Applet {
  TextField
    t = new TextField(20),
    mod = new TextField(20);
  BusinessLogic bl = new BusinessLogic(2);
  Button
    calc1 = new Button("Calculation 1"),
    calc2 = new Button("Calculation 2");
  public void init() {
    add(t);
    calc1.addActionListener(new Calc1L());
    calc2.addActionListener(new Calc2L());
    add(calc1); add(calc2);
    mod.addTextListener(new ModL());
    add(new Label("Modifier:"));
    add(mod);
  }
  static int getValue(TextField tf) {
    try {
      return Integer.parseInt(tf.getText());
    } catch(NumberFormatException e) {
      return 0;



538 Thinking in Java  www.BruceEckel.com

    }
  }
  class Calc1L implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      t.setText(Integer.toString(
        bl.calculation1(getValue(t))));
    }
  }
  class Calc2L implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      t.setText(Integer.toString(
        bl.calculation2(getValue(t))));
    }
  }
  class ModL implements TextListener {
    public void textValueChanged(TextEvent e) {
      bl.setModifier(getValue(mod));
    }
  }
  public static void main(String[] args) {
    Separation applet = new Separation();
    Frame aFrame = new Frame("Separation");
    aFrame.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e) {
          System.exit(0);
        }
      });
    aFrame.add(applet, BorderLayout.CENTER);
    aFrame.setSize(200,200);
    applet.init();
    applet.start();
    aFrame.setVisible(true);
  }
} ///:~

You can see that BusinessLogic is a straightforward class that performs its operations
without even a hint that it might be used in a GUI environment. It just does its job.

Separation keeps track of all the UI details, and it talks to BusinessLogic only through its
public interface. All the operations are centered around getting information back and forth
through the UI and the BusinessLogic object. So Separation, in turn, just does its job. Since
Separation knows only that it’s talking to a BusinessLogic object (that is, it isn’t highly
coupled), it could be massaged into talking to other types of objects without much trouble.

Thinking in terms of separating UI from business logic also makes life easier when you’re
adapting legacy code to work with Java.

Recommended coding approaches
Inner classes, the new event model, and the fact that the old event model is still supported
along with new library features that rely on old-style programming has added a new
element of confusion. Now there are even more different ways for people to write
unpleasant code. Unfortunately, this kind of code is showing up in books and article



Chapter 13: Creating Windows & Applets 539

examples, and even in documentation and examples distributed from Sun! In this section
we’ll look at some misunderstandings about what you should and shouldn’t do with the
new AWT, and end by showing that except in extenuating circumstances you can always use
listener classes (written as inner classes) to solve your event-handling needs. Since this is also
the simplest and clearest approach, it should be a relief for you to learn this.

Before looking at anything else, you should know that although Java 1.1 is backward-
compatible with Java 1.0 (that is, you can compile and run 1.0 programs with 1.1), you
cannot mix the event models within the same program. That is, you cannot use the old-style
action( ) method in the same program in which you employ listeners. This can be a problem
in a larger program when you’re trying to integrate old code with a new program, since you
must decide whether to use the old, hard-to-maintain approach with the new program or to
update the old code. This shouldn’t be too much of a battle since the new approach is so
superior to the old.

Baseline: the good way to do it
To give you something to compare with, here’s an example showing the recommended
approach. By now it should be reasonably familiar and comfortable:

//: GoodIdea.java
// The best way to design classes using the new
// Java 1.1 event model: use an inner class for
// each different event. This maximizes
// flexibility and modularity.
import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class GoodIdea extends Frame {
  Button
    b1 = new Button("Button 1"),
    b2 = new Button("Button 2");
  public GoodIdea() {
    setLayout(new FlowLayout());
    b1.addActionListener(new B1L());
    b2.addActionListener(new B2L());
    add(b1);
    add(b2);
  }
  public class B1L implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      System.out.println("Button 1 pressed");
    }
  }
  public class B2L implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      System.out.println("Button 2 pressed");
    }
  }
  public static void main(String[] args) {
    Frame f = new GoodIdea();
    f.addWindowListener(
      new WindowAdapter() {



540 Thinking in Java  www.BruceEckel.com

        public void windowClosing(WindowEvent e){
          System.out.println("Window Closing");
          System.exit(0);
        }
      });
    f.setSize(300,200);
    f.setVisible(true);
  }
} ///:~

This is fairly trivial: each button has its own listener that prints something out to the
console. But notice that there isn’t an if statement in the entire program, or any statement
that says, “I wonder what caused this event.” Each piece of code is concerned with doing, not
type-checking. This is the best way to write your code; not only is it easier to conceptualize,
but much easier to read and maintain. Cutting and pasting to create new programs is also
much easier.

Implementing the main class as a listener
The first bad idea is a common and recommended approach. This makes the main class
(typically Applet or Frame, but it could be any class) implement the various listeners. Here’s
an example:

//: BadIdea1.java
// Some literature recommends this approach,
// but it's missing the point of the new event
// model in Java 1.1
import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class BadIdea1 extends Frame
    implements ActionListener, WindowListener {
  Button
    b1 = new Button("Button 1"),
    b2 = new Button("Button 2");
  public BadIdea1() {
    setLayout(new FlowLayout());
    addWindowListener(this);
    b1.addActionListener(this);
    b2.addActionListener(this);
    add(b1);
    add(b2);
  }
  public void actionPerformed(ActionEvent e) {
    Object source = e.getSource();
    if(source == b1)
      System.out.println("Button 1 pressed");
    else if(source == b2)
      System.out.println("Button 2 pressed");
    else
      System.out.println("Something else");
  }
  public void windowClosing(WindowEvent e) {



Chapter 13: Creating Windows & Applets 541

    System.out.println("Window Closing");
    System.exit(0);
  }
  public void windowClosed(WindowEvent e) {}
  public void windowDeiconified(WindowEvent e) {}
  public void windowIconified(WindowEvent e) {}
  public void windowActivated(WindowEvent e) {}
  public void windowDeactivated(WindowEvent e) {}
  public void windowOpened(WindowEvent e) {}

  public static void main(String[] args) {
    Frame f = new BadIdea1();
    f.setSize(300,200);
    f.setVisible(true);
  }
} ///:~

The use of this shows up in the three lines:

    addWindowListener(this);
    b1.addActionListener(this);
    b2.addActionListener(this);

Since BadIdea1 implements ActionListener and WindowListener, these lines are certainly
acceptable, and if you’re still stuck in the mode of trying to make fewer classes to reduce
server hits during applet loading, it seems to be a good idea. However:

1. Java 1.1 supports JAR files so all your files can be placed in a single compressed JAR
archive that requires only one server hit. You no longer need to reduce class count for
Internet efficiency.

2. The code above is much less modular so it’s harder to grab and paste. Note that you
must not only implement the various interfaces for your main class, but in
actionPerformed( ) you’ve got to detect which action was performed using a cascaded if
statement. Not only is this going backwards, away from the listener model, but you
can’t easily reuse the actionPerformed( ) method since it’s specific to this particular
application. Contrast this with GoodIdea.java, in which you can just grab one listener
class and paste it in anywhere else with minimal fuss. Plus you can register multiple
listener classes with a single event, allowing even more modularity in what each listener
class does.

Mixing the approaches
The second bad idea is to mix the two approaches: use inner listener classes, but also
implement one or more listener interfaces as part of the main class. This approach has
appeared without explanation in books and documentation, and I can only assume that the
authors thought they must use the different approaches for different purposes. But you
don’t – in your programming you can probably use inner listener classes exclusively.

//: BadIdea2.java
// An improvement over BadIdea1.java, since it
// uses the WindowAdapter as an inner class
// instead of implementing all the methods of
// WindowListener, but still misses the
// valuable modularity of inner classes



542 Thinking in Java  www.BruceEckel.com

import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class BadIdea2 extends Frame
    implements ActionListener {
  Button
    b1 = new Button("Button 1"),
    b2 = new Button("Button 2");
  public BadIdea2() {
    setLayout(new FlowLayout());
    addWindowListener(new WL());
    b1.addActionListener(this);
    b2.addActionListener(this);
    add(b1);
    add(b2);
  }
  public void actionPerformed(ActionEvent e) {
    Object source = e.getSource();
    if(source == b1)
      System.out.println("Button 1 pressed");
    else if(source == b2)
      System.out.println("Button 2 pressed");
    else
      System.out.println("Something else");
  }
  class WL extends WindowAdapter {
    public void windowClosing(WindowEvent e) {
      System.out.println("Window Closing");
      System.exit(0);
    }
  }
  public static void main(String[] args) {
    Frame f = new BadIdea2();
    f.setSize(300,200);
    f.setVisible(true);
  }
} ///:~

Since actionPerformed( ) is still tightly coupled to the main class, it’s hard to reuse that
code. It’s also messier and less pleasant to read than the inner class approach.

There’s no reason that you have to use any of the old thinking for events in Java 1.1 – so
why do it?

Inheriting a component
Another place where you’ll often see variations on the old way of doing things is when
creating a new type of component. Here’s an example showing that here, too, the new way
works:

//: GoodTechnique.java
// Your first choice when overriding components
// should be to install listeners. The code is



Chapter 13: Creating Windows & Applets 543

// much safer, more modular and maintainable.
import java.awt.*;
import java.awt.event.*;

class Display {
  public static final int
    EVENT = 0, COMPONENT = 1,
    MOUSE = 2, MOUSE_MOVE = 3,
    FOCUS = 4, KEY = 5, ACTION = 6,
    LAST = 7;
  public String[] evnt;
  Display() {
    evnt = new String[LAST];
    for(int i = 0; i < LAST; i++)
      evnt[i] = new String();
  }
  public void show(Graphics g) {
    for(int i = 0; i < LAST; i++)
      g.drawString(evnt[i], 0, 10 * i + 10);
  }
}

class EnabledPanel extends Panel {
  Color c;
  int id;
  Display display = new Display();
  public EnabledPanel(int i, Color mc) {
    id = i;
    c = mc;
    setLayout(new BorderLayout());
    add(new MyButton(), BorderLayout.SOUTH);
    addComponentListener(new CL());
    addFocusListener(new FL());
    addKeyListener(new KL());
    addMouseListener(new ML());
    addMouseMotionListener(new MML());
  }
  // To eliminate flicker:
  public void update(Graphics g) {
    paint(g);
  }
  public void paint(Graphics  g) {
    g.setColor(c);
    Dimension s = getSize();
    g.fillRect(0, 0, s.width, s.height);
    g.setColor(Color.black);
    display.show(g);
  }
  // Don't need to enable anything for this:
  public void processEvent(AWTEvent e) {
    display.evnt[Display.EVENT]= e.toString();
    repaint();
    super.processEvent(e);
  }



544 Thinking in Java  www.BruceEckel.com

  class CL implements ComponentListener {
    public void componentMoved(ComponentEvent e){
      display.evnt[Display.COMPONENT] =
        "Component moved";
      repaint();
    }
    public void
    componentResized(ComponentEvent e) {
      display.evnt[Display.COMPONENT] =
        "Component resized";
      repaint();
    }
    public void
    componentHidden(ComponentEvent e) {
      display.evnt[Display.COMPONENT] =
        "Component hidden";
      repaint();
    }
    public void componentShown(ComponentEvent e){
      display.evnt[Display.COMPONENT] =
        "Component shown";
      repaint();
    }
  }
  class FL implements FocusListener {
    public void focusGained(FocusEvent e) {
      display.evnt[Display.FOCUS] =
        "FOCUS gained";
      repaint();
    }
    public void focusLost(FocusEvent e) {
      display.evnt[Display.FOCUS] =
        "FOCUS lost";
      repaint();
    }
  }
  class KL implements KeyListener {
    public void keyPressed(KeyEvent e) {
      display.evnt[Display.KEY] =
        "KEY pressed: ";
      showCode(e);
    }
    public void keyReleased(KeyEvent e) {
      display.evnt[Display.KEY] =
        "KEY released: ";
      showCode(e);
    }
    public void keyTyped(KeyEvent e) {
      display.evnt[Display.KEY] =
        "KEY typed: ";
      showCode(e);
    }
    void showCode(KeyEvent e) {
      int code = e.getKeyCode();



Chapter 13: Creating Windows & Applets 545

      display.evnt[Display.KEY] +=
        KeyEvent.getKeyText(code);
      repaint();
    }
  }
  class ML implements MouseListener {
    public void mouseClicked(MouseEvent e) {
      requestFocus(); // Get FOCUS on click
      display.evnt[Display.MOUSE] =
        "MOUSE clicked";
      showMouse(e);
    }
    public void mousePressed(MouseEvent e) {
      display.evnt[Display.MOUSE] =
        "MOUSE pressed";
      showMouse(e);
    }
    public void mouseReleased(MouseEvent e) {
      display.evnt[Display.MOUSE] =
        "MOUSE released";
      showMouse(e);
    }
    public void mouseEntered(MouseEvent e) {
      display.evnt[Display.MOUSE] =
        "MOUSE entered";
      showMouse(e);
    }
    public void mouseExited(MouseEvent e) {
      display.evnt[Display.MOUSE] =
        "MOUSE exited";
      showMouse(e);
    }
    void showMouse(MouseEvent e) {
      display.evnt[Display.MOUSE] +=
        ", x = " + e.getX() +
        ", y = " + e.getY();
      repaint();
    }
  }
  class MML implements MouseMotionListener {
    public void mouseDragged(MouseEvent e) {
      display.evnt[Display.MOUSE_MOVE] =
        "MOUSE dragged";
      showMouse(e);
    }
    public void mouseMoved(MouseEvent e) {
      display.evnt[Display.MOUSE_MOVE] =
        "MOUSE moved";
      showMouse(e);
    }
    void showMouse(MouseEvent e) {
      display.evnt[Display.MOUSE_MOVE] +=
        ", x = " + e.getX() +
        ", y = " + e.getY();



546 Thinking in Java  www.BruceEckel.com

      repaint();
    }
  }
}

class MyButton extends Button {
  int clickCounter;
  String label = "";
  public MyButton() {
    addActionListener(new AL());
  }
  public void paint(Graphics g) {
    g.setColor(Color.green);
    Dimension s = getSize();
    g.fillRect(0, 0, s.width, s.height);
    g.setColor(Color.black);
    g.drawRect(0, 0, s.width - 1, s.height - 1);
    drawLabel(g);
  }
  private void drawLabel(Graphics g) {
    FontMetrics fm = g.getFontMetrics();
    int width = fm.stringWidth(label);
    int height = fm.getHeight();
    int ascent = fm.getAscent();
    int leading = fm.getLeading();
    int horizMargin =
      (getSize().width - width)/2;
    int verMargin =
      (getSize().height - height)/2;
    g.setColor(Color.red);
    g.drawString(label, horizMargin,
      verMargin + ascent + leading);
  }
  class AL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      clickCounter++;
      label = "click #" + clickCounter +
        " " + e.toString();
      repaint();
    }
  }
}

public class GoodTechnique extends Frame {
  GoodTechnique() {
    setLayout(new GridLayout(2,2));
    add(new EnabledPanel(1, Color.cyan));
    add(new EnabledPanel(2, Color.lightGray));
    add(new EnabledPanel(3, Color.yellow));
  }
  public static void main(String[] args) {
    Frame f = new GoodTechnique();
    f.setTitle("Good Technique");
    f.addWindowListener(



Chapter 13: Creating Windows & Applets 547

      new WindowAdapter() {
        public void windowClosing(WindowEvent e){
          System.out.println(e);
          System.out.println("Window Closing");
          System.exit(0);
        }
      });
    f.setSize(700,700);
    f.setVisible(true);
  }
} ///:~

This example also demonstrates the various events that occur and displays the information
about them. The class Display is a way to centralize that information display. There’s an
array of Strings to hold information about each type of event, and the method show( )
takes a handle to whatever Graphics object you have and writes directly on that surface.
The scheme is intended to be somewhat reusable.

EnabledPanel represents the new type of component. It’s a colored panel with a button at
the bottom, and it captures all the events that happen over it by using inner listener classes
for every single event except those in which EnabledPanel overrides processEvent( ) in the
old style (notice it must also call super.processEvent( )). The only reason for using this
method is that it captures every event that happens, so you can view everything that goes
on. processEvent( ) does nothing more than show the string representation of each event,
otherwise it would have to use a cascade of if statements to figure out what event it was. On
the other hand, the inner listener classes already know precisely what event occurred.
(Assuming you register them to components in which you don’t need any control logic,
which should be your goal.) Thus, they don’t have to check anything out; they just do their
stuff.

Each listener modifies the Display string associated with its particular event and calls
repaint( ) so the strings get displayed. You can also see a trick that will usually eliminate
flicker:

  public void update(Graphics g) {
    paint(g);
  }

You don’t always need to override update( ), but if you write something that flickers, try it.
The default version of update clears the background and then calls paint( ) to redraw any
graphics. This clearing is usually what causes flicker but is not necessary since paint( )
redraws the entire surface.

You can see that there are a lot of listeners – however, type checking occurs for the listeners,
and you can’t listen for something that the component doesn’t support (unlike
BadTechnique.java, which you will see momentarily).

Experimenting with this program is quite educational since you learn a lot about the way
that events occur in Java. For one thing, it shows a flaw in the design of most windowing
systems: it’s pretty hard to click and release the mouse without moving it, and the
windowing system will often think you’re dragging when you’re actually just trying to click
on something. A solution to this is to use mousePressed( ) and mouseReleased( ) instead of
mouseClicked( ), and then determine whether to call your own “mouseReallyClicked( )”
method based on time and about 4 pixels of mouse hysteresis.



548 Thinking in Java  www.BruceEckel.com

Ugly component inheritance
The alternative, which you will see put forward in many published works, is to call
enableEvents( ) and pass it the masks corresponding to the events you want to handle. This
causes those events to be sent to the old-style methods (although they’re new to Java 1.1)
with names like processFocusEvent( ). You must also remember to call the base-class
version. Here’s what it looks like:

//: BadTechnique.java
// It's possible to override components this way,
// but the listener approach is much better, so
// why would you?
import java.awt.*;
import java.awt.event.*;

class Display {
  public static final int
    EVENT = 0, COMPONENT = 1,
    MOUSE = 2, MOUSE_MOVE = 3,
    FOCUS = 4, KEY = 5, ACTION = 6,
    LAST = 7;
  public String[] evnt;
  Display() {
    evnt = new String[LAST];
    for(int i = 0; i < LAST; i++)
      evnt[i] = new String();
  }
  public void show(Graphics g) {
    for(int i = 0; i < LAST; i++)
      g.drawString(evnt[i], 0, 10 * i + 10);
  }
}

class EnabledPanel extends Panel {
  Color c;
  int id;
  Display display = new Display();
  public EnabledPanel(int i, Color mc) {
    id = i;
    c = mc;
    setLayout(new BorderLayout());
    add(new MyButton(), BorderLayout.SOUTH);
    // Type checking is lost. You can enable and
    // process events that the component doesn't
    // capture:
    enableEvents(
      // Panel doesn't handle these:
      AWTEvent.ACTION_EVENT_MASK |
      AWTEvent.ADJUSTMENT_EVENT_MASK |
      AWTEvent.ITEM_EVENT_MASK |
      AWTEvent.TEXT_EVENT_MASK |
      AWTEvent.WINDOW_EVENT_MASK |
      // Panel can handle these:
      AWTEvent.COMPONENT_EVENT_MASK |



Chapter 13: Creating Windows & Applets 549

      AWTEvent.FOCUS_EVENT_MASK |
      AWTEvent.KEY_EVENT_MASK |
      AWTEvent.MOUSE_EVENT_MASK |
      AWTEvent.MOUSE_MOTION_EVENT_MASK |
      AWTEvent.CONTAINER_EVENT_MASK);
      // You can enable an event without
      // overriding its process method.
  }
  // To eliminate flicker:
  public void update(Graphics g) {
    paint(g);
  }
  public void paint(Graphics  g) {
    g.setColor(c);
    Dimension s = getSize();
    g.fillRect(0, 0, s.width, s.height);
    g.setColor(Color.black);
    display.show(g);
  }
  public void processEvent(AWTEvent e) {
    display.evnt[Display.EVENT]= e.toString();
    repaint();
    super.processEvent(e);
  }
  public void
  processComponentEvent(ComponentEvent e) {
    switch(e.getID()) {
      case ComponentEvent.COMPONENT_MOVED:
        display.evnt[Display.COMPONENT] =
          "Component moved";
        break;
      case ComponentEvent.COMPONENT_RESIZED:
        display.evnt[Display.COMPONENT] =
          "Component resized";
        break;
      case ComponentEvent.COMPONENT_HIDDEN:
        display.evnt[Display.COMPONENT] =
          "Component hidden";
        break;
      case ComponentEvent.COMPONENT_SHOWN:
        display.evnt[Display.COMPONENT] =
          "Component shown";
        break;
      default:
    }
    repaint();
    // Must always remember to call the "super"
    // version of whatever you override:
    super.processComponentEvent(e);
  }
  public void processFocusEvent(FocusEvent e) {
    switch(e.getID()) {
      case FocusEvent.FOCUS_GAINED:
        display.evnt[Display.FOCUS] =



550 Thinking in Java  www.BruceEckel.com

          "FOCUS gained";
        break;
      case FocusEvent.FOCUS_LOST:
        display.evnt[Display.FOCUS] =
          "FOCUS lost";
        break;
      default:
    }
    repaint();
    super.processFocusEvent(e);
  }
  public void processKeyEvent(KeyEvent e) {
    switch(e.getID()) {
      case KeyEvent.KEY_PRESSED:
        display.evnt[Display.KEY] =
          "KEY pressed: ";
        break;
      case KeyEvent.KEY_RELEASED:
        display.evnt[Display.KEY] =
          "KEY released: ";
        break;
      case KeyEvent.KEY_TYPED:
        display.evnt[Display.KEY] =
          "KEY typed: ";
        break;
      default:
    }
    int code = e.getKeyCode();
    display.evnt[Display.KEY] +=
      KeyEvent.getKeyText(code);
    repaint();
    super.processKeyEvent(e);
  }
  public void processMouseEvent(MouseEvent e) {
    switch(e.getID()) {
      case MouseEvent.MOUSE_CLICKED:
        requestFocus(); // Get FOCUS on click
        display.evnt[Display.MOUSE] =
          "MOUSE clicked";
        break;
      case MouseEvent.MOUSE_PRESSED:
        display.evnt[Display.MOUSE] =
          "MOUSE pressed";
        break;
      case MouseEvent.MOUSE_RELEASED:
        display.evnt[Display.MOUSE] =
          "MOUSE released";
        break;
      case MouseEvent.MOUSE_ENTERED:
        display.evnt[Display.MOUSE] =
          "MOUSE entered";
        break;
      case MouseEvent.MOUSE_EXITED:
        display.evnt[Display.MOUSE] =



Chapter 13: Creating Windows & Applets 551

          "MOUSE exited";
        break;
      default:
    }
    display.evnt[Display.MOUSE] +=
      ", x = " + e.getX() +
      ", y = " + e.getY();
    repaint();
    super.processMouseEvent(e);
  }
  public void
  processMouseMotionEvent(MouseEvent e) {
    switch(e.getID()) {
      case MouseEvent.MOUSE_DRAGGED:
        display.evnt[Display.MOUSE_MOVE] =
          "MOUSE dragged";
        break;
      case MouseEvent.MOUSE_MOVED:
        display.evnt[Display.MOUSE_MOVE] =
          "MOUSE moved";
        break;
      default:
    }
    display.evnt[Display.MOUSE_MOVE] +=
      ", x = " + e.getX() +
      ", y = " + e.getY();
    repaint();
    super.processMouseMotionEvent(e);
  }
}

class MyButton extends Button {
  int clickCounter;
  String label = "";
  public MyButton() {
    enableEvents(AWTEvent.ACTION_EVENT_MASK);
  }
  public void paint(Graphics g) {
    g.setColor(Color.green);
    Dimension s = getSize();
    g.fillRect(0, 0, s.width, s.height);
    g.setColor(Color.black);
    g.drawRect(0, 0, s.width - 1, s.height - 1);
    drawLabel(g);
  }
  private void drawLabel(Graphics g) {
    FontMetrics fm = g.getFontMetrics();
    int width = fm.stringWidth(label);
    int height = fm.getHeight();
    int ascent = fm.getAscent();
    int leading = fm.getLeading();
    int horizMargin =
      (getSize().width - width)/2;
    int verMargin =



552 Thinking in Java  www.BruceEckel.com

      (getSize().height - height)/2;
    g.setColor(Color.red);
    g.drawString(label, horizMargin,
                 verMargin + ascent + leading);
  }
  public void processActionEvent(ActionEvent e) {
    clickCounter++;
    label = "click #" + clickCounter +
      " " + e.toString();
    repaint();
    super.processActionEvent(e);
  }
}

public class BadTechnique extends Frame {
  BadTechnique() {
    setLayout(new GridLayout(2,2));
    add(new EnabledPanel(1, Color.cyan));
    add(new EnabledPanel(2, Color.lightGray));
    add(new EnabledPanel(3, Color.yellow));
    // You can also do it for Windows:
    enableEvents(AWTEvent.WINDOW_EVENT_MASK);
  }
  public void processWindowEvent(WindowEvent e) {
    System.out.println(e);
    if(e.getID() == WindowEvent.WINDOW_CLOSING) {
      System.out.println("Window Closing");
      System.exit(0);
    }
  }
  public static void main(String[] args) {
    Frame f = new BadTechnique();
    f.setTitle("Bad Technique");
    f.setSize(700,700);
    f.setVisible(true);
  }
} ///:~

Sure, it works. But it’s ugly and hard to write, read, debug, maintain, and reuse. So why
bother when you can use inner listener classes?

Java 1.1 UI APIs
Java 1.1 has also added some important new functionality, including focus traversal,
desktop color access, printing “inside the sandbox,” and the beginnings of clipboard support.

Focus traversal is quite easy, since it’s transparently present in the AWT library components
and you don’t have to do anything to make it work. If you make your own components and
want them to handle focus traversal, you override isFocusTraversable( ) to return true. If
you want to capture the keyboard focus on a mouse click, you catch the mouse down event
and call requestFocus( ).



Chapter 13: Creating Windows & Applets 553

Desktop colors
The desktop colors provide a way for you to know what the various color choices are on the
current user’s desktop. This way, you can use those colors in your program if you desire.
The colors are automatically initialized and placed in static members of class SystemColor,
so all you need to do is read the member you’re interested in. The names are intentionally
self-explanatory: desktop, activeCaption, activeCaptionText, activeCaptionBorder,
inactiveCaption, inactiveCaptionText, inactiveCaptionBorder, window, windowBorder,
windowText, menu, menuText, text, textText, textHighlight, textHighlightText,
textInactiveText, control, controlText, controlHighlight, controlLtHighlight,
controlShadow, controlDkShadow, scrollbar, info (for help), and infoText (for help text).

Printing
Unfortunately, there isn’t much that’s automatic with printing. Instead you must go
through a number of mechanical, non-OO steps in order to print. Printing a component
graphically can be slightly more automatic: by default, the print( ) method calls paint( ) to
do its work. There are times when this is satisfactory, but if you want to do anything more
specialized you must know that you’re printing so you can in particular find out the page
dimensions.

The following example demonstrates the printing of both text and graphics, and the different
approaches you can use for printing graphics. In addition, it tests the printing support:

//: PrintDemo.java
// Printing with Java 1.1
import java.awt.*;
import java.awt.event.*;

public class PrintDemo extends Frame {
  Button
    printText = new Button("Print Text"),
    printGraphics = new Button("Print Graphics");
  TextField ringNum = new TextField(3);
  Choice faces = new Choice();
  Graphics g = null;
  Plot plot = new Plot3(); // Try different plots
  Toolkit tk = Toolkit.getDefaultToolkit();
  public PrintDemo() {
    ringNum.setText("3");
    ringNum.addTextListener(new RingL());
    Panel p = new Panel();
    p.setLayout(new FlowLayout());
    printText.addActionListener(new TBL());
    p.add(printText);
    p.add(new Label("Font:"));
    p.add(faces);
    printGraphics.addActionListener(new GBL());
    p.add(printGraphics);
    p.add(new Label("Rings:"));
    p.add(ringNum);
    setLayout(new BorderLayout());
    add(p, BorderLayout.NORTH);



554 Thinking in Java  www.BruceEckel.com

    add(plot, BorderLayout.CENTER);
    String[] fontList = tk.getFontList();
    for(int i = 0; i < fontList.length; i++)
      faces.add(fontList[i]);
    faces.select("Serif");
  }
  class PrintData {
    public PrintJob pj;
    public int pageWidth, pageHeight;
    PrintData(String jobName) {
      pj = getToolkit().getPrintJob(
        PrintDemo.this, jobName, null);
      if(pj != null) {
        pageWidth = pj.getPageDimension().width;
        pageHeight= pj.getPageDimension().height;
        g = pj.getGraphics();
      }
    }
    void end() { pj.end(); }
  }
  class ChangeFont {
    private int stringHeight;
    ChangeFont(String face, int style,int point){
      if(g != null) {
        g.setFont(new Font(face, style, point));
        stringHeight =
          g.getFontMetrics().getHeight();
      }
    }
    int stringWidth(String s) {
      return g.getFontMetrics().stringWidth(s);
    }
    int stringHeight() { return stringHeight; }
  }
  class TBL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      PrintData pd =
        new PrintData("Print Text Test");
      // Null means print job canceled:
      if(pd == null) return;
      String s = "PrintDemo";
      ChangeFont cf = new ChangeFont(
        faces.getSelectedItem(), Font.ITALIC,72);
      g.drawString(s,
        (pd.pageWidth - cf.stringWidth(s)) / 2,
        (pd.pageHeight - cf.stringHeight()) / 3);

      s = "A smaller point size";
      cf = new ChangeFont(
        faces.getSelectedItem(), Font.BOLD, 48);
      g.drawString(s,
        (pd.pageWidth - cf.stringWidth(s)) / 2,
        (int)((pd.pageHeight -
           cf.stringHeight())/1.5));



Chapter 13: Creating Windows & Applets 555

      g.dispose();
      pd.end();
    }
  }
  class GBL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      PrintData pd =
        new PrintData("Print Graphics Test");
      if(pd == null) return;
      plot.print(g);
      g.dispose();
      pd.end();
    }
  }
  class RingL implements TextListener {
    public void textValueChanged(TextEvent e) {
      int i = 1;
      try {
        i = Integer.parseInt(ringNum.getText());
      } catch(NumberFormatException ex) {
        i = 1;
      }
      plot.rings = i;
      plot.repaint();
    }
  }
  public static void main(String[] args) {
    Frame pdemo = new PrintDemo();
    pdemo.setTitle("Print Demo");
    pdemo.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e) {
          System.exit(0);
        }
      });
    pdemo.setSize(500, 500);
    pdemo.setVisible(true);
  }
}

class Plot extends Canvas {
  public int rings = 3;
}

class Plot1 extends Plot {
  // Default print() calls paint():
  public void paint(Graphics g) {
    int w = getSize().width;
    int h = getSize().height;
    int xc = w / 2;
    int yc = w / 2;
    int x = 0, y = 0;
    for(int i = 0; i < rings; i++) {
      if(x < xc && y < yc) {



556 Thinking in Java  www.BruceEckel.com

        g.drawOval(x, y, w, h);
        x += 10; y += 10;
        w -= 20; h -= 20;
      }
    }
  }
}

class Plot2 extends Plot {
  // To fit the picture to the page, you must
  // know whether you're printing or painting:
  public void paint(Graphics g) {
    int w, h;
    if(g instanceof PrintGraphics) {
      PrintJob pj =
        ((PrintGraphics)g).getPrintJob();
      w = pj.getPageDimension().width;
      h = pj.getPageDimension().height;
    }
    else {
      w = getSize().width;
      h = getSize().height;
    }
    int xc = w / 2;
    int yc = w / 2;
    int x = 0, y = 0;
    for(int i = 0; i < rings; i++) {
      if(x < xc && y < yc) {
        g.drawOval(x, y, w, h);
        x += 10; y += 10;
        w -= 20; h -= 20;
      }
    }
  }
}

class Plot3 extends Plot {
  // Somewhat better. Separate
  // printing from painting:
  public void print(Graphics g) {
    // Assume it's a PrintGraphics object:
    PrintJob pj =
      ((PrintGraphics)g).getPrintJob();
    int w = pj.getPageDimension().width;
    int h = pj.getPageDimension().height;
    doGraphics(g, w, h);
  }
  public void paint(Graphics g) {
    int w = getSize().width;
    int h = getSize().height;
    doGraphics(g, w, h);
  }
  private void doGraphics(
      Graphics g, int w, int h) {



Chapter 13: Creating Windows & Applets 557

    int xc = w / 2;
    int yc = w / 2;
    int x = 0, y = 0;
    for(int i = 0; i < rings; i++) {
      if(x < xc && y < yc) {
        g.drawOval(x, y, w, h);
        x += 10; y += 10;
        w -= 20; h -= 20;
      }
    }
  }
} ///:~

The program allows you to select fonts from a Choice list (and you’ll see that the number of
fonts available in Java 1.1 is still extremely limited, and has nothing to do with any extra
fonts you install on your machine). It uses these to print out text in bold, italic, and in
different sizes. In addition, a new type of component called a Plot is created to demonstrate
graphics. A Plot has rings that it will display on the screen and print onto paper, and the
three derived classes Plot1, Plot2, and Plot3 perform these tasks in different ways so that
you can see your alternatives when printing graphics. Also, you can change the number of
rings in a plot – this is interesting because it shows the printing fragility in Java 1.1. On my
system, the printer gave error messages and didn’t print correctly when the ring count got
“too high” (whatever that means), but worked fine when the count was “low enough.” You
will notice, too, that the page dimensions produced when printing do not seem to correspond
to the actual dimensions of the page. This might be fixed in a future release of Java, and you
can use this program to test it.

This program encapsulates functionality inside inner classes whenever possible, to facilitate
reuse. For example, whenever you want to begin a print job (whether for graphics or text),
you must create a PrintJob object, which has its own Graphics object along with the width
and height of the page. The creation of a PrintJob and extraction of page dimensions is
encapsulated in the PrintData class.

Printing text
Conceptually, printing text is straightforward: you choose a typeface and size, decide where
the string should go on the page, and draw it with Graphics.drawString( ). This means,
however, that you must perform the calculations of exactly where each line will go on the
page to make sure it doesn’t run off the end of the page or collide with other lines. If you
want to make a word processor, your work is cut out for you.

ChangeFont encapsulates a little of the process of changing from one font to another by
automatically creating a new Font object with your desired typeface, style (Font.BOLD or
Font.ITALIC – there’s no support for underline, strikethrough, etc.), and point size. It also
simplifies the calculation of the width and height of a string.

When you press the “Print text” button, the TBL listener is activated. You can see that it goes
through two iterations of creating a ChangeFont object and calling drawString( ) to print
out the string in a calculated position, centered, one-third, and two-thirds down the page,
respectively. Notice whether these calculations produce the expected results. (They didn’t
with the version I used.)



558 Thinking in Java  www.BruceEckel.com

Printing graphics
When you press the “Print graphics” button the GBL listener is activated. The creation of a
PrintData object initializes g, and then you simply call print( ) for the component you want
to print. To force printing you must call dispose( ) for the Graphics object and end( ) for the
PrintData object (which turns around and calls end( ) for the PrintJob).

The work is going on inside the Plot object. You can see that the base-class Plot is simple – it
extends Canvas and contains an int called rings to indicate how many concentric rings to
draw on this particular Canvas. The three derived classes show different approaches to
accomplishing the same goal: drawing on both the screen and on the printed page.

Plot1 takes the simplest approach to coding: ignore the fact that there are differences in
painting and printing, and just override paint( ). The reason this works is that the default
print( ) method simply turns around and calls paint( ). However, you’ll notice that the size
of the output depends on the size of the on-screen canvas, which makes sense since the
width and height are determined by calling Canvas.getSize( ). The other situation in which
this is acceptable is if your image is always a fixed size.

When the size of the drawing surface is important, then you must discover the dimensions.
Unfortunately, this turns out to be awkward, as you can see in Plot2. For some possibly
good reason that I don’t know, you cannot simply ask the Graphics object the dimensions of
its drawing surface. This would have made the whole process quite elegant. Instead, to see if
you’re printing rather than painting, you must detect the PrintGraphics using the RTTI
instanceof keyword (described in Chapter 11), then downcast and call the sole
PrintGraphics method: getPrintJob( ). Now you have a handle to the PrintJob and you
can find out the width and height of the paper. This is a hacky approach, but perhaps there
is some rational reason for it. (On the other hand, you’ve seen some of the other library
designs by now so you might get the impression that the designers were, in fact, just
hacking around…)

You can see that paint( ) in Plot2 goes through both possibilities of printing or painting. But
since the print( ) method should be called when printing, why not use that? This approach is
used in Plot3, and it eliminates the need to use instanceof since inside print( ) you can
assume that you can cast to a PrintGraphics object. This is a little better. The situation is
improved by placing the common drawing code (once the dimensions have been detected)
inside a separate method doGraphics( ).

Running Frames within applets
What if you’d like to print from within an applet? Well, to print anything you must get a
PrintJob object through a Toolkit object’s getPrintJob( ) method, which takes only a
Frame object and not an Applet. Thus it would seem that it’s possible to print from within
an application, but not an applet. However, it turns out that you can create a Frame from
within an applet (which is the reverse of what I’ve been doing for the applet/application
examples so far, which has been making an applet and putting inside a Frame). This is a
useful technique since it allows you to use many applications within applets (as long as they
don’t violate applet security). When the application window comes up within an applet,
however, you’ll notice that the Web browser sticks a little caveat on it, something to the
effect of “Warning: Applet Window.”

You can see that it’s quite straightforward to put a Frame inside an applet. The only thing
that you must add is code to dispose( ) of the Frame when the user closes it (instead of
calling System.exit( )):



Chapter 13: Creating Windows & Applets 559

//: PrintDemoApplet.java
// Creating a Frame from within an Applet
import java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class PrintDemoApplet extends Applet {
  public void init() {
    Button b = new Button("Run PrintDemo");
    b.addActionListener(new PDL());
    add(b);
  }
  class PDL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      final PrintDemo pd = new PrintDemo();
      pd.addWindowListener(new WindowAdapter() {
        public void windowClosing(WindowEvent e){
          pd.dispose();
        }
      });
      pd.setSize(500, 500);
      pd.show();
    }
  }
} ///:~

There’s some confusion involved with Java 1.1 printing support. Some of the publicity
seemed to claim that you’d be able to print from within an applet. However, the Java
security system contains a feature that could lock out an applet from initiating its own print
job, requiring that the initiation be done via a Web browser or applet viewer. At the time of
this writing, this seemed to remain an unresolved issue. When I ran this program from
within a Web browser, the PrintDemo window came up just fine, but it wouldn’t print from
the browser.

The clipboard
Java 1.1 supports limited operations with the system clipboard (in the
java.awt.datatransfer package). You can copy String objects to the clipboard as text, and
you can paste text from the clipboard into String objects. Of course, the clipboard is designed
to hold any type of data, but how this data is represented on the clipboard is up to the
program doing the cutting and pasting. Although it currently supports only string data, the
Java clipboard API provides for extensibility through the concept of a “flavor.” When data
comes off the clipboard, it has an associated set of flavors that it can be converted to (for
example, a graph might be represented as a string of numbers or as an image) and you can
see if that particular clipboard data supports the flavor you’re interested in.

The following program is a simple demonstration of cut, copy, and paste with String data in
a TextArea. One thing you’ll notice is that the keyboard sequences you normally use for
cutting, copying, and pasting also work. But if you look at any TextField or TextArea in any
other program you’ll find that they also automatically support the clipboard key sequences.
This example simply adds programmatic control of the clipboard, and you could use these
techniques if you want to capture clipboard text into some non-TextComponent.

//: CutAndPaste.java



560 Thinking in Java  www.BruceEckel.com

// Using the clipboard from Java 1.1
import java.awt.*;
import java.awt.event.*;
import java.awt.datatransfer.*;

public class CutAndPaste extends Frame {
  MenuBar mb = new MenuBar();
  Menu edit = new Menu("Edit");
  MenuItem
    cut = new MenuItem("Cut"),
    copy = new MenuItem("Copy"),
    paste = new MenuItem("Paste");
  TextArea text = new TextArea(20,20);
  Clipboard clipbd =
    getToolkit().getSystemClipboard();
  public CutAndPaste() {
    cut.addActionListener(new CutL());
    copy.addActionListener(new CopyL());
    paste.addActionListener(new PasteL());
    edit.add(cut);
    edit.add(copy);
    edit.add(paste);
    mb.add(edit);
    setMenuBar(mb);
    add(text, BorderLayout.CENTER);
  }
  class CopyL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      String selection = text.getSelectedText();
      StringSelection clipString =
        new StringSelection(selection);
      clipbd.setContents(clipString, clipString);
    }
  }
  class CutL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      String selection = text.getSelectedText();
      StringSelection clipString =
        new StringSelection(selection);
      clipbd.setContents(clipString, clipString);
      text.replaceRange("",
        text.getSelectionStart(),
        text.getSelectionEnd());
    }
  }
  class PasteL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      Transferable clipData =
        clipbd.getContents(CutAndPaste.this);
      try {
        String clipString =
          (String)clipData.
            getTransferData(
              DataFlavor.stringFlavor);



Chapter 13: Creating Windows & Applets 561

        text.replaceRange(clipString,
          text.getSelectionStart(),
          text.getSelectionEnd());
      } catch(Exception ex) {
        System.out.println("not String flavor");
      }
    }
  }
  public static void main(String[] args) {
    CutAndPaste cp = new CutAndPaste();
    cp.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e) {
          System.exit(0);
        }
      });
    cp.setSize(300,200);
    cp.setVisible(true);
  }
} ///:~

The creation and addition of the menu and TextArea should by now seem a pedestrian
activity. What’s different is the creation of the Clipboard field clipbd, which is done through
the Toolkit.

All the action takes place in the listeners. The CopyL and CutL listeners are the same except
for the last line of CutL, which erases the line that’s been copied. The special two lines are
the creation of a StringSelection object from the String and the call to setContents( ) with
this StringSelection. That’s all there is to putting a String on the clipboard.

In PasteL, data is pulled off the clipboard using getContents( ). What comes back is a fairly
anonymous Transferable object, and you don’t really know what it contains. One way to
find out is to call getTransferDataFlavors( ), which returns an array of DataFlavor objects
indicating which flavors are supported by this particular object. You can also ask it directly
with isDataFlavorSupported( ), passing in the flavor you’re interested in. Here, however,
the bold approach is taken: getTransferData( ) is called assuming that the contents supports
the String flavor, and if it doesn’t the problem is sorted out in the exception handler.

In the future you can expect more data flavors to be supported.

Visual programming
and Beans
So far in this book you’ve seen how valuable Java is for creating reusable pieces of code. The
“most reusable” unit of code has been the class, since it comprises a cohesive unit of
characteristics (fields) and behaviors (methods) that can be reused either directly via
composition or through inheritance.

Inheritance and polymorphism are essential parts of object-oriented programming, but in
the majority of cases when you’re putting together an application, what you really want is
components that do exactly what you need. You’d like to drop these parts into your design
like the electronic engineer puts together chips on a circuit board (or even, in the case of



562 Thinking in Java  www.BruceEckel.com

Java, onto a Web page). It seems, too, that there should be some way to accelerate this
“modular assembly” style of programming.

“Visual programming” first became successful – very successful – with Microsoft’s Visual
Basic (VB), followed by a second-generation design in Borland’s Delphi (the primary
inspiration for the Java Beans design). With these programming tools the components are
represented visually, which makes sense since they usually display some kind of visual
component such as a button or a text field. The visual representation, in fact, is often exactly
the way the component will look in the running program. So part of the process of visual
programming involves dragging a component from a pallet and dropping it onto your form.
The application builder tool writes code as you do this, and that code will cause the
component to be created in the running program.

Simply dropping the component onto a form is usually not enough to complete the
program. Often, you must change the characteristics of a component, such as what color it
is, what text is on it, what database it’s connected to, etc. Characteristics that can be
modified at design time are referred to as properties. You can manipulate the properties of
your component inside the application builder tool, and when you create the program this
configuration data is saved so that it can be rejuvenated when the program is started.

By now you’re probably used to the idea that an object is more than characteristics; it’s also
a set of behaviors. At design-time, the behaviors of a visual component are partially
represented by events, meaning “Here’s something that can happen to the component.”
Ordinarily, you decide what you want to happen when an event occurs by tying code to that
event.

Here’s the critical part: the application builder tool is able to dynamically interrogate (using
reflection) the component to find out which properties and events the component supports.
Once it knows what they are, it can display the properties and allow you to change those
(saving the state when you build the program), and also display the events. In general, you
do something like double clicking on an event and the application builder tool creates a code
body and ties it to that particular event. All you have to do at that point is write the code
that executes when the event occurs.

All this adds up to a lot of work that’s done for you by the application builder tool. As a
result you can focus on what the program looks like and what it is supposed to do, and rely
on the application builder tool to manage the connection details for you. The reason that
visual programming tools have been so successful is that they dramatically speed up the
process of building an application – certainly the user interface, but often other portions of
the application as well.

What is a Bean?
After the dust settles, then, a component is really just a block of code, typically embodied in
a class. The key issue is the ability for the application builder tool to discover the properties
and events for that component. To create a VB component, the programmer had to write a
fairly complicated piece of code following certain conventions to expose the properties and
events. Delphi was a second-generation visual programming tool and the language was
actively designed around visual programming so it is much easier to create a visual
component. However, Java has brought the creation of visual components to its most
advanced state with Java Beans, because a Bean is just a class. You don’t have to write any
extra code or use special language extensions in order to make something a Bean. The only
thing you need to do, in fact, is slightly modify the way that you name your methods. It is



Chapter 13: Creating Windows & Applets 563

the method name that tells the application builder tool whether this is a property, an event,
or just an ordinary method.

In the Java documentation, this naming convention is mistakenly termed a “design pattern.”
This is unfortunate since design patterns (see Chapter 16) are challenging enough without
this sort of confusion. It’s not a design pattern, it’s just a naming convention and it’s fairly
simple:

1. For a property named xxx, you typically create two methods: getXxx( ) and setXxx( ).
Note that the first letter after get or set is automatically lowercased to produce the
property name. The type produced by the “get” method is the same as the type of the
argument to the “set” method. The name of the property and the type for the “get” and
“set” are not related.

2. For a boolean property, you can use the “get” and “set” approach above, but you can also
use “is” instead of “get.”

3. Ordinary methods of the Bean don’t conform to the above naming convention, but
they’re public.

4. For events, you use the “listener” approach. It’s exactly the same as you’ve been seeing:
addFooBarListener(FooBarListener) and removeFooBarListener(FooBarListener) to
handle a FooBarEvent. Most of the time the built-in events and listeners will satisfy
your needs, but you can also create your own events and listener interfaces.

Point 1 above answers a question about something you might have noticed in the change
from Java 1.0 to Java 1.1: a number of method names have had small, apparently
meaningless name changes. Now you can see that most of those changes had to do with
adapting to the “get” and “set” naming conventions in order to make that particular
component into a Bean.

We can use these guidelines to create a simple Bean:

//: Frog.java
// A trivial Java Bean
package frogbean;
import java.awt.*;
import java.awt.event.*;

class Spots {}

public class Frog {
  private int jumps;
  private Color color;
  private Spots spots;
  private boolean jmpr;
  public int getJumps() { return jumps; }
  public void setJumps(int newJumps) {
    jumps = newJumps;
  }
  public Color getColor() { return color; }
  public void setColor(Color newColor) {
    color = newColor;
  }
  public Spots getSpots() { return spots; }



564 Thinking in Java  www.BruceEckel.com

  public void setSpots(Spots newSpots) {
    spots = newSpots;
  }
  public boolean isJumper() { return jmpr; }
  public void setJumper(boolean j) { jmpr = j; }
  public void addActionListener(
      ActionListener l) {
    //...
  }
  public void removeActionListener(
      ActionListener l) {
    // ...
  }
  public void addKeyListener(KeyListener l) {
    // ...
  }
  public void removeKeyListener(KeyListener l) {
    // ...
  }
  // An "ordinary" public method:
  public void croak() {
    System.out.println("Ribbet!");
  }
} ///:~

First, you can see that it’s just a class. Usually, all your fields will be private, and accessible
only through methods. Following the naming convention, the properties are jumps, color,
spots, and jumper (notice the change in case of the first letter in the property name).
Although the name of the internal identifier is the same as the name of the property in the
first three cases, in jumper you can see that the property name does not force you to use
any particular name for internal variables (or, indeed, to even have any internal variable for
that property).

The events this Bean handles are ActionEvent and KeyEvent, based on the naming of the
“add” and “remove” methods for the associated listener. Finally, you can see that the
ordinary method croak( ) is still part of the Bean simply because it’s a public method, not
because it conforms to any naming scheme.

Extracting BBeanInfo
with the IIntrospector

One of the most critical parts of the Bean scheme occurs when you drag a Bean off a palette
and plop it down on a form. The application builder tool must be able to create the Bean
(which it can do if there’s a default constructor) and then, without access to the Bean’s
source code, extract all the necessary information to create the property sheet and event
handlers.

Part of the solution is already evident from the end of Chapter 11: Java 1.1 reflection allows
all the methods of an anonymous class to be discovered. This is perfect for solving the Bean
problem without requiring you to use any extra language keywords like those required in
other visual programming languages. In fact, one of the prime reasons that reflection was
added to Java 1.1 was to support Beans (although reflection also supports object
serialization and remote method invocation). So you might expect that the creator of the



Chapter 13: Creating Windows & Applets 565

application builder tool would have to reflect each Bean and hunt through its methods to
find the properties and events for that Bean.

This is certainly possible, but the Java designers wanted to provide a standard interface for
everyone to use, not only to make Beans simpler to use but also to provide a standard
gateway to the creation of more complex Beans. This interface is the Introspector class, and
the most important method in this class is the static getBeanInfo( ). You pass a Class
handle to this method and it fully interrogates that class and returns a BeanInfo object that
you can then dissect to find properties, methods, and events.

Usually you won’t care about any of this – you’ll probably get most of your Beans off the
shelf from vendors, and you don’t need to know all the magic that’s going on underneath.
You’ll simply drag your Beans onto your form, then configure their properties and write
handlers for the events you’re interested in. However, it’s an interesting and educational
exercise to use the Introspector to display information about a Bean, so here’s a tool that
does it (you’ll find it in the frogbean subdirectory):

//: BeanDumper.java
// A method to introspect a Bean
import java.beans.*;
import java.lang.reflect.*;

public class BeanDumper {
  public static void dump(Class bean){
    BeanInfo bi = null;
    try {
      bi = Introspector.getBeanInfo(
        bean, java.lang.Object.class);
    } catch(IntrospectionException ex) {
      System.out.println("Couldn't introspect " +
        bean.getName());
      System.exit(1);
    }
    PropertyDescriptor[] properties =
      bi.getPropertyDescriptors();
    for(int i = 0; i < properties.length; i++) {
      Class p = properties[i].getPropertyType();
      System.out.println(
        "Property type:\n  " + p.getName());
      System.out.println(
        "Property name:\n  " +
        properties[i].getName());
      Method readMethod =
        properties[i].getReadMethod();
      if(readMethod != null)
        System.out.println(
          "Read method:\n  " +
          readMethod.toString());
      Method writeMethod =
        properties[i].getWriteMethod();
      if(writeMethod != null)
        System.out.println(
          "Write method:\n  " +
          writeMethod.toString());



566 Thinking in Java  www.BruceEckel.com

      System.out.println("====================");
    }
    System.out.println("Public methods:");
    MethodDescriptor[] methods =
      bi.getMethodDescriptors();
    for(int i = 0; i < methods.length; i++)
      System.out.println(
        methods[i].getMethod().toString());
    System.out.println("======================");
    System.out.println("Event support:");
    EventSetDescriptor[] events =
      bi.getEventSetDescriptors();
    for(int i = 0; i < events.length; i++) {
      System.out.println("Listener type:\n  " +
        events[i].getListenerType().getName());
      Method[] lm =
        events[i].getListenerMethods();
      for(int j = 0; j < lm.length; j++)
        System.out.println(
          "Listener method:\n  " +
          lm[j].getName());
      MethodDescriptor[] lmd =
        events[i].getListenerMethodDescriptors();
      for(int j = 0; j < lmd.length; j++)
        System.out.println(
          "Method descriptor:\n  " +
          lmd[j].getMethod().toString());
      Method addListener =
        events[i].getAddListenerMethod();
      System.out.println(
          "Add Listener Method:\n  " +
        addListener.toString());
      Method removeListener =
        events[i].getRemoveListenerMethod();
      System.out.println(
        "Remove Listener Method:\n  " +
        removeListener.toString());
      System.out.println("====================");
    }
  }
  // Dump the class of your choice:
  public static void main(String[] args) {
    if(args.length < 1) {
      System.err.println("usage: \n" +
        "BeanDumper fully.qualified.class");
      System.exit(0);
    }
    Class c = null;
    try {
      c = Class.forName(args[0]);
    } catch(ClassNotFoundException ex) {
      System.err.println(
        "Couldn't find " + args[0]);
      System.exit(0);



Chapter 13: Creating Windows & Applets 567

    }
    dump(c);
  }
} ///:~

BeanDumper.dump( ) is the method that does all the work. First it tries to create a
BeanInfo object, and if successful calls the methods of BeanInfo that produce information
about properties, methods, and events. In Introspector.getBeanInfo( ), you’ll see there is a
second argument. This tells the Introspector where to stop in the inheritance hierarchy.
Here, it stops before it parses all the methods from Object, since we’re not interested in
seeing those.

For properties, getPropertyDescriptors( ) returns an array of PropertyDescriptors. For
each PropertyDescriptor you can call getPropertyType( ) to find the class of object that is
passed in and out via the property methods. Then, for each property you can get its
pseudonym (extracted from the method names) with getName( ), the method for reading
with getReadMethod( ), and the method for writing with getWriteMethod( ). These last
two methods return a Method object that can actually be used to invoke the corresponding
method on the object (this is part of reflection).

For the public methods (including the property methods), getMethodDescriptors( ) returns
an array of MethodDescriptors. For each one you can get the associated Method object and
print out its name.

For the events, getEventSetDescriptors( ) returns an array of (what else?)
EventSetDescriptors. Each of these can be queried to find out the class of the listener, the
methods of that listener class, and the add- and remove-listener methods. The BeanDumper
program prints out all of this information.

If you invoke BeanDumper on the Frog class like this:

java BeanDumper frogbean.Frog

the output, after removing extra details that are unnecessary here, is:

class name: Frog
Property type:
  Color
Property name:
  color
Read method:
  public Color getColor()
Write method:
  public void setColor(Color)
====================
Property type:
  Spots
Property name:
  spots
Read method:
  public Spots getSpots()
Write method:
  public void setSpots(Spots)
====================
Property type:



568 Thinking in Java  www.BruceEckel.com

  boolean
Property name:
  jumper
Read method:
  public boolean isJumper()
Write method:
  public void setJumper(boolean)
====================
Property type:
  int
Property name:
  jumps
Read method:
  public int getJumps()
Write method:
  public void setJumps(int)
====================
Public methods:
public void setJumps(int)
public void croak()
public void removeActionListener(ActionListener)
public void addActionListener(ActionListener)
public int getJumps()
public void setColor(Color)
public void setSpots(Spots)
public void setJumper(boolean)
public boolean isJumper()
public void addKeyListener(KeyListener)
public Color getColor()
public void removeKeyListener(KeyListener)
public Spots getSpots()
======================
Event support:
Listener type:
  KeyListener
Listener method:
  keyTyped
Listener method:
  keyPressed
Listener method:
  keyReleased
Method descriptor:
  public void keyTyped(KeyEvent)
Method descriptor:
  public void keyPressed(KeyEvent)
Method descriptor:
  public void keyReleased(KeyEvent)
Add Listener Method:
  public void addKeyListener(KeyListener)
Remove Listener Method:
  public void removeKeyListener(KeyListener)
====================
Listener type:
  ActionListener



Chapter 13: Creating Windows & Applets 569

Listener method:
  actionPerformed
Method descriptor:
  public void actionPerformed(ActionEvent)
Add Listener Method:
  public void addActionListener(ActionListener)
Remove Listener Method:
  public void removeActionListener(ActionListener)
====================

This reveals most of what the Introspector sees as it produces a BeanInfo object from your
Bean. You can see that the type of the property and its name are independent. Notice the
lowercasing of the property name. (The only time this doesn’t occur is when the property
name begins with more than one capital letter in a row.) And remember that the method
names you’re seeing here (such as the read and write methods) are actually produced from a
Method object that can be used to invoke the associated method on the object.

The public method list includes the methods that are not associated with a property or event,
such as croak( ), as well as those that are. These are all the methods that you can call
programmatically for a Bean, and the application builder tool can choose to list all of these
while you’re making method calls, to ease your task.

Finally, you can see that the events are fully parsed out into the listener, its methods, and the
add- and remove-listener methods. Basically, once you have the BeanInfo, you can find out
everything of importance for the Bean. You can also call the methods for that Bean, even
though you don’t have any other information except the object (again, a feature of
reflection).

A more sophisticated Bean
This next example is slightly more sophisticated, albeit frivolous. It’s a canvas that draws a
little circle around the mouse whenever the mouse is moved. When you press the mouse, the
word “Bang!” appears in the middle of the screen, and an action listener is fired.

The properties you can change are the size of the circle as well as the color, size, and text of
the word that is displayed when you press the mouse. A BangBean also has its own
addActionListener( ) and removeActionListener( ) so you can attach your own listener
that will be fired when the user clicks on the BangBean. You should be able to recognize the
property and event support:

//: BangBean.java
// A graphical Bean
package bangbean;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;

public class BangBean extends Canvas
     implements Serializable {
  protected int xm, ym;
  protected int cSize = 20; // Circle size
  protected String text = "Bang!";
  protected int fontSize = 48;



570 Thinking in Java  www.BruceEckel.com

  protected Color tColor = Color.red;
  protected ActionListener actionListener;
  public BangBean() {
    addMouseListener(new ML());
    addMouseMotionListener(new MML());
  }
  public int getCircleSize() { return cSize; }
  public void setCircleSize(int newSize) {
    cSize = newSize;
  }
  public String getBangText() { return text; }
  public void setBangText(String newText) {
    text = newText;
  }
  public int getFontSize() { return fontSize; }
  public void setFontSize(int newSize) {
    fontSize = newSize;
  }
  public Color getTextColor() { return tColor; }
  public void setTextColor(Color newColor) {
    tColor = newColor;
  }
  public void paint(Graphics g) {
    g.setColor(Color.black);
    g.drawOval(xm - cSize/2, ym - cSize/2,
      cSize, cSize);
  }
  // This is a unicast listener, which is
  // the simplest form of listener management:
  public void addActionListener (
      ActionListener l)
        throws TooManyListenersException {
    if(actionListener != null)
      throw new TooManyListenersException();
    actionListener = l;
  }
  public void removeActionListener(
      ActionListener l) {
    actionListener = null;
  }
  class ML extends MouseAdapter {
    public void mousePressed(MouseEvent e) {
      Graphics g = getGraphics();
      g.setColor(tColor);
      g.setFont(
        new Font(
          "TimesRoman", Font.BOLD, fontSize));
      int width =
        g.getFontMetrics().stringWidth(text);
      g.drawString(text,
        (getSize().width - width) /2,
        getSize().height/2);
      g.dispose();
      // Call the listener's method:



Chapter 13: Creating Windows & Applets 571

      if(actionListener != null)
        actionListener.actionPerformed(
          new ActionEvent(BangBean.this,
            ActionEvent.ACTION_PERFORMED, null));
    }
  }
  class MML extends MouseMotionAdapter {
    public void mouseMoved(MouseEvent e) {
      xm = e.getX();
      ym = e.getY();
      repaint();
    }
  }
  public Dimension getPreferredSize() {
    return new Dimension(200, 200);
  }
  // Testing the BangBean:
  public static void main(String[] args) {
    BangBean bb = new BangBean();
    try {
      bb.addActionListener(new BBL());
    } catch(TooManyListenersException e) {}
    Frame aFrame = new Frame("BangBean Test");
    aFrame.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e) {
          System.exit(0);
        }
      });
    aFrame.add(bb, BorderLayout.CENTER);
    aFrame.setSize(300,300);
    aFrame.setVisible(true);
  }
  // During testing, send action information
  // to the console:
  static class BBL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      System.out.println("BangBean action");
    }
  }
} ///:~

The first thing you’ll notice is that BangBean implements the Serializable interface. This
means that the application builder tool can “pickle” all the information for the BangBean
using serialization after the program designer has adjusted the values of the properties.
When the Bean is created as part of the running application, these “pickled” properties are
restored so that you get exactly what you designed.

You can see that all the fields are private, which is what you’ll usually do with a Bean –
allow access only through methods, usually using the “property” scheme.

When you look at the signature for addActionListener( ), you’ll see that it can throw a
TooManyListenersException. This indicates that it is unicast, which means it notifies only
one listener when the event occurs. Ordinarily, you’ll use multicast events so that many



572 Thinking in Java  www.BruceEckel.com

listeners can be notified of an event. However, that runs into issues that you won’t be ready
for until the next chapter, so it will be revisited there (under the heading “Java Beans
revisited”). A unicast event sidesteps the problem.

When you press the mouse, the text is put in the middle of the BangBean, and if the
actionListener field is not null, its actionPerformed( ) is called, creating a new
ActionEvent object in the process. Whenever the mouse is moved, its new coordinates are
captured and the canvas is repainted (erasing any text that’s on the canvas, as you’ll see).

The main( ) is added to allow you to test the program from the command line. When a Bean
is in a development environment, main( ) will not be used, but it’s helpful to have a main( )
in each of your Beans because it provides for rapid testing. main( ) creates a Frame and
places a BangBean within it, attaching a simple ActionListener to the BangBean to print
to the console whenever an ActionEvent occurs. Usually, of course, the application builder
tool would create most of the code that uses the Bean.

When you run the BangBean through BeanDumper or put the BangBean inside a Bean-
enabled development environment, you’ll notice that there are many more properties and
actions than are evident from the above code. That’s because BangBean is inherited from
Canvas, and Canvas is a Bean, so you’re seeing its properties and events as well.

Packaging a Bean
Before you can bring a Bean into a Bean-enabled visual builder tool, it must be put into the
standard Bean container, which is a JAR (Java ARchive) file that includes all the Bean classes
as well as a “manifest” file that says “This is a Bean.” A manifest file is simply a text file that
follows a particular form. For the BangBean, the manifest file looks like this:

Manifest-Version: 1.0

Name: bangbean/BangBean.class
Java-Bean: True

The first line indicates the version of the manifest scheme, which until further notice from
Sun is 1.0. The second line (empty lines are ignored) names the BangBean.class file, and the
third says, “It’s a Bean.” Without the third line, the program builder tool will not recognize
the class as a Bean.

The only tricky part is that you must make sure that you get the proper path in the
“Name:” field. If you look back at BangBean.java, you’ll see it’s in package bangbean (and
thus in a subdirectory called “bangbean” that’s off of the classpath), and the name in the
manifest file must include this package information. In addition, you must place the
manifest file in the directory above the root of your package path, which in this case means
placing the file in the directory above the “bangbean” subdirectory. Then you must invoke
jar from the same directory as the manifest file, as follows:

jar cfm BangBean.jar BangBean.mf bangbean

This assumes that you want the resulting JAR file to be named BangBean.jar and that
you’ve put the manifest in a file called BangBean.mf.

You might wonder “What about all the other classes that were generated when I compiled
BangBean.java?” Well, they all ended up inside the bangbean subdirectory, and you’ll see
that the last argument for the above jar command line is the bangbean subdirectory. When
you give jar the name of a subdirectory, it packages that entire subdirectory into the jar file



Chapter 13: Creating Windows & Applets 573

(including, in this case, the original BangBean.java source-code file – you might not choose
to include the source with your own Beans). In addition, if you turn around and unpack the
JAR file you’ve just created, you’ll discover that your manifest file isn’t inside, but that jar
has created its own manifest file (based partly on yours) called MANIFEST.MF and placed it
inside the subdirectory META-INF (for “meta-information”). If you open this manifest file
you’ll also notice that digital signature information has been added by jar for each file, of
the form:

Digest-Algorithms: SHA MD5
SHA-Digest: pDpEAG9NaeCx8aFtqPI4udSX/O0=
MD5-Digest: O4NcS1hE3Smnzlp2hj6qeg==

In general, you don’t need to worry about any of this, and if you make changes you can just
modify your original manifest file and re-invoke jar to create a new JAR file for your Bean.
You can also add other Beans to the JAR file simply by adding their information to your
manifest.

One thing to notice is that you’ll probably want to put each Bean in its own subdirectory,
since when you create a JAR file you hand the jar utility the name of a subdirectory and it
puts everything in that subdirectory into the JAR file. You can see that both Frog and
BangBean are in their own subdirectories.

Once you have your Bean properly inside a JAR file you can bring it into a Beans-enabled
program-builder environment. The way you do this varies from one tool to the next, but
Sun provides a freely-available test bed for Java Beans in their “Beans Development Kit”
(BDK) called the “beanbox.” (Download the BDK from www.javasoft.com.) To place your Bean
in the beanbox, copy the JAR file into the BDK’s “jars” subdirectory before you start up the
beanbox.

More complex Bean support
You can see how remarkably simple it is to make a Bean. But you aren’t limited to what
you’ve seen here. The Java Bean design provides a simple point of entry but can also scale to
more complex situations. These situations are beyond the scope of this book but they will be
briefly introduced here. You can find more details at http://java.sun.com/beans.

One place where you can add sophistication is with properties. The examples above have
shown only single properties, but it’s also possible to represent multiple properties in an
array. This is called an indexed property. You simply provide the appropriate methods (again
following a naming convention for the method names) and the Introspector recognizes an
indexed property so your application builder tool can respond appropriately.

Properties can be bound, which means that they will notify other objects via a
PropertyChangeEvent. The other objects can then choose to change themselves based on
the change to the Bean.

Properties can be constrained, which means that other objects can veto a change to that
property if it is unacceptable. The other objects are notified using a PropertyChangeEvent,
and they can throw a ProptertyVetoException to prevent the change from happening and
to restore the old values.

You can also change the way your Bean is represented at design time:



574 Thinking in Java  www.BruceEckel.com

1. You can provide a custom property sheet for your particular Bean. The ordinary
property sheet will be used for all other Beans, but yours is automatically invoked when
your Bean is selected.

2. You can create a custom editor for a particular property, so the ordinary property sheet
is used, but when your special property is being edited, your editor will automatically be
invoked.

3. You can provide a custom BeanInfo class for your Bean that produces information
that’s different from the default created by the Introspector.

4. It’s also possible to turn “expert” mode on and off in all FeatureDescriptors to
distinguish between basic features and more complicated ones.

More to Beans
There’s another issue that couldn’t be addressed here. Whenever you create a Bean, you
should expect that it will be run in a multithreaded environment. This means that you must
understand the issues of threading, which will be introduced in the next chapter. You’ll find a
section there called “Java Beans revisited” that will look at the problem and its solution.

Introduction to Swing7

After working your way through this chapter and seeing the huge changes that have
occurred within the AWT (although, if you can remember back that far, Sun claimed Java
was a “stable” language when it first appeared), you might still have the feeling that it’s not
quite done. Sure, there’s now a good event model, and JavaBeans is an excellent component-
reuse design. But the GUI components still seem rather minimal, primitive, and awkward.

That’s where Swing comes in. The Swing library appeared after Java 1.1 so you might
naturally assume that it’s part of Java 1.2. However, it is designed to work with Java 1.1 as
an add-on. This way, you don’t have to wait for your platform to support Java 1.2 in order
to enjoy a good UI component library. Your users might actually need to download the
Swing library if it isn’t part of their Java 1.1 support, and this could cause a few snags. But
it works.

Swing contains all the components that you’ve been missing throughout the rest of this
chapter: those you expect to see in a modern UI, everything from buttons that contain
pictures to trees and grids. It’s a big library, but it’s designed to have appropriate complexity
for the task at hand – if something is simple, you don’t have to write much code but as you
try to do more your code becomes increasingly complex. This means an easy entry point,
but you’ve got the power if you need it.

Swing has great depth. This section does not attempt to be comprehensive, but instead
introduces the power and simplicity of Swing to get you started using the library. Please be
aware that what you see here is intended to be simple. If you need to do more, then Swing

                                                

7 At the time this section was written, the Swing library had been pronounced “frozen” by Sun, so this
code should compile and run without problems as long as you’ve downloaded and installed the Swing
library. (You should be able to compile one of Sun’s included demonstration programs to test your
installation.) If you do encounter difficulties, check www.BruceEckel.com for updated code.



Chapter 13: Creating Windows & Applets 575

can probably give you what you want if you’re willing to do the research by hunting
through the online documentation from Sun.

Benefits of Swing
When you begin to use the Swing library, you’ll see that it’s a huge step forward. Swing
components are Beans (and thus use the Java 1.1 event model), so they can be used in any
development environment that supports Beans. Swing provides a full set of UI components.
For speed, all the components are lightweight (no “peer” components are used), and Swing is
written entirely in Java for portability.

Much of what you’ll like about Swing could be called “orthogonality of use;” that is, once
you pick up the general ideas about the library you can apply them everywhere. Primarily
because of the Beans naming conventions, much of the time I was writing these examples I
could guess at the method names and get it right the first time, without looking anything
up. This is certainly the hallmark of a good library design. In addition, you can generally
plug components into other components and things will work correctly.

Keyboard navigation is automatic – you can use a Swing application without the mouse, but
you don’t have to do any extra programming (the old AWT required some ugly code to
achieve keyboard navigation). Scrolling support is effortless – you simply wrap your
component in a JScrollPane as you add it to your form. Other features such as tool tips
typically require a single line of code to implement.

Swing also supports something called “pluggable look and feel,” which means that the
appearance of the UI can be dynamically changed to suit the expectations of users working
under different platforms and operating systems. It’s even possible to invent your own look
and feel.

Easy conversion
If you’ve struggled long and hard to build your UI using Java 1.1, you don’t want to throw
it away to convert to Swing. Fortunately, the library is designed to allow easy conversion –
in many cases you can simply put a ‘J’ in front of the class names of each of your old AWT
components. Here’s an example that should have a familiar flavor to it:

//: JButtonDemo.java
// Looks like Java 1.1 but with J's added
package c13.swing;
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
import com.sun.java.swing.*;

public class JButtonDemo extends Applet {
  JButton
    b1 = new JButton("JButton 1"),
    b2 = new JButton("JButton 2");
  JTextField t = new JTextField(20);
  public void init() {
    ActionListener al = new ActionListener() {
      public void actionPerformed(ActionEvent e){
        String name =



576 Thinking in Java  www.BruceEckel.com

          ((JButton)e.getSource()).getText();
        t.setText(name + " Pressed");
      }
    };
    b1.addActionListener(al);
    add(b1);
    b2.addActionListener(al);
    add(b2);
    add(t);
  }
  public static void main(String args[]) {
    JButtonDemo applet = new JButtonDemo();
    JFrame frame = new JFrame("TextAreaNew");
    frame.addWindowListener(new WindowAdapter() {
      public void windowClosing(WindowEvent e){
        System.exit(0);
      }
    });
    frame.getContentPane().add(
      applet, BorderLayout.CENTER);
    frame.setSize(300,100);
    applet.init();
    applet.start();
    frame.setVisible(true);
  }
} ///:~

There’s a new import statement, but everything else looks like the Java 1.1 AWT with the
addition of some J’s. Also, you don’t just add( ) something to a Swing JFrame, but you
must get the “content pane” first, as seen above. But you can easily get many of the benefits
of Swing with a simple conversion.

Because of the package statement, you’ll have to invoke this program by saying:

java c13.swing.JbuttonDemo

All of the programs in this section will require a similar form to run them.

A display framework
Although the programs that are both applets and applications can be valuable, if used
everywhere they become distracting and waste paper. Instead, a display framework will be
used for the Swing examples in the rest of this section:

//: Show.java
// Tool for displaying Swing demos
package c13.swing;
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

public class Show {
  public static void
  inFrame(JPanel jp, int width, int height) {



Chapter 13: Creating Windows & Applets 577

    String title = jp.getClass().toString();
    // Remove the word "class":
    if(title.indexOf("class") != -1)
      title = title.substring(6);
    JFrame frame = new JFrame(title);
    frame.addWindowListener(new WindowAdapter() {
      public void windowClosing(WindowEvent e){
        System.exit(0);
      }
    });
    frame.getContentPane().add(
      jp, BorderLayout.CENTER);
    frame.setSize(width, height);
    frame.setVisible(true);
  }
} ///:~

Classes that want to display themselves should inherit from JPanel and then add any visual
components to themselves. Finally, they create a main( ) containing the line:

Show.inFrame(new MyClass(), 500, 300);

in which the last two arguments are the display width and height.

Note that the title for the JFrame is produced using RTTI.

Tool tips
Almost all of the classes that you’ll be using to create your user interfaces are derived from
JComponent, which contains a method called setToolTipText(String). So, for virtually
anything you place on your form, all you need to do is say (for an object jc of any
JComponent-derived class):

jc.setToolTipText("My tip");

and when the mouse stays over that JComponent for a predetermined period of time, a tiny
box containing your text will pop up next to the mouse.

Borders
JComponent also contains a method called setBorder( ), which allows you to place various
interesting borders on any visible component. The following example demonstrates a
number of the different borders that are available, using a method called showBorder( ) that
creates a JPanel and puts on the border in each case. Also, it uses RTTI to find the name of
the border that you’re using (stripping off all the path information), then puts that name in
a JLabel in the middle of the panel:

//: Borders.java
// Different Swing borders
package c13.swing;
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.border.*;



578 Thinking in Java  www.BruceEckel.com

public class Borders extends JPanel {
  static JPanel showBorder(Border b) {
    JPanel jp = new JPanel();
    jp.setLayout(new BorderLayout());
    String nm = b.getClass().toString();
    nm = nm.substring(nm.lastIndexOf('.') + 1);
    jp.add(new JLabel(nm, JLabel.CENTER),
      BorderLayout.CENTER);
    jp.setBorder(b);
    return jp;
  }
  public Borders() {
    setLayout(new GridLayout(2,4));
    add(showBorder(new TitledBorder("Title")));
    add(showBorder(new EtchedBorder()));
    add(showBorder(new LineBorder(Color.blue)));
    add(showBorder(
      new MatteBorder(5,5,30,30,Color.green)));
    add(showBorder(
      new BevelBorder(BevelBorder.RAISED)));
    add(showBorder(
      new SoftBevelBorder(BevelBorder.LOWERED)));
    add(showBorder(new CompoundBorder(
      new EtchedBorder(),
      new LineBorder(Color.red))));
  }
  public static void main(String args[]) {
    Show.inFrame(new Borders(), 500, 300);
  }
} ///:~

Most of the examples in this section use TitledBorder, but you can see that the rest of the
borders are as easy to use. You can also create your own borders and put them inside
buttons, labels, etc. – anything derived from JComponent.

Buttons
Swing adds a number of different types of buttons, and it also changes the organization of
the selection components: all buttons, checkboxes, radio buttons, and even menu items are
inherited from AbstractButton (which, since menu items are included, would probably have
been better named “AbstractChooser” or something equally general). You’ll see the use of
menu items shortly, but the following example shows the various types of buttons available:

//: Buttons.java
// Various Swing buttons
package c13.swing;
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.basic.*;
import com.sun.java.swing.border.*;



Chapter 13: Creating Windows & Applets 579

public class Buttons extends JPanel {
  JButton jb = new JButton("JButton");
  BasicArrowButton
    up = new BasicArrowButton(
      BasicArrowButton.NORTH),
    down = new BasicArrowButton(
      BasicArrowButton.SOUTH),
    right = new BasicArrowButton(
      BasicArrowButton.EAST),
    left = new BasicArrowButton(
      BasicArrowButton.WEST);
  Spinner spin = new Spinner(47, "");
  StringSpinner stringSpin =
    new StringSpinner(3, "",
      new String[] {
        "red", "green", "blue", "yellow" });
  public Buttons() {
    add(jb);
    add(new JToggleButton("JToggleButton"));
    add(new JCheckBox("JCheckBox"));
    add(new JRadioButton("JRadioButton"));
    up.addActionListener(new ActionListener() {
      public void actionPerformed(ActionEvent e){
        spin.setValue(spin.getValue() + 1);
      }
    });
    down.addActionListener(new ActionListener() {
      public void actionPerformed(ActionEvent e){
        spin.setValue(spin.getValue() - 1);
      }
    });
    JPanel jp = new JPanel();
    jp.add(spin);
    jp.add(up);
    jp.add(down);
    jp.setBorder(new TitledBorder("Spinner"));
    add(jp);
    left.addActionListener(new ActionListener() {
      public void actionPerformed(ActionEvent e){
        stringSpin.setValue(
          stringSpin.getValue() + 1);
      }
    });
    right.addActionListener(new ActionListener(){
      public void actionPerformed(ActionEvent e){
        stringSpin.setValue(
          stringSpin.getValue() - 1);
      }
    });
    jp = new JPanel();
    jp.add(stringSpin);
    jp.add(left);
    jp.add(right);
    jp.setBorder(



580 Thinking in Java  www.BruceEckel.com

      new TitledBorder("StringSpinner"));
    add(jp);
  }
  public static void main(String args[]) {
    Show.inFrame(new Buttons(), 300, 200);
  }
} ///:~

The JButton looks like the AWT button, but there’s more you can do to it (like add images,
as you’ll see later). In com.sun.java.swing.basic, there is a BasicArrowButton that is
convenient, but what to test it on? There are two types of “spinners” that just beg to be used
with arrow buttons: Spinner, which changes an int value, and StringSpinner, which moves
through an array of String (even automatically wrapping when it reaches the end of the
array). The ActionListeners attached to the arrow buttons shows how relatively obvious it
is to use these spinners: you just get and set values, using method names you would expect
since they’re Beans.

When you run the example, you’ll see that the toggle button holds its last position, in or
out. But the check boxes and radio buttons behave identically to each other, just clicking on
or off (they are inherited from JToggleButton).

Button groups
If you want radio buttons to behave in an “exclusive or” fashion, you must add them to a
button group, in a similar but less awkward way as the old AWT. But as the example below
demonstrates, any AbstractButton can be added to a ButtonGroup.

To avoid repeating a lot of code, this example uses reflection to generate the groups of
different types of buttons. This is seen in makeBPanel, which creates a button group and a
JPanel, and for each String in the array that’s the second argument to makeBPanel( ), it
adds an object of the class represented by the first argument:

//: ButtonGroups.java
// Uses reflection to create groups of different
// types of AbstractButton.
package c13.swing;
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.border.*;
import java.lang.reflect.*;

public class ButtonGroups extends JPanel {
  static String[] ids = {
    "June", "Ward", "Beaver",
    "Wally", "Eddie", "Lumpy",
  };
  static JPanel
  makeBPanel(Class bClass, String[] ids) {
    ButtonGroup bg = new ButtonGroup();
    JPanel jp = new JPanel();
    String title = bClass.getName();
    title = title.substring(
      title.lastIndexOf('.') + 1);



Chapter 13: Creating Windows & Applets 581

    jp.setBorder(new TitledBorder(title));
    for(int i = 0; i < ids.length; i++) {
      AbstractButton ab = new JButton("failed");
      try {
        // Get the dynamic constructor method
        // that takes a String argument:
        Constructor ctor = bClass.getConstructor(
          new Class[] { String.class });
        // Create a new object:
        ab = (AbstractButton)ctor.newInstance(
          new Object[]{ids[i]});
      } catch(Exception ex) {
        System.out.println("can't create " +
          bClass);
      }
      bg.add(ab);
      jp.add(ab);
    }
    return jp;
  }
  public ButtonGroups() {
    add(makeBPanel(JButton.class, ids));
    add(makeBPanel(JToggleButton.class, ids));
    add(makeBPanel(JCheckBox.class, ids));
    add(makeBPanel(JRadioButton.class, ids));
  }
  public static void main(String args[]) {
    Show.inFrame(new ButtonGroups(), 500, 300);
  }
} ///:~

The title for the border is taken from the name of the class, stripping off all the path
information. The AbstractButton is initialized to a JButton that has the label “Failed” so if
you ignore the exception message, you’ll still see the problem on screen. The
getConstructor( ) method produces a Constructor object that takes the array of arguments
of the types in the Class array passed to getConstructor( ). Then all you do is call
newInstance( ), passing it an array of Object containing your actual arguments – in this
case, just the String from the ids array.

This adds a little complexity to what is a simple process. To get “exclusive or” behavior with
buttons, you create a button group and add each button for which you want that behavior
to the group. When you run the program, you’ll see that all the buttons except JButton
exhibit this “exclusive or” behavior.

Icons
You can use an Icon inside a JLabel or anything that inherits from AbstractButton
(including JButton, JCheckbox, JradioButton, and the different kinds of JMenuItem).
Using Icons with JLabels is quite straightforward (you’ll see an example later). The
following example explores all the additional ways you can use Icons with buttons and their
descendants.

You can use any gif files you want, but the ones used in this example are part of the book’s
code distribution, available at www.BruceEckel.com. To open a file and bring in the image,



582 Thinking in Java  www.BruceEckel.com

simply create an ImageIcon and hand it the file name. From then on, you can use the
resulting Icon in your program.

//: Faces.java
// Icon behavior in JButtons
package c13.swing;
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

public class Faces extends JPanel {
  static Icon[] faces = {
    new ImageIcon("face0.gif"),
    new ImageIcon("face1.gif"),
    new ImageIcon("face2.gif"),
    new ImageIcon("face3.gif"),
    new ImageIcon("face4.gif"),
  };
  JButton
    jb = new JButton("JButton", faces[3]),
    jb2 = new JButton("Disable");
  boolean mad = false;
  public Faces() {
    jb.addActionListener(new ActionListener() {
      public void actionPerformed(ActionEvent e){
        if(mad) {
          jb.setIcon(faces[3]);
          mad = false;
        } else {
          jb.setIcon(faces[0]);
          mad = true;
        }
        jb.setVerticalAlignment(JButton.TOP);
        jb.setHorizontalAlignment(JButton.LEFT);
      }
    });
    jb.setRolloverEnabled(true);
    jb.setRolloverIcon(faces[1]);
    jb.setPressedIcon(faces[2]);
    jb.setDisabledIcon(faces[4]);
    jb.setToolTipText("Yow!");
    add(jb);
    jb2.addActionListener(new ActionListener() {
      public void actionPerformed(ActionEvent e){
        if(jb.isEnabled()) {
          jb.setEnabled(false);
          jb2.setText("Enable");
        } else {
          jb.setEnabled(true);
          jb2.setText("Disable");
        }
      }
    });
    add(jb2);



Chapter 13: Creating Windows & Applets 583

  }
  public static void main(String args[]) {
    Show.inFrame(new Faces(), 300, 200);
  }
} ///:~

An Icon can be used in many constructors, but you can also use setIcon( ) to add or change
an Icon. This example also shows how a JButton (or any AbstractButton) can set the
various different sorts of icons that appear when things happen to that button: when it’s
pressed, disabled, or “rolled over” (the mouse moves over it without clicking). You’ll see that
this gives the button a rather animated feel.

Note that a tool tip is also added to the button.

Menus
Menus are much improved and more flexible in Swing – for example, you can use them just
about anywhere, including panels and applets. The syntax for using them is much the same
as it was in the old AWT, and this preserves the same problem present in the old AWT: you
must hard-code your menus and there isn’t any support for menus as resources (which,
among other things, would make them easier to change for other languages). In addition,
menu code gets long-winded and sometimes messy. The following approach takes a step in
the direction of solving this problem by putting all the information about each menu into a
two-dimensional array of Object (that way you can put anything you want into the array).
This array is organized so that the first row represents the menu name, and the remaining
rows represent the menu items and their characteristics. You’ll notice the rows of the array
do not have to be uniform from one to the next – as long as your code knows where
everything should be, each row can be completely different.

//: Menus.java
// A menu-building system; also demonstrates
// icons in labels and menu items.
package c13.swing;
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

public class Menus extends JPanel {
  static final Boolean
    bT = new Boolean(true),
    bF = new Boolean(false);
  // Dummy class to create type identifiers:
  static class MType { MType(int i) {} };
  static final MType
    mi = new MType(1), // Normal menu item
    cb = new MType(2), // Checkbox menu item
    rb = new MType(3); // Radio button menu item
  JTextField t = new JTextField(10);
  JLabel l = new JLabel("Icon Selected",
    Faces.faces[0], JLabel.CENTER);
  ActionListener a1 = new ActionListener() {
    public void actionPerformed(ActionEvent e) {
      t.setText(
        ((JMenuItem)e.getSource()).getText());



584 Thinking in Java  www.BruceEckel.com

    }
  };
  ActionListener a2 = new ActionListener() {
    public void actionPerformed(ActionEvent e) {
      JMenuItem mi = (JMenuItem)e.getSource();
      l.setText(mi.getText());
      l.setIcon(mi.getIcon());
    }
  };
  // Store menu data as "resources":
  public Object[][] fileMenu = {
    // Menu name and accelerator:
    { "File", new Character('F') },
    // Name type accel listener enabled
    { "New", mi, new Character('N'), a1, bT },
    { "Open", mi, new Character('O'), a1, bT },
    { "Save", mi, new Character('S'), a1, bF },
    { "Save As", mi, new Character('A'), a1, bF},
    { null }, // Separator
    { "Exit", mi, new Character('x'), a1, bT },
  };
  public Object[][] editMenu = {
    // Menu name:
    { "Edit", new Character('E') },
    // Name type accel listener enabled
    { "Cut", mi, new Character('t'), a1, bT },
    { "Copy", mi, new Character('C'), a1, bT },
    { "Paste", mi, new Character('P'), a1, bT },
    { null }, // Separator
    { "Select All", mi,new Character('l'),a1,bT},
  };
  public Object[][] helpMenu = {
    // Menu name:
    { "Help", new Character('H') },
    // Name type accel listener enabled
    { "Index", mi, new Character('I'), a1, bT },
    { "Using help", mi,new Character('U'),a1,bT},
    { null }, // Separator
    { "About", mi, new Character('t'), a1, bT },
  };
  public Object[][] optionMenu = {
    // Menu name:
    { "Options", new Character('O') },
    // Name type accel listener enabled
    { "Option 1", cb, new Character('1'), a1,bT},
    { "Option 2", cb, new Character('2'), a1,bT},
  };
  public Object[][] faceMenu = {
    // Menu name:
    { "Faces", new Character('a') },
    // Optinal last element is icon
    { "Face 0", rb, new Character('0'), a2, bT,
      Faces.faces[0] },
    { "Face 1", rb, new Character('1'), a2, bT,



Chapter 13: Creating Windows & Applets 585

      Faces.faces[1] },
    { "Face 2", rb, new Character('2'), a2, bT,
      Faces.faces[2] },
    { "Face 3", rb, new Character('3'), a2, bT,
      Faces.faces[3] },
    { "Face 4", rb, new Character('4'), a2, bT,
      Faces.faces[4] },
  };
  public Object[] menuBar = {
    fileMenu, editMenu, faceMenu,
    optionMenu, helpMenu,
  };
  static public JMenuBar
  createMenuBar(Object[] menuBarData) {
    JMenuBar menuBar = new JMenuBar();
    for(int i = 0; i < menuBarData.length; i++)
      menuBar.add(
        createMenu((Object[][])menuBarData[i]));
    return menuBar;
  }
  static ButtonGroup bgroup;
  static public JMenu
  createMenu(Object[][] menuData) {
    JMenu menu = new JMenu();
    menu.setText((String)menuData[0][0]);
    menu.setKeyAccelerator(
      ((Character)menuData[0][1]).charValue());
    // Create redundantly, in case there are
    // any radio buttons:
    bgroup = new ButtonGroup();
    for(int i = 1; i < menuData.length; i++) {
      if(menuData[i][0] == null)
        menu.add(new JSeparator());
      else
        menu.add(createMenuItem(menuData[i]));
    }
    return menu;
  }
  static public JMenuItem
  createMenuItem(Object[] data) {
    JMenuItem m = null;
    MType type = (MType)data[1];
    if(type == mi)
      m = new JMenuItem();
    else if(type == cb)
      m = new JCheckBoxMenuItem();
    else if(type == rb) {
      m = new JRadioButtonMenuItem();
      bgroup.add(m);
    }
    m.setText((String)data[0]);
    m.setKeyAccelerator(
      ((Character)data[2]).charValue());
    m.addActionListener(



586 Thinking in Java  www.BruceEckel.com

      (ActionListener)data[3]);
    m.setEnabled(
      ((Boolean)data[4]).booleanValue());
    if(data.length == 6)
      m.setIcon((Icon)data[5]);
    return m;
  }
  Menus() {
    setLayout(new BorderLayout());
    add(createMenuBar(menuBar),
      BorderLayout.NORTH);
    JPanel p = new JPanel();
    p.setLayout(new BorderLayout());
    p.add(t, BorderLayout.NORTH);
    p.add(l, BorderLayout.CENTER);
    add(p, BorderLayout.CENTER);
  }
  public static void main(String args[]) {
    Show.inFrame(new Menus(), 300, 200);
  }
} ///:~

The goal is to allow the programmer to simply create tables to represent each menu, rather
than typing lines of code to build the menus. Each table produces one menu, and the first
row in the table contains the menu name and its keyboard accelerator. The remaining rows
contain the data for each menu item: the string to be placed on the menu item, what type of
menu item it is, its keyboard accelerator, the actionlistener that is fired when this menu item
is selected, and whether this menu item is enabled. If a row starts with null it is treated as a
separator.

To prevent wasteful and tedious multiple creations of Boolean objects and type flags, these
are created as static final values at the beginning of the class: bT and bF to represent
Booleans and different objects of the dummy class MType to describe normal menu items
(mi), checkbox menu items (cb), and radio button menu items (rb). Remember that an array
of Object may hold only Object handles and not primitive values.

This example also shows how JLabels and JMenuItems (and their descendants) may hold
Icons. An Icon is placed into the JLabel via its constructor and changed when the
corresponding menu item is selected.

The menuBar array contains the handles to all the file menus in the order that you want
them to appear on the menu bar. You pass this array to createMenuBar( ), which breaks it
up into individual arrays of menu data, passing each to createMenu( ). This method, in
turn, takes the first line of the menu data and creates a JMenu from it, then calls
createMenuItem( ) for each of the remaining lines of menu data. Finally,
createMenuItem( ) parses each line of menu data and determines the type of menu and its
attributes, and creates that menu item appropriately. In the end, as you can see in the
Menus( ) constructor, to create a menu from these tables say createMenuBar(menuBar)
and everything is handled recursively.

This example does not take care of building cascading menus, but you should have enough
of the concept that you can add that capability if you need it.



Chapter 13: Creating Windows & Applets 587

Popup menus
The implementation of JPopupMenu seems a bit strange: you must call enableEvents( )
and select for mouse events instead of using an event listener. That is, it’s possible to add a
mouse listener but the MouseEvent that comes through doesn’t return true from
isPopupTrigger( ) – it doesn’t know that it should trigger a popup menu.8 In addition, when
I tried the listener approach it behaved strangely, possibly from recursive click handling. In
any event, the following example produces the desired popup behavior:

//: Popup.java
// Creating popup menus with Swing
package c13.swing;
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

public class Popup extends JPanel {
  JPopupMenu popup = new JPopupMenu();
  JTextField t = new JTextField(10);
  public Popup() {
    add(t);
    ActionListener al = new ActionListener() {
      public void actionPerformed(ActionEvent e){
        t.setText(
          ((JMenuItem)e.getSource()).getText());
      }
    };
    JMenuItem m = new JMenuItem("Hither");
    m.addActionListener(al);
    popup.add(m);
    m = new JMenuItem("Yon");
    m.addActionListener(al);
    popup.add(m);
    m = new JMenuItem("Afar");
    m.addActionListener(al);
    popup.add(m);
    popup.addSeparator();
    m = new JMenuItem("Stay Here");
    m.addActionListener(al);
    popup.add(m);
    enableEvents(AWTEvent.MOUSE_EVENT_MASK);
  }
  protected void processMouseEvent(MouseEvent e){
    if (e.isPopupTrigger())
      popup.show(
        e.getComponent(), e.getX(), e.getY());
    super.processMouseEvent(e);
  }
  public static void main(String args[]) {
    Show.inFrame(new Popup(),200,150);

                                                

8 This may also be a result of using pre-beta software.



588 Thinking in Java  www.BruceEckel.com

  }
} ///:~

The same ActionListener is added to each JMenuItem, so that it fetches the text from the
menu label and inserts it into the JTextField.

List boxes and combo boxes
List boxes and combo boxes in Swing work much as they do in the old AWT, but they also
have increased functionality if you need it. In addition, some conveniences have been added.
For example, the JList has a constructor that takes an array of Strings to display (oddly
enough this same feature is not available in JComboBox). Here’s a simple example that
shows the basic use of each:

//: ListCombo.java
// List boxes & Combo boxes
package c13.swing;
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

public class ListCombo extends JPanel {
  public ListCombo() {
    setLayout(new GridLayout(2,1));
    JList list = new JList(ButtonGroups.ids);
    add(new JScrollPane(list));
    JComboBox combo = new JComboBox();
    for(int i = 0; i < 100; i++)
      combo.addItem(Integer.toString(i));
    add(combo);
  }
  public static void main(String args[]) {
    Show.inFrame(new ListCombo(),200,200);
  }
} ///:~

Something else that seems a bit odd at first is that JLists do not automatically provide
scrolling, even though that’s something you always expect. Adding support for scrolling
turns out to be quite easy, as shown above – you simply wrap the JList in a JScrollPane
and all the details are automatically managed for you.

Sliders and progress bars
A slider allows the user to input data by moving a point back and forth, which is intuitive in
some situations (volume controls, for example). A progress bar displays data in a relative
fashion from “full” to “empty” so the user gets a perspective. My favorite example for these
is to simply hook the slider to the progress bar so when you move the slider the progress bar
changes accordingly:

//: Progress.java
// Using progress bars and sliders
package c13.swing;
import java.awt.*;



Chapter 13: Creating Windows & Applets 589

import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.event.*;
import com.sun.java.swing.border.*;

public class Progress extends JPanel {
  JProgressBar pb = new JProgressBar();
  JSlider sb =
    new JSlider(JSlider.HORIZONTAL, 0, 100, 60);
  public Progress() {
    setLayout(new GridLayout(2,1));
    add(pb);
    sb.setValue(0);
    sb.setPaintTicks(true);
    sb.setMajorTickSpacing(20);
    sb.setMinorTickSpacing(5);
    sb.setBorder(new TitledBorder("Slide Me"));
    sb.addChangeListener(new ChangeListener() {
      public void stateChanged(ChangeEvent e) {
        pb.setValue(sb.getValue());
      }
    });
    add(sb);
  }
  public static void main(String args[]) {
    Show.inFrame(new Progress(),200,150);
  }
} ///:~

The JProgressBar is fairly straightforward, but the JSlider has a lot of options, such as the
orientation and major and minor tick marks. Notice how straightforward it is to add a titled
border.

Trees
Using a JTree can be as simple as saying:

add(new JTree(
  new Object[] {"this", "that", "other"}));

This displays a primitive tree. The API for trees is vast, however – certainly one of the largest
in Swing. It appears that you can do just about anything with trees, but more sophisticated
tasks might require quite a bit of research and experimentation.

Fortunately, there is a middle ground provided in the library: the “default” tree components,
which generally do what you need. So most of the time you can use these components, and
only in special cases will you need to delve in and understand trees more deeply.

The following example uses the “default” tree components to display a tree in an applet.
When you press the button, a new subtree is added under the currently-selected node (if no
node is selected, the root node is used):

//: Trees.java
// Simple Swing tree example. Trees can be made



590 Thinking in Java  www.BruceEckel.com

// vastly more complex than this.
package c13.swing;
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.tree.*;

// Takes an array of Strings and makes the first
// element a node and the rest leaves:
class Branch {
  DefaultMutableTreeNode r;
  public Branch(String[] data) {
    r = new DefaultMutableTreeNode(data[0]);
    for(int i = 1; i < data.length; i++)
      r.add(new DefaultMutableTreeNode(data[i]));
  }
  public DefaultMutableTreeNode node() {
    return r;
  }
}

public class Trees extends JPanel {
  String[][] data = {
    { "Colors", "Red", "Blue", "Green" },
    { "Flavors", "Tart", "Sweet", "Bland" },
    { "Length", "Short", "Medium", "Long" },
    { "Volume", "High", "Medium", "Low" },
    { "Temperature", "High", "Medium", "Low" },
    { "Intensity", "High", "Medium", "Low" },
  };
  static int i = 0;
  DefaultMutableTreeNode root, child, chosen;
  JTree tree;
  DefaultTreeModel model;
  public Trees() {
    setLayout(new BorderLayout());
    root = new DefaultMutableTreeNode("root");
    tree = new JTree(root);
    // Add it and make it take care of scrolling:
    add(new JScrollPane(tree),
      BorderLayout.CENTER);
    // Capture the tree's model:
    model =(DefaultTreeModel)tree.getModel();
    JButton test = new JButton("Press me");
    test.addActionListener(new ActionListener() {
      public void actionPerformed(ActionEvent e){
        if(i < data.length) {
          child = new Branch(data[i++]).node();
          // What's the last one you clicked?
          chosen = (DefaultMutableTreeNode)
            tree.getLastSelectedPathComponent();
          if(chosen == null) chosen = root;
          // The model will create the
          // appropriate event. In response, the



Chapter 13: Creating Windows & Applets 591

          // tree will update itself:
          model.insertNodeInto(child, chosen, 0);
          // This puts the new node on the
          // currently chosen node.
        }
      }
    });
    // Change the button's colors:
    test.setBackground(Color.blue);
    test.setForeground(Color.white);
    JPanel p = new JPanel();
    p.add(test);
    add(p, BorderLayout.SOUTH);
  }
  public static void main(String args[]) {
    Show.inFrame(new Trees(),200,500);
  }
} ///:~

The first class, Branch, is a tool to take an array of String and build a
DefaultMutableTreeNode with the first String as the root and the rest of the Strings in the
array as leaves. Then node( ) can be called to produce the root of this “branch.”

The Trees class contains a two-dimensional array of Strings from which Branches can be
made and a static int i to count through this array. The DefaultMutableTreeNode objects
hold the nodes, but the physical representation on screen is controlled by the JTree and its
associated model, the DefaultTreeModel. Note that when the JTree is added to the applet, it
is wrapped in a JScrollPane – this is all it takes to provide automatic scrolling.

The JTree is controlled through its model. When you make a change to the model, the model
generates an event that causes the JTree to perform any necessary updates to the visible
representation of the tree. In init( ), the model is captured by calling getModel( ). When the
button is pressed, a new “branch” is created. Then the currently selected component is found
(or the root if nothing is selected) and the model’s insertNodeInto( ) method does all the
work of changing the tree and causing it to be updated.

Most of the time an example like the one above will give you what you need in a tree.
However, trees have the power to do just about anything you can imagine – everywhere you
see the word “default” in the example above, you can substitute your own class to get
different behavior. But beware: almost all of these classes have a large interface, so you could
spend a lot of time struggling to understand the intricacies of trees.

Tables
Like trees, tables in Swing are vast and powerful. They are primarily intended to be the
popular “grid” interface to databases via Java Database Connectivity (JDBC, discussed in
Chapter 15) and thus they have a tremendous amount of flexibility, which you pay for in
complexity. There’s easily enough here to be the basis of a full-blown spreadsheet and could
probably justify an entire book. However, it is also possible to create a relatively simple
JTable if you understand the basics.

The JTable controls how the data is displayed, but the TableModel controls the data itself.
So to create a JTable you’ll typically create a TableModel first. You can fully implement the



592 Thinking in Java  www.BruceEckel.com

TableModel interface, but it’s usually simpler to inherit from the helper class
AbstractTableModel:

//: Table.java
// Simple demonstration of JTable
package c13.swing;
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.table.*;
import com.sun.java.swing.event.*;

// The TableModel controls all the data:
class DataModel extends AbstractTableModel {
  Object[][] data = {
    {"one", "two", "three", "four"},
    {"five", "six", "seven", "eight"},
    {"nine", "ten", "eleven", "twelve"},
  };
  // Prints data when table changes:
  class TML implements TableModelListener {
    public void tableChanged(TableModelEvent e) {
      for(int i = 0; i < data.length; i++) {
        for(int j = 0; j < data[0].length; j++)
          System.out.print(data[i][j] + " ");
        System.out.println();
      }
    }
  }
  DataModel() {
    addTableModelListener(new TML());
  }
  public int getColumnCount() {
    return data[0].length;
  }
  public int getRowCount() {
    return data.length;
  }
  public Object getValueAt(int row, int col) {
    return data[row][col];
  }
  public void
  setValueAt(Object val, int row, int col) {
    data[row][col] = val;
    // Indicate the change has happened:
    fireTableDataChanged();
  }
  public boolean
  isCellEditable(int row, int col) {
    return true;
  }
};

public class Table extends JPanel {



Chapter 13: Creating Windows & Applets 593

  public Table() {
    setLayout(new BorderLayout());
    JTable table = new JTable(new DataModel());
    JScrollPane scrollpane =
      JTable.createScrollPaneForTable(table);
    add(scrollpane, BorderLayout.CENTER);
  }
  public static void main(String args[]) {
    Show.inFrame(new Table(),200,200);
  }
} ///:~

DataModel contains an array of data, but you could also get the data from some other
source such as a database. The constructor adds a TableModelListener which prints the
array every time the table is changed. The rest of the methods follow the Beans naming
convention, and are used by JTable when it wants to present the information in
DataModel. AbstractTableModel provides default methods for setValueAt( ) and
isCellEditable( ) that prevent changes to the data, so if you want to be able to edit the data,
you must override these methods.

Once you have a TableModel, you only need to hand it to the JTable constructor. All the
details of displaying, editing and updating will be taken care of for you. Notice that this
example also puts the JTable in a JScrollPane, which requires a special JTable method.

Tabbed Panes
Earlier in this chapter you were introduced to the positively medieval CardLayout, and saw
how you had to manage all the switching of the ugly cards yourself. Someone actually
thought this was a good design. Fortunately, Swing remedies this by providing
JTabbedPane, which handles all the tabs, the switching, and everything. The contrast
between CardLayout and JTabbedPane is breathtaking.

The following example is quite fun because it takes advantage of the design of the previous
examples. They are all built as descendants of JPanel, so this example will place each one of
the previous examples in its own pane on a JTabbedPane. You’ll notice that the use of RTTI
makes the example quite small and elegant:

//: Tabbed.java
// Using tabbed panes
package c13.swing;
import java.awt.*;
import com.sun.java.swing.*;
import com.sun.java.swing.border.*;

public class Tabbed extends JPanel {
  static Object[][] q = {
    { "Felix", Borders.class },
    { "The Professor", Buttons.class },
    { "Rock Bottom", ButtonGroups.class },
    { "Theodore", Faces.class },
    { "Simon", Menus.class },
    { "Alvin", Popup.class },
    { "Tom", ListCombo.class },
    { "Jerry", Progress.class },



594 Thinking in Java  www.BruceEckel.com

    { "Bugs", Trees.class },
    { "Daffy", Table.class },
  };
  static JPanel makePanel(Class c) {
    String title = c.getName();
    title = title.substring(
      title.lastIndexOf('.') + 1);
    JPanel sp = null;
    try {
      sp = (JPanel)c.newInstance();
    } catch(Exception e) {
      System.out.println(e);
    }
    sp.setBorder(new TitledBorder(title));
    return sp;
  }
  public Tabbed() {
    setLayout(new BorderLayout());
    JTabbedPane tabbed = new JTabbedPane();
    for(int i = 0; i < q.length; i++)
      tabbed.addTab((String)q[i][0],
        makePanel((Class)q[i][1]));
    add(tabbed, BorderLayout.CENTER);
    tabbed.setSelectedIndex(q.length/2);
  }
  public static void main(String args[]) {
    Show.inFrame(new Tabbed(),460,350);
  }
} ///:~

Again, you can see the theme of an array used for configuration: the first element is the
String to be placed on the tab and the second is the JPanel class that will be displayed inside
of the corresponding pane. In the Tabbed( ) constructor, you can see the two important
JTabbedPane methods that are used: addTab( ) to put a new pane in, and
setSelectedIndex( ) to choose the pane to start with. (One in the middle is chosen just to
show that you don’t have to start with the first pane.)

When you call addTab( ) you supply it with the String for the tab and any Component
(that is, an AWT Component, not just a JComponent, which is derived from the AWT
Component). The Component will be displayed in the pane. Once you do this, no further
management is necessary – the JTabbedPane takes care of everything else for you (as it
should).

The makePanel( ) method takes the Class object of the class you want to create and uses
newInstance( ) to create one, casting it to a JPanel (of course, this assumes that any class
you want to add must inherit from JPanel, but that’s been the structure used for the
examples in this section). It adds a TitledBorder that contains the name of the class and
returns the result as a JPanel to be used in addTab( ).

When you run the program you’ll see that the JTabbedPane automatically stacks the tabs if
there are too many of them to fit on one row.



Chapter 13: Creating Windows & Applets 595

The Swing message box
Windowing environments commonly contain a standard set of message boxes that allow
you to quickly post information to the user or to capture information from the user. In
Swing, these message boxes are contained in JOptionPane. You have many different
possibilities (some quite sophisticated), but the ones you’ll most commonly use are probably
the message dialog and confirmation dialog, invoked using the static
JOptionPane.showMessageDialog( ) and JOptionPane. showConfirmDialog( ).

More to Swing
This section was meant only to give you an introduction to the power of Swing and to get
you started so you could see how relatively simple it is to feel your way through the
libraries. What you’ve seen so far will probably suffice for a good portion of your UI design
needs. However, there’s a lot more to Swing – it’s intended to be a fully-powered UI design
tool kit. If you don’t see what you need here, delve into the online documentation from Sun
and search the Web. There’s probably a way to accomplish just about everything you can
imagine.

Some of the topics that were not covered in this section include:

� More specific components such as JColorChooser, JFileChooser, JPasswordField,
JHTMLPane (which performs simple HTML formatting and display), and JTextPane (a
text editor that supports formatting, word wrap, and images). These are fairly
straightforward to use.

� The new event types for Swing. In many ways, these are like exceptions: the type is
what’s important, and the name can be used to infer just about everything else about
them.

� New layout managers: Springs & Struts (a la Smalltalk) and BoxLayout.

� Splitter control: a divider style splitter bar that allows you to dynamically manipulate
the position of other components.

� JLayeredPane and JInternalFrame, used together to create child frame windows inside
parent frame windows, to produce multiple-document interface (MDI) applications.

� Pluggable look and feel, so you can write a single program that can dynamically adapt
to behave as expected under different platforms and operating systems.

� Custom cursors.

� Dockable floating toolbars with the JToolbar API.

� Double-buffering and Automatic repaint batching for smoother screen redraws.

� Built-in “undo” support.

� Drag and drop support.



596 Thinking in Java  www.BruceEckel.com

Summary
Of all the libraries in Java, the AWT has seen the most dramatic changes from Java 1.0 to
Java 1.2. The Java 1.0 AWT was roundly criticized as being one of the worst designs seen,
and while it would allow you to create portable programs, the resulting GUI was “equally
mediocre on all platforms.” It was also limiting, awkward, and unpleasant to use compared
with native application development tools on a particular platform.

When Java 1.1 introduced the new event model and Java Beans, the stage was set – now it
was possible to create GUI components that could be easily dragged and dropped inside
visual application builder tools. In addition, the design of the event model and Beans clearly
shows strong consideration for ease of programming and maintainable code (something that
was not evident in the 1.0 AWT). But it wasn’t until the GUI components – the JFC/Swing
classes – appeared that the job was finished. With the Swing components, cross-platform
GUI programming can be a civilized experience.

Actually, the only thing that’s missing is the application builder tool, and this is where the
real revolution lies. Microsoft’s Visual Basic and Visual C++ require their application builder
tools, as does Borland’s Delphi and C++ Builder. If you want the application builder tool to
get better, you have to cross your fingers and hope the vendor will give you what you want.
But Java is an open environment, and so not only does it allow for competing application
builder environments, it encourages them. And for these tools to be taken seriously, they
must support Java Beans. This means a leveled playing field: if a better application builder
tool comes along, you’re not tied to the one you’ve been using – you can pick up and move
to the new one and increase your productivity. This kind of competitive environment for GUI
application builder tools has not been seen before, and the resulting competition can generate
only positive results for the productivity of the programmer.

Exercises
 1.  Create an applet with a text field and three buttons. When you press each button, make

some different text appear in the text field.

 2.  Add a check box to the applet created in Exercise 1, capture the event, and insert different
text into the text field.

 3.  Create an applet and add all the components that cause action( ) to be called, then capture
their events and display an appropriate message for each inside a text field.

 4.  Add to Exercise 3 the components that can be used only with events detected by
handleEvent( ). Override handleEvent( ) and display appropriate messages for each
inside a text field.

 5.  Create an applet with a Button and a TextField. Write a handleEvent( ) so that if the
button has the focus, characters typed into it will appear in the TextField.

 6.  Create an application and add to the main frame all the components described in this
chapter, including menus and a dialog box.



Chapter 13: Creating Windows & Applets 597

 7.  Modify TextNew.java so that the characters in t2 retain the original case that they were
typed in, instead of automatically being forced to upper case.

 8.  Modify CardLayout1.java so that it uses the Java 1.1 event model.

 9.  Add Frog.class to the manifest file shown in this chapter and run jar to create a JAR file
containing both Frog and BangBean. Now either download and install the BDK from Sun
or use your own Beans-enabled program builder tool and add the JAR file to your
environment so you can test the two Beans.

 10.  Create your own Java Bean called Valve that contains two properties: a Boolean called
“on” and an integer called “level.” Create a manifest file, use jar to package your Bean,
then load it into the beanbox or into your own Beans-enabled program builder tool so that
you can test it.

 11.  (Somewhat challenging) Change Menus.java so that it handles cascading menus.



599

A

14: Multiple threads
Objects provide a way to divide a program up into independent sections.
Often, you also need to turn a program into separate, independently-
running subtasks.
Each of these independent subtasks is called a thread, and you program as if each thread
runs by itself and has the CPU to itself. Some underlying mechanism is actually dividing up
the CPU time for you, but in general, you don’t have to think about it, which makes
programming with multiple threads a much easier task.

Some definitions are useful at this point. A process is a self-contained running program with
its own address space. A multitasking operating system is capable of running more than one
process (program) at a time, while making it look like each one is chugging along by
periodically providing CPU cycles to each process. A thread is a single sequential flow of
control within a process. A single process can thus have multiple concurrently executing
threads.

There are many possible uses for multithreading, but in general, you’ll have some part of
your program tied to a particular event or resource, and you don’t want to hang up the rest
of your program because of that. So you create a thread associated with that event or
resource and let it run independently of the main program. A good example is a “quit”
button – you don’t want to be forced to poll the quit button in every piece of code you write
in your program and yet you want the quit button to be responsive, as if you were checking
it regularly. In fact, one of the most immediately compelling reasons for multithreading is to
produce a responsive user interface.



600 Thinking in Java  www.BruceEckel.com

Responsive user interfaces
As a starting point, consider a program that performs some CPU-intensive operation and
thus ends up ignoring user input and being unresponsive. This one, a combined
applet/application, will simply display the result of a running counter:

//: Counter1.java
// A non-responsive user interface
package c14;
import java.awt.*;
import java.awt.event.*;
import java.applet.*;

public class Counter1 extends Applet {
  private int count = 0;
  private Button
    onOff = new Button("Toggle"),
    start = new Button("Start");
  private TextField t = new TextField(10);
  private boolean runFlag = true;
  public void init() {
    add(t);
    start.addActionListener(new StartL());
    add(start);
    onOff.addActionListener(new OnOffL());
    add(onOff);
  }
  public void go() {
    while (true) {
      try {
        Thread.currentThread().sleep(100);
      } catch (InterruptedException e){}
      if(runFlag)
        t.setText(Integer.toString(count++));
    }
  }
  class StartL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      go();
    }
  }
  class OnOffL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      runFlag = !runFlag;
    }
  }
  public static void main(String[] args) {
    Counter1 applet = new Counter1();
    Frame aFrame = new Frame("Counter1");
    aFrame.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e) {
          System.exit(0);



Chapter 14: Multiple Threads 601

        }
      });
    aFrame.add(applet, BorderLayout.CENTER);
    aFrame.setSize(300,200);
    applet.init();
    applet.start();
    aFrame.setVisible(true);
  }
} ///:~

At this point, the AWT and applet code should be reasonably familiar from Chapter 13. The
go( ) method is where the program stays busy: it puts the current value of count into the
TextField t, then increments count.

Part of the infinite loop inside go( ) is to call sleep( ). sleep( ) must be associated with a
Thread object, and it turns out that every application has some thread associated with it.
(Indeed, Java is based on threads and there are always some running along with your
application.) So regardless of whether you’re explicitly using threads, you can produce the
current thread used by your program with Thread. currentThread() (a static method of the
Thread class) and then call sleep( ) for that thread.

Note that sleep( ) can throw InterruptedException, although throwing such an exception
is considered a hostile way to break from a thread and should be discouraged. (Once again,
exceptions are for exceptional conditions, not normal flow of control.) Interrupting a
sleeping thread is included to support a future language feature.

When the start button is pressed, go( ) is invoked. And upon examining go( ), you might
naively think (as I did) that it should allow multithreading because it goes to sleep. That is,
while the method is asleep, it seems like the CPU could be busy monitoring other button
presses. But it turns out that the real problem is that go( ) never returns, since it’s in an
infinite loop, and this means that actionPerformed( ) never returns. Since you’re stuck
inside actionPerformed( ) for the first keypress, the program can’t handle any other events.
(To get out, you must somehow kill the process; the easiest way to do this is to press
Control-C in the console window.)

The basic problem here is that go( ) needs to continue performing its operations, and at the
same time it needs to return so actionPerformed( ) can complete and the user interface can
continue responding to the user. But in a conventional method like go( ) it cannot continue
and at the same time return control to the rest of the program. This sounds like an
impossible thing to accomplish, as if the CPU must be in two places at once, but this is
precisely the illusion that threading provides. The thread model (and programming support
in Java) is a programming convenience to simplify juggling several operations at the same
time within a single program. With threads, the CPU will pop around and give each thread
some of its time. Each thread has the consciousness of constantly having the CPU to itself,
but the CPU’s time is actually sliced between all the threads.

Threading reduces computing efficiency somewhat, but the net improvement in program
design, resource balancing, and user convenience is often quite valuable. Of course, if you
have more than one CPU, then the operating system can dedicate each CPU to a set of
threads or even a single thread and the whole program can run much faster. Multitasking
and multithreading tend to be the most reasonable ways to utilize multiprocessor systems.



602 Thinking in Java  www.BruceEckel.com

Inheriting from TThread
The simplest way to create a thread is to inherit from class Thread, which has all the wiring
necessary to create and run threads. The most important method for Thread is run( ),
which you must override to make the thread do your bidding. Thus, run( ) is the code that
will be executed “simultaneously” with the other threads in a program.

The following example creates any number of threads that it keeps track of by assigning
each thread a unique number, generated with a static variable. The Thread’s run( ) method
is overridden to count down each time it passes through its loop and to finish when the
count is zero (at the point when run( ) returns, the thread is terminated).

//: SimpleThread.java
// Very simple Threading example

public class SimpleThread extends Thread {
  private int countDown = 5;
  private int threadNumber;
  private static int threadCount = 0;
  public SimpleThread() {
    threadNumber = ++threadCount;
    System.out.println("Making " + threadNumber);
  }
  public void run() {
    while(true) {
      System.out.println("Thread " +
        threadNumber + "(" + countDown + ")");
      if(--countDown == 0) return;
    }
  }
  public static void main(String[] args) {
    for(int i = 0; i < 5; i++)
      new SimpleThread().start();
    System.out.println("All Threads Started");
  }
} ///:~

A run( ) method virtually always has some kind of loop that continues until the thread is no
longer necessary, so you must establish the condition on which to break out of this loop (or,
in the case above, simply return from run( )). Often, run( ) is cast in the form of an infinite
loop, which means that, barring some external call to stop( ) or destroy( ) for that thread, it
will run forever (until the program completes).

In main( ) you can see a number of threads being created and run. The special method that
comes with the Thread class is start( ), which performs special initialization for the thread
and then calls run( ). So the steps are: the constructor is called to build the object, then
start( ) configures the thread and calls run( ). If you don’t call start( ) (which you can do in
the constructor, if that’s appropriate) the thread will never be started.

The output for one run of this program (it will be different every time) is:

Making 1
Making 2
Making 3
Making 4



Chapter 14: Multiple Threads 603

Making 5
Thread 1(5)
Thread 1(4)
Thread 1(3)
Thread 1(2)
Thread 2(5)
Thread 2(4)
Thread 2(3)
Thread 2(2)
Thread 2(1)
Thread 1(1)
All Threads Started
Thread 3(5)
Thread 4(5)
Thread 4(4)
Thread 4(3)
Thread 4(2)
Thread 4(1)
Thread 5(5)
Thread 5(4)
Thread 5(3)
Thread 5(2)
Thread 5(1)
Thread 3(4)
Thread 3(3)
Thread 3(2)
Thread 3(1)

You’ll notice that nowhere in this example is sleep( ) called, and yet the output indicates that
each thread gets a portion of the CPU’s time in which to execute. This shows that sleep( ),
while it relies on the existence of a thread in order to execute, is not involved with either
enabling or disabling threading. It’s simply another method.

You can also see that the threads are not run in the order that they’re created. In fact, the
order that the CPU attends to an existing set of threads is indeterminate, unless you go in
and adjust the priorities using Thread’s setPriority( ) method.

When main( ) creates the Thread objects it isn’t capturing the handles for any of them. An
ordinary object would be fair game for garbage collection, but not a Thread. Each Thread
“registers” itself so there is actually a reference to it someplace and the garbage collector
can’t clean it up.

Threading for a responsive interface
Now it’s possible to solve the problem in Counter1.java with a thread. The trick is to place
the subtask – that is, the loop that’s inside go( ) – inside the run( ) method of a thread.
When the user presses the start button, the thread is started, but then the creation of the
thread completes, so even though the thread is running, the main job of the program
(watching for and responding to user-interface events) can continue. Here’s the solution:

//: Counter2.java
// A responsive user interface with threads
import java.awt.*;
import java.awt.event.*;



604 Thinking in Java  www.BruceEckel.com

import java.applet.*;

class SeparateSubTask extends Thread {
  private int count = 0;
  private Counter2 c2;
  private boolean runFlag = true;
  public SeparateSubTask(Counter2 c2) {
    this.c2 = c2;
    start();
  }
  public void invertFlag() { runFlag = !runFlag;}
  public void run() {
    while (true) {
     try {
      sleep(100);
     } catch (InterruptedException e){}
     if(runFlag)
       c2.t.setText(Integer.toString(count++));
    }
  }
}

public class Counter2 extends Applet {
  TextField t = new TextField(10);
  private SeparateSubTask sp = null;
  private Button
    onOff = new Button("Toggle"),
    start = new Button("Start");
  public void init() {
    add(t);
    start.addActionListener(new StartL());
    add(start);
    onOff.addActionListener(new OnOffL());
    add(onOff);
  }
  class StartL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      if(sp == null)
        sp = new SeparateSubTask(Counter2.this);
    }
  }
  class OnOffL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      if(sp != null)
        sp.invertFlag();
    }
  }
  public static void main(String[] args) {
    Counter2 applet = new Counter2();
    Frame aFrame = new Frame("Counter2");
    aFrame.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e) {
          System.exit(0);



Chapter 14: Multiple Threads 605

        }
      });
    aFrame.add(applet, BorderLayout.CENTER);
    aFrame.setSize(300,200);
    applet.init();
    applet.start();
    aFrame.setVisible(true);
  }
} ///:~

Counter2 is now a straightforward program, whose job is only to set up and maintain the
user interface. But now, when the user presses the start button, a method is not called.
Instead a thread of class SeparateSubTask is created (the constructor starts it, in this case),
and then the Counter2 event loop continues. Note that the handle to the SeparateSubTask
is stored so that when you press the onOff button it can toggle the runFlag inside the
SeparateSubTask object. That thread (when it looks at the flag) can then start and stop
itself. (This could also have been accomplished by making SeparateSubTask an inner class.)

The class SeparateSubTask is a simple extension of Thread with a constructor (that stores
the Counter2 handle and then runs the thread by calling start( )) and a run( ) that
essentially contains the code from inside go( ) in Counter1.java. Because SeparateSubTask
knows that it holds a handle to a Counter2, it can reach in and access Counter2’s TextField
when it needs to.

When you press the onOff button, you’ll see a virtually instant response. Of course, the
response isn’t really instant, not like that of a system that’s driven by interrupts. The
counter stops only when the thread has the CPU and notices that the flag has changed.

Improving the code with an inner class
As an aside, look at the coupling that occurs between the SeparateSubTask and Counter2
classes. The SeparateSubTask is intimately tied to Counter2 – it must keep a handle to its
“parent” Counter2 object so it can call back and manipulate it. And yet the two classes
shouldn’t really merge together into a single class (although in the next section you’ll see
that Java provides a way to combine them) because they’re doing separate things and are
created at different times. They are tightly connected (what I call a “couplet”) and this makes
the coding awkward. This is a situation in which an inner class can improve the code
significantly:

//: Counter2i.java
// Counter2 using an inner class for the thread
import java.awt.*;
import java.awt.event.*;
import java.applet.*;

public class Counter2i extends Applet {
  private class SeparateSubTask extends Thread {
    int count = 0;
    boolean runFlag = true;
    SeparateSubTask() { start(); }
    public void run() {
      while (true) {
       try {
        sleep(100);
       } catch (InterruptedException e){}



606 Thinking in Java  www.BruceEckel.com

       if(runFlag)
         t.setText(Integer.toString(count++));
      }
    }
  }
  private SeparateSubTask sp = null;
  private TextField t = new TextField(10);
  private Button
    onOff = new Button("Toggle"),
    start = new Button("Start");
  public void init() {
    add(t);
    start.addActionListener(new StartL());
    add(start);
    onOff.addActionListener(new OnOffL());
    add(onOff);
  }
  class StartL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      if(sp == null)
        sp = new SeparateSubTask();
    }
  }
  class OnOffL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      if(sp != null)
        sp.runFlag = !sp.runFlag; // invertFlag();
    }
  }
  public static void main(String[] args) {
    Counter2i applet = new Counter2i();
    Frame aFrame = new Frame("Counter2i");
    aFrame.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e) {
          System.exit(0);
        }
      });
    aFrame.add(applet, BorderLayout.CENTER);
    aFrame.setSize(300,200);
    applet.init();
    applet.start();
    aFrame.setVisible(true);
  }
} ///:~

This SeparateSubTask name will not collide with the SeparateSubTask in the previous
example even though they’re in the same directory, since it’s hidden as an inner class. You
can also see that the inner class is private, which means that its fields and methods can be
given default access (except for run( ), which must be public since it is public in the base
class). The private inner class is not accessible to anyone but Counter2i, and since the two
classes are tightly coupled it’s convenient to loosen the access restrictions between them. In
SeparateSubTask you can see that the invertFlag( ) method has been removed since
Counter2i can now directly access runFlag.



Chapter 14: Multiple Threads 607

Also, notice that SeparateSubTask’s constructor has been simplified – now it only starts the
thread. The handle to the Counter2i object is still being captured as in the previous version,
but instead of doing it by hand and referencing the outer object by hand, the inner class
mechanism takes care of it automatically. In run( ), you can see that t is simply accessed, as
if it were a field of SeparateSubTask. The t field in the parent class can now be made
private since SeparateSubTask can access it without getting any special permission – and
it’s always good to make fields “as private as possible” so they cannot be accidentally
changed by forces outside your class.

Anytime you notice classes that appear to have high coupling with each other, consider the
coding and maintenance improvements you might get by using inner classes.

Combining the thread
with the main class

In the example above you can see that the thread class is separate from the program’s main
class. This makes a lot of sense and is relatively easy to understand. There is, however, an
alternate form that you will often see used that is not so clear but is usually more concise
(which probably accounts for its popularity). This form combines the main program class
with the thread class by making the main program class a thread. Since for a GUI program
the main program class must be inherited from either Frame or Applet, an interface must
be used to paste on the additional functionality. This interface is called Runnable, and it
contains the same basic method that Thread does. In fact, Thread also implements
Runnable, which specifies only that there be a run( ) method.

The use of the combined program/thread is not quite so obvious. When you start the
program, you create an object that’s Runnable, but you don’t start the thread. This must be
done explicitly. You can see this in the following program, which reproduces the
functionality of Counter2:

//: Counter3.java
// Using the Runnable interface to turn the
// main class into a thread.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;

public class Counter3
    extends Applet implements Runnable {
  private int count = 0;
  private boolean runFlag = true;
  private Thread selfThread = null;
  private Button
    onOff = new Button("Toggle"),
    start = new Button("Start");
  private TextField t = new TextField(10);
  public void init() {
    add(t);
    start.addActionListener(new StartL());
    add(start);
    onOff.addActionListener(new OnOffL());
    add(onOff);
  }



608 Thinking in Java  www.BruceEckel.com

  public void run() {
    while (true) {
      try {
        selfThread.sleep(100);
      } catch (InterruptedException e){}
      if(runFlag)
        t.setText(Integer.toString(count++));
    }
  }
  class StartL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      if(selfThread == null) {
        selfThread = new Thread(Counter3.this);
        selfThread.start();
      }
    }
  }
  class OnOffL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      runFlag = !runFlag;
    }
  }
  public static void main(String[] args) {
    Counter3 applet = new Counter3();
    Frame aFrame = new Frame("Counter3");
    aFrame.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e) {
          System.exit(0);
        }
      });
    aFrame.add(applet, BorderLayout.CENTER);
    aFrame.setSize(300,200);
    applet.init();
    applet.start();
    aFrame.setVisible(true);
  }
} ///:~

Now the run( ) is inside the class, but it’s still dormant after init( ) completes. When you
press the start button, the thread is created (if it doesn’t already exist) in the somewhat
obscure expression:

new Thread(Counter3.this);

When something has a Runnable interface, it simply means that it has a run( ) method, but
there’s nothing special about that – it doesn’t produce any innate threading abilities, like
those of a class inherited from Thread. So to produce a thread from a Runnable object, you
must create a thread separately and hand it the Runnable object; there’s a special
constructor for this that takes a Runnable as its argument. You can then call start( ) for
that thread:

selfThread.start();

This performs the usual initialization and then calls run( ).



Chapter 14: Multiple Threads 609

The convenient aspect about the Runnable interface is that everything belongs to the same
class. If you need to access something, you simply do it without going through a separate
object. The penalty for this convenience is strict, though – you can have only a single thread
running for that particular object (although you can create more objects of that type, or
create other threads in different classes).

Note that the Runnable interface is not what imposes this restriction. It’s the combination
of Runnable and your main class that does it, since you can have only one object of your
main class per application.

Making many threads
Consider the creation of many different threads. You can’t do this with the previous example,
so you must go back to having separate classes inherited from Thread to encapsulate the
run( ). But this is a more general solution and easier to understand, so while the previous
example shows a coding style you’ll often see, I can’t recommend it for most cases because
it’s just a little bit more confusing and less flexible.

The following example repeats the form of the examples above with counters and toggle
buttons. But now all the information for a particular counter, including the button and text
field, is inside its own object that is inherited from Thread. All the fields in Ticker are
private, which means that the Ticker implementation can be changed at will, including the
quantity and type of data components to acquire and display information. When a Ticker
object is created, the constructor requires a handle to an AWT Container, which Ticker fills
with its visual components. This way, if you change the visual components, the code that
uses Ticker doesn’t need to be modified.

//: Counter4.java
// If you separate your thread from the main
// class, you can have as many threads as you
// want.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;

class Ticker extends Thread {
  private Button b = new Button("Toggle");
  private TextField t = new TextField(10);
  private int count = 0;
  private boolean runFlag = true;
  public Ticker(Container c) {
    b.addActionListener(new ToggleL());
    Panel p = new Panel();
    p.add(t);
    p.add(b);
    c.add(p);
  }
  class ToggleL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      runFlag = !runFlag;
    }
  }
  public void run() {
    while (true) {



610 Thinking in Java  www.BruceEckel.com

      if(runFlag)
        t.setText(Integer.toString(count++));
       try {
        sleep(100);
      } catch (InterruptedException e){}
    }
  }
}

public class Counter4 extends Applet {
  private Button start = new Button("Start");
  private boolean started = false;
  private Ticker[] s;
  private boolean isApplet = true;
  private int size;
  public void init() {
    // Get parameter "size" from Web page:
    if(isApplet)
      size =
        Integer.parseInt(getParameter("size"));
    s = new Ticker[size];
    for(int i = 0; i < s.length; i++)
      s[i] = new Ticker(this);
    start.addActionListener(new StartL());
    add(start);
  }
  class StartL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      if(!started) {
        started = true;
        for(int i = 0; i < s.length; i++)
          s[i].start();
      }
    }
  }
  public static void main(String[] args) {
    Counter4 applet = new Counter4();
    // This isn't an applet, so set the flag and
    // produce the parameter values from args:
    applet.isApplet = false;
    applet.size =
      (args.length == 0 ? 5 :
        Integer.parseInt(args[0]));
    Frame aFrame = new Frame("Counter4");
    aFrame.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e) {
          System.exit(0);
        }
      });
    aFrame.add(applet, BorderLayout.CENTER);
    aFrame.setSize(200, applet.size * 50);
    applet.init();
    applet.start();



Chapter 14: Multiple Threads 611

    aFrame.setVisible(true);
  }
} ///:~

Ticker contains not only its threading equipment but also the way to control and display the
thread. You can create as many threads as you want without explicitly creating the
windowing components.

In Counter4 there’s an array of Ticker objects called s. For maximum flexibility, the size of
this array is initialized by reaching out into the Web page using applet parameters. Here’s
what the size parameter looks like on the page, embedded inside the applet description:

<applet code=Counter4 width=600 height=600>
<param name=size value="20">
</applet>

The param, name, and value are all Web-page keywords. name is what you’ll be referring
to in your program, and value can be any string, not just something that resolves to a
number.

You’ll notice that the determination of the size of the array s is done inside init( ), and not as
part of an inline definition of s. That is, you cannot say as part of the class definition (outside
of any methods):

int size = Integer.parseInt(getParameter("size"));
Ticker[] s = new Ticker[size];

You can compile this, but you’ll get a strange null-pointer exception at run time. It works
fine if you move the getParameter( ) initialization inside of init( ). The applet framework
performs the necessary startup to grab the parameters before entering init( ).

In addition, this code is set up to be either an applet or an application. When it’s an
application the size argument is extracted from the command line (or a default value is
provided).

Once the size of the array is established, new Ticker objects are created; as part of the Ticker
constructor the button and text field for each Ticker is added to the applet.

Pressing the start button means looping through the entire array of Tickers and calling
start( ) for each one. Remember, start( ) performs necessary thread initialization and then
calls run( ) for that thread.

The ToggleL listener simply inverts the flag in Ticker and when the associated thread next
takes note it can react accordingly.

One value of this example is that it allows you to easily create large sets of independent
subtasks and to monitor their behavior. In this case, you’ll see that as the number of
subtasks gets larger, your machine will probably show more divergence in the displayed
numbers because of the way that the threads are served.

You can also experiment to discover how important the sleep(100) is inside Ticker.run( ). If
you remove the sleep( ), things will work fine until you press a toggle button. Then that
particular thread has a false runFlag and the run( ) is just tied up in a tight infinite loop,
which appears difficult to break during multithreading, so the responsiveness and speed of
the program really bogs down.



612 Thinking in Java  www.BruceEckel.com

Daemon threads
A “daemon” thread is one that is supposed to provide a general service in the background as
long as the program is running, but is not part of the essence of the program. Thus, when
all of the non-daemon threads complete the program is terminated. Conversely, if there are
any non-daemon threads still running the program doesn’t terminate. (There is, for
instance, a thread that runs main( ).)

You can find out if a thread is a daemon by calling isDaemon( ), and you can turn the
daemonhood of a thread on and off with setDaemon( ). If a thread is a daemon, then any
threads it creates will automatically be daemons.

The following example demonstrates daemon threads:

//: Daemons.java
// Daemonic behavior
import java.io.*;

class Daemon extends Thread {
  private static final int SIZE = 10;
  private Thread[] t = new Thread[SIZE];
  public Daemon() {
    setDaemon(true);
    start();
  }
  public void run() {
    for(int i = 0; i < SIZE; i++)
      t[i] = new DaemonSpawn(i);
    for(int i = 0; i < SIZE; i++)
      System.out.println(
        "t[" + i + "].isDaemon() = "
        + t[i].isDaemon());
    while(true)
      yield();
  }
}

class DaemonSpawn extends Thread {
  public DaemonSpawn(int i) {
    System.out.println(
      "DaemonSpawn " + i + " started");
    start();
  }
  public void run() {
    while(true)
      yield();
  }
}

public class Daemons {
  public static void main(String[] args) {
    Thread d = new Daemon();
    System.out.println(
      "d.isDaemon() = " + d.isDaemon());



Chapter 14: Multiple Threads 613

    // Allow the daemon threads to finish
    // their startup processes:
    BufferedReader stdin =
      new BufferedReader(
        new InputStreamReader(System.in));
    System.out.println("Waiting for CR");
    try {
      stdin.readLine();
    } catch(IOException e) {}
  }
} ///:~

The Daemon thread sets its daemon flag to “true” and then spawns a bunch of other threads
to show that they are also daemons. Then it goes into an infinite loop that calls yield( ) to
give up control to the other processes. In an earlier version of this program, the infinite loops
would increment int counters, but this seemed to bring the whole program to a stop. Using
yield( ) makes the program quite peppy.

There’s nothing to keep the program from terminating once main( ) finishes its job since
there are nothing but daemon threads running. So that you can see the results of starting all
the daemon threads, System.in is set up to read so the program waits for a carriage return
before terminating. Without this you see only some of the results from the creation of the
daemon threads. (Try replacing the readLine( ) code with sleep( ) calls of various lengths to
see this behavior.)

Sharing limited resources
You can think of a single-threaded program as one lonely entity moving around through
your problem space and doing one thing at a time. Because there’s only one entity, you
never have to think about the problem of two entities trying to use the same resource at the
same time, like two people trying to park in the same space, walk through a door at the
same time, or even talk at the same time.

With multithreading, things aren’t lonely anymore, but you now have the possibility of two
or more threads trying to use the same limited resource at once. Colliding over a resource
must be prevented or else you’ll have two threads trying to access the same bank account at
the same time, print to the same printer, or adjust the same valve, etc.

Improperly accessing resources
Consider a variation on the counters that have been used so far in this chapter. In the
following example, each thread contains two counters that are incremented and displayed
inside run( ). In addition, there’s another thread of class Watcher that is watching the
counters to see if they’re always equivalent. This seems like a needless activity, since looking
at the code it appears obvious that the counters will always be the same. But that’s where
the surprise comes in. Here’s the first version of the program:

//: Sharing1.java
// Problems with resource sharing while threading
import java.awt.*;
import java.awt.event.*;
import java.applet.*;



614 Thinking in Java  www.BruceEckel.com

class TwoCounter extends Thread {
  private boolean started = false;
  private TextField
    t1 = new TextField(5),
    t2 = new TextField(5);
  private Label l =
    new Label("count1 == count2");
  private int count1 = 0, count2 = 0;
  // Add the display components as a panel
  // to the given container:
  public TwoCounter(Container c) {
    Panel p = new Panel();
    p.add(t1);
    p.add(t2);
    p.add(l);
    c.add(p);
  }
  public void start() {
    if(!started) {
      started = true;
      super.start();
    }
  }
  public void run() {
    while (true) {
      t1.setText(Integer.toString(count1++));
      t2.setText(Integer.toString(count2++));
      try {
        sleep(500);
      } catch (InterruptedException e){}
    }
  }
  public void synchTest() {
    Sharing1.incrementAccess();
    if(count1 != count2)
      l.setText("Unsynched");
  }
}

class Watcher extends Thread {
  private Sharing1 p;
  public Watcher(Sharing1 p) {
    this.p = p;
    start();
  }
  public void run() {
    while(true) {
      for(int i = 0; i < p.s.length; i++)
        p.s[i].synchTest();
      try {
        sleep(500);
      } catch (InterruptedException e){}
    }
  }



Chapter 14: Multiple Threads 615

}

public class Sharing1 extends Applet {
  TwoCounter[] s;
  private static int accessCount = 0;
  private static TextField aCount =
    new TextField("0", 10);
  public static void incrementAccess() {
    accessCount++;
    aCount.setText(Integer.toString(accessCount));
  }
  private Button
    start = new Button("Start"),
    observer = new Button("Observe");
  private boolean isApplet = true;
  private int numCounters = 0;
  private int numObservers = 0;
  public void init() {
    if(isApplet) {
      numCounters =
        Integer.parseInt(getParameter("size"));
      numObservers =
        Integer.parseInt(
          getParameter("observers"));
    }
    s = new TwoCounter[numCounters];
    for(int i = 0; i < s.length; i++)
      s[i] = new TwoCounter(this);
    Panel p = new Panel();
    start.addActionListener(new StartL());
    p.add(start);
    observer.addActionListener(new ObserverL());
    p.add(observer);
    p.add(new Label("Access Count"));
    p.add(aCount);
    add(p);
  }
  class StartL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      for(int i = 0; i < s.length; i++)
        s[i].start();
    }
  }
  class ObserverL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      for(int i = 0; i < numObservers; i++)
        new Watcher(Sharing1.this);
    }
  }
  public static void main(String[] args) {
    Sharing1 applet = new Sharing1();
    // This isn't an applet, so set the flag and
    // produce the parameter values from args:
    applet.isApplet = false;



616 Thinking in Java  www.BruceEckel.com

    applet.numCounters =
      (args.length == 0 ? 5 :
        Integer.parseInt(args[0]));
    applet.numObservers =
      (args.length < 2 ? 5 :
        Integer.parseInt(args[1]));
    Frame aFrame = new Frame("Sharing1");
    aFrame.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e){
          System.exit(0);
        }
      });
    aFrame.add(applet, BorderLayout.CENTER);
    aFrame.setSize(350, applet.numCounters *100);
    applet.init();
    applet.start();
    aFrame.setVisible(true);
  }
} ///:~

As before, each counter contains its own display components: two text fields and a label that
initially indicates that the counts are equivalent. These components are added to the
Container in the TwoCounter constructor. Because this thread is started via a button press
by the user, it’s possible that start( ) could be called more than once. It’s illegal for
Thread.start( ) to be called more than once for a thread (an exception is thrown). You can
see that the machinery to prevent this in the started flag and the overridden start( )
method.

In run( ), count1 and count2 are incremented and displayed in a manner that would seem
to keep them identical. Then sleep( ) is called; without this call the program balks because it
becomes hard for the CPU to swap tasks.

The synchTest( ) method performs the apparently useless activity of checking to see if
count1 is equivalent to count2; if they are not equivalent it sets the label to “Unsynched” to
indicate this. But first, it calls a static member of the class Sharing1 that increments and
displays an access counter to show how many times this check has occurred successfully.
(The reason for this will become apparent in future variations of this example.)

The Watcher class is a thread whose job is to call synchTest( ) for all of the TwoCounter
objects that are active. It does this by stepping through the array that’s kept in the Sharing1
object. You can think of the Watcher as constantly peeking over the shoulders of the
TwoCounter objects.

Sharing1 contains an array of TwoCounter objects that it initializes in init( ) and starts as
threads when you press the “start” button. Later, when you press the “Observe” button, one
or more observers are created and freed upon the unsuspecting TwoCounter threads.

Note that to run this as an applet in a browser, your Web page will need to contain the lines:

<applet code=Sharing1 width=650 height=500>
<param name=size value="20">
<param name=observers value="1">
</applet>



Chapter 14: Multiple Threads 617

You can change the width, height, and parameters to suit your experimental tastes. By
changing the size and observers you’ll change the behavior of the program. You can also see
that this program is set up to run as a stand-alone application by pulling the arguments
from the command line (or providing defaults).

Here’s the surprising part. In TwoCounter.run( ), the infinite loop is just repeatedly passing
over the adjacent lines:

t1.setText(Integer.toString(count1++));
t2.setText(Integer.toString(count2++));

(as well as sleeping, but that’s not important here). When you run the program, however,
you’ll discover that count1 and count2 will be observed (by the Watcher) to be unequal at
times! This is because of the nature of threads – they can be suspended at any time. So at
times, the suspension occurs between the execution of the above two lines, and the Watcher
thread happens to come along and perform the comparison at just this moment, thus
finding the two counters to be different.

This example shows a fundamental problem with using threads. You never know when a
thread might be run. Imagine sitting at a table with a fork, about to spear the last piece of
food on your plate and as your fork reaches for it, the food suddenly vanishes (because your
thread was suspended and another thread came in and stole the food). That’s the problem
that you’re dealing with.

Sometimes you don’t care if a resource is being accessed at the same time you’re trying to
use it (the food is on some other plate). But for multithreading to work, you need some way
to prevent two threads from accessing the same resource, at least during critical periods.

Preventing this kind of collision is simply a matter of putting a lock on a resource when one
thread is using it. The first thread that accesses a resource locks it, and then the other
threads cannot access that resource until it is unlocked, at which time another thread locks
and uses it, etc. If the front seat of the car is the limited resource, the child who shouts
“Dibs!” asserts the lock.

How Java shares resources
Java has built-in support to prevent collisions over one kind of resource: the memory in an
object. Since you typically make the data elements of a class private and access that
memory only through methods, you can prevent collisions by making a particular method
synchronized. Only one thread at a time can call a synchronized method for a particular
object (although that thread can call more than one of the object’s synchronized methods).
Here are simple synchronized methods:

synchronized void f() { /* ... */ }
synchronized void g(){ /* ... */ }

Each object contains a single lock (also called a monitor) that is automatically part of the
object (you don’t have to write any special code). When you call any synchronized method,
that object is locked and no other synchronized method of that object can be called until the
first one finishes and releases the lock. In the example above, if f( ) is called for an object, g( )
cannot be called for the same object until f( ) is completed and releases the lock. Thus, there’s
a single lock that’s shared by all the synchronized methods of a particular object, and this
lock prevents common memory from being written by more than one method at a time (i.e.
more than one thread at a time).



618 Thinking in Java  www.BruceEckel.com

There’s also a single lock per class (as part of the Class object for the class), so that
synchronized static methods can lock each other out from static data on a class-wide basis.

Note that if you want to guard some other resource from simultaneous access by multiple
threads, you can do so by forcing access to that resource through synchronized methods.

Synchronizing the counters
Armed with this new keyword it appears that the solution is at hand: we’ll simply use the
synchronized keyword for the methods in TwoCounter. The following example is the same
as the previous one, with the addition of the new keyword:

//: Sharing2.java
// Using the synchronized keyword to prevent
// multiple access to a particular resource.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;

class TwoCounter2 extends Thread {
  private boolean started = false;
  private TextField
    t1 = new TextField(5),
    t2 = new TextField(5);
  private Label l =
    new Label("count1 == count2");
  private int count1 = 0, count2 = 0;
  public TwoCounter2(Container c) {
    Panel p = new Panel();
    p.add(t1);
    p.add(t2);
    p.add(l);
    c.add(p);
  }
  public void start() {
    if(!started) {
      started = true;
      super.start();
    }
  }
  public synchronized void run() {
    while (true) {
      t1.setText(Integer.toString(count1++));
      t2.setText(Integer.toString(count2++));
      try {
        sleep(500);
      } catch (InterruptedException e){}
    }
  }
  public synchronized void synchTest() {
    Sharing2.incrementAccess();
    if(count1 != count2)
      l.setText("Unsynched");
  }



Chapter 14: Multiple Threads 619

}

class Watcher2 extends Thread {
  private Sharing2 p;
  public Watcher2(Sharing2 p) {
    this.p = p;
    start();
  }
  public void run() {
    while(true) {
      for(int i = 0; i < p.s.length; i++)
        p.s[i].synchTest();
      try {
        sleep(500);
      } catch (InterruptedException e){}
    }
  }
}

public class Sharing2 extends Applet {
  TwoCounter2[] s;
  private static int accessCount = 0;
  private static TextField aCount =
    new TextField("0", 10);
  public static void incrementAccess() {
    accessCount++;
    aCount.setText(Integer.toString(accessCount));
  }
  private Button
    start = new Button("Start"),
    observer = new Button("Observe");
  private boolean isApplet = true;
  private int numCounters = 0;
  private int numObservers = 0;
  public void init() {
    if(isApplet) {
      numCounters =
        Integer.parseInt(getParameter("size"));
      numObservers =
        Integer.parseInt(
          getParameter("observers"));
    }
    s = new TwoCounter2[numCounters];
    for(int i = 0; i < s.length; i++)
      s[i] = new TwoCounter2(this);
    Panel p = new Panel();
    start.addActionListener(new StartL());
    p.add(start);
    observer.addActionListener(new ObserverL());
    p.add(observer);
    p.add(new Label("Access Count"));
    p.add(aCount);
    add(p);
  }



620 Thinking in Java  www.BruceEckel.com

  class StartL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      for(int i = 0; i < s.length; i++)
        s[i].start();
    }
  }
  class ObserverL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      for(int i = 0; i < numObservers; i++)
        new Watcher2(Sharing2.this);
    }
  }
  public static void main(String[] args) {
    Sharing2 applet = new Sharing2();
    // This isn't an applet, so set the flag and
    // produce the parameter values from args:
    applet.isApplet = false;
    applet.numCounters =
      (args.length == 0 ? 5 :
        Integer.parseInt(args[0]));
    applet.numObservers =
      (args.length < 2 ? 5 :
        Integer.parseInt(args[1]));
    Frame aFrame = new Frame("Sharing2");
    aFrame.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e){
          System.exit(0);
        }
      });
    aFrame.add(applet, BorderLayout.CENTER);
    aFrame.setSize(350, applet.numCounters *100);
    applet.init();
    applet.start();
    aFrame.setVisible(true);
  }
} ///:~

You’ll notice that both run( ) and synchTest( ) are synchronized. If you synchronize only
one of the methods, then the other is free to ignore the object lock and can be called with
impunity. This is an important point: Every method that accesses a critical shared resource
must be synchronized or it won’t work right.

Now a new issue arises. The Watcher2 can never get a peek at what’s going on because the
entire run( ) method has been synchronized, and since run( ) is always running for each
object the lock is always tied up and synchTest( ) can never be called. You can see this
because the accessCount never changes.

What we’d like for this example is a way to isolate only part of the code inside run( ). The
section of code you want to isolate this way is called a critical section and you use the
synchronized keyword in a different way to set up a critical section. Java supports critical
sections with the synchronized block; this time synchronized is used to specify the object
whose lock is being used to synchronize the enclosed code:



Chapter 14: Multiple Threads 621

synchronized(syncObject) {
  // This code can be accessed by only
  // one thread at a time, assuming all
  // threads respect syncObject's lock
}

Before the synchronized block can be entered, the lock must be acquired on syncObject. If
some other thread already has this lock, then the block cannot be entered until the lock is
given up.

The Sharing2 example can be modified by removing the synchronized keyword from the
entire run( ) method and instead putting a synchronized block around the two critical lines.
But what object should be used as the lock? The one that is already respected by
synchTest( ), which is the current object (this)! So the modified run( ) looks like this:

  public void run() {
    while (true) {
      synchronized(this) {
        t1.setText(Integer.toString(count1++));
        t2.setText(Integer.toString(count2++));
      }
      try {
        sleep(500);
      } catch (InterruptedException e){}
    }
  }

This is the only change that must be made to Sharing2.java, and you’ll see that while the
two counters are never out of synch (according to when the Watcher is allowed to look at
them), there is still adequate access provided to the Watcher during the execution of run( ).

Of course, all synchronization depends on programmer diligence: every piece of code that
can access a shared resource must be wrapped in an appropriate synchronized block.

Synchronized efficiency
Since having two methods write to the same piece of data never sounds like a particularly
good idea, it might seem to make sense for all methods to be automatically synchronized
and eliminate the synchronized keyword altogether. (Of course, the example with a
synchronized run( ) shows that this wouldn’t work either.) But it turns out that acquiring
a lock is not a cheap operation – it multiplies the cost of a method call (that is, entering and
exiting from the method, not executing the body of the method) by a minimum of four
times, and could be more depending on your implementation. So if you know that a
particular method will not cause contention problems it is expedient to leave off the
synchronized keyword.

Java Beans revisited
Now that you understand synchronization you can take another look at Java Beans.
Whenever you create a Bean, you must assume that it will run in a multithreaded
environment. This means that:

1. Whenever possible, all the public methods of a Bean should be synchronized. Of course,
this incurs the synchronized runtime overhead. If that’s a problem, methods that will
not cause problems in critical sections can be left un-synchronized, but keep in mind



622 Thinking in Java  www.BruceEckel.com

that this is not always obvious. Methods that qualify tend to be small (such as
getCircleSize( ) in the following example) and/or “atomic,” that is, the method call
executes in such a short amount of code that the object cannot be changed during
execution. Making such methods un-synchronized might not have a significant effect
on the execution speed of your program. You might as well make all public methods of a
Bean synchronized and remove the synchronized keyword only when you know for
sure that it’s necessary and that it makes a difference.

2. When firing a multicast event to a bunch of listeners interested in that event, you must
assume that listeners might be added or removed while moving through the list.

The first point is fairly easy to deal with, but the second point requires a little more thought.
Consider the BangBean.java example presented in the last chapter. That ducked out of the
multithreading question by ignoring the synchronized keyword (which hadn’t been
introduced yet) and making the event unicast. Here’s that example modified to work in a
multithreaded environment and to use multicasting for events:

//: BangBean2.java
// You should write your Beans this way so they
// can run in a multithreaded environment.
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.io.*;

public class BangBean2 extends Canvas
    implements Serializable {
  private int xm, ym;
  private int cSize = 20; // Circle size
  private String text = "Bang!";
  private int fontSize = 48;
  private Color tColor = Color.red;
  private Vector actionListeners = new Vector();
  public BangBean2() {
    addMouseListener(new ML());
    addMouseMotionListener(new MM());
  }
  public synchronized int getCircleSize() {
    return cSize;
  }
  public synchronized void
  setCircleSize(int newSize) {
    cSize = newSize;
  }
  public synchronized String getBangText() {
    return text;
  }
  public synchronized void
  setBangText(String newText) {
    text = newText;
  }
  public synchronized int getFontSize() {
    return fontSize;
  }



Chapter 14: Multiple Threads 623

  public synchronized void
  setFontSize(int newSize) {
    fontSize = newSize;
  }
  public synchronized Color getTextColor() {
    return tColor;
  }
  public synchronized void
  setTextColor(Color newColor) {
    tColor = newColor;
  }
  public void paint(Graphics g) {
    g.setColor(Color.black);
    g.drawOval(xm - cSize/2, ym - cSize/2,
      cSize, cSize);
  }
  // This is a multicast listener, which is
  // more typically used than the unicast
  // approach taken in BangBean.java:
  public synchronized void addActionListener (
      ActionListener l) {
    actionListeners.addElement(l);
  }
  public synchronized void removeActionListener(
      ActionListener l) {
    actionListeners.removeElement(l);
  }
  // Notice this isn't synchronized:
  public void notifyListeners() {
    ActionEvent a =
      new ActionEvent(BangBean2.this,
        ActionEvent.ACTION_PERFORMED, null);
    Vector lv = null;
    // Make a copy of the vector in case someone
    // adds a listener while we're
    // calling listeners:
    synchronized(this) {
      lv = (Vector)actionListeners.clone();
    }
    // Call all the listener methods:
    for(int i = 0; i < lv.size(); i++) {
      ActionListener al =
        (ActionListener)lv.elementAt(i);
      al.actionPerformed(a);
    }
  }
  class ML extends MouseAdapter {
    public void mousePressed(MouseEvent e) {
      Graphics g = getGraphics();
      g.setColor(tColor);
      g.setFont(
        new Font(
          "TimesRoman", Font.BOLD, fontSize));
      int width =



624 Thinking in Java  www.BruceEckel.com

        g.getFontMetrics().stringWidth(text);
      g.drawString(text,
        (getSize().width - width) /2,
        getSize().height/2);
      g.dispose();
      notifyListeners();
    }
  }
  class MM extends MouseMotionAdapter {
    public void mouseMoved(MouseEvent e) {
      xm = e.getX();
      ym = e.getY();
      repaint();
    }
  }
  // Testing the BangBean2:
  public static void main(String[] args) {
    BangBean2 bb = new BangBean2();
    bb.addActionListener(new ActionListener() {
      public void actionPerformed(ActionEvent e){
        System.out.println("ActionEvent" + e);
      }
    });
    bb.addActionListener(new ActionListener() {
      public void actionPerformed(ActionEvent e){
        System.out.println("BangBean2 action");
      }
    });
    bb.addActionListener(new ActionListener() {
      public void actionPerformed(ActionEvent e){
        System.out.println("More action");
      }
    });
    Frame aFrame = new Frame("BangBean2 Test");
    aFrame.addWindowListener(new WindowAdapter(){
      public void windowClosing(WindowEvent e) {
        System.exit(0);
      }
    });
    aFrame.add(bb, BorderLayout.CENTER);
    aFrame.setSize(300,300);
    aFrame.setVisible(true);
  }
} ///:~

Adding synchronized to the methods is an easy change. However, notice in
addActionListener( ) and removeActionListener( ) that the ActionListeners are now added
to and removed from a Vector, so you can have as many as you want.

You can see that the method notifyListeners( ) is not synchronized. It can be called from
more than one thread at a time. It’s also possible for addActionListener( ) or
removeActionListener( ) to be called in the middle of a call to notifyListeners( ), which is a
problem since it traverses the Vector actionListeners. To alleviate the problem, the Vector is



Chapter 14: Multiple Threads 625

cloned inside a synchronized clause and the clone is traversed. This way the original Vector
can be manipulated without impact on notifyListeners( ).

The paint( ) method is also not synchronized. Deciding whether to synchronize overridden
methods is not as clear as when you’re just adding your own methods. In this example it
turns out that paint( ) seems to work OK whether it’s synchronized or not. But the issues
you must consider are:

1. Does the method modify the state of “critical” variables within the object? To discover
whether the variables are “critical” you must determine whether they will be read or set
by other threads in the program. (In this case, the reading or setting is virtually always
accomplished via synchronized methods, so you can just examine those.) In the case of
paint( ), no modification takes place.

2. Does the method depend on the state of these “critical” variables? If a synchronized
method modifies a variable that your method uses, then you might very well want to
make your method synchronized as well. Based on this, you might observe that cSize is
changed by synchronized methods and therefore paint( ) should be synchronized.
Here, however, you can ask “What’s the worst thing that will happen if cSize is changed
during a paint( )?” When you see that it’s nothing too bad, and a transient effect at that,
it’s best to leave paint( ) un-synchronized to prevent the extra overhead from the
synchronized method call.

3. A third clue is to notice whether the base-class version of paint( ) is synchronized,
which it isn’t. This isn’t an airtight argument, just a clue. In this case, for example, a
field that is changed via synchronized methods (that is cSize) has been mixed into the
paint( ) formula and might have changed the situation. Notice, however, that
synchronized doesn’t inherit – that is, if a method is synchronized in the base class
then it is not automatically synchronized in the derived class overridden version.

The test code in TestBangBean2 has been modified from that in the previous chapter to
demonstrate the multicast ability of BangBean2 by adding extra listeners.

Blocking
A thread can be in any one of four states:

1. New: the thread object has been created but it hasn’t been started yet so it cannot run.

2. Runnable: This means that a thread can be run when the time-slicing mechanism has
CPU cycles available for the thread. Thus, the thread might or might not be running, but
there’s nothing to prevent it from being run if the scheduler can arrange it; it’s not dead
or blocked.

3. Dead: the normal way for a thread to die is by returning from its run( ) method. You
can also call stop( ), but this throws an exception that’s a subclass of Error (which
means you usually don’t catch it). Remember that throwing an exception should be a
special event and not part of normal program execution; thus the use of stop( ) is
discouraged (and it’s deprecated in Java 1.2). There’s also a destroy( ) method (which
has never been implemented) that you should never call if you can avoid it since it’s
drastic and doesn’t release object locks.



626 Thinking in Java  www.BruceEckel.com

4. Blocked: the thread could be run but there’s something that prevents it. While a thread is
in the blocked state the scheduler will simply skip over it and not give it any CPU time.
Until a thread re-enters the runnable state it won’t perform any operations.

Becoming blocked
The blocked state is the most interesting and is worth further examination. A thread can
become blocked for five reasons:

1. You’ve put the thread to sleep by calling sleep(milliseconds), in which case it will not be
run for the specified time.

2. You’ve suspended the execution of the thread with suspend( ). It will not become
runnable again until the thread gets the resume( ) message.

3. You’ve suspended the execution of the thread with wait( ). It will not become runnable
again until the thread gets the notify( ) or notifyAll( ) message. (Yes, this looks just like
number 2, but there’s a distinct difference that will be revealed.)

4. The thread is waiting for some IO to complete.

5. The thread is trying to call a synchronized method on another object and that object’s
lock is not available.

You can also call yield( ) (a method of the Thread class) to voluntarily give up the CPU so
that other threads can run. However, the same thing happens if the scheduler decides that
your thread has had enough time and jumps to another thread. That is, nothing prevents
the scheduler from re-starting your thread. When a thread is blocked, there’s some reason
that it cannot continue running.

The following example shows all five ways of becoming blocked. It all exists in a single file
called Blocking.java, but it will be examined here in discrete pieces. (You’ll notice the
“Continued” and “Continuing” tags that allow the tool shown in Chapter 17 to piece
everything together.) First, the basic framework:

//: Blocking.java
// Demonstrates the various ways a thread
// can be blocked.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
import java.io.*;

//////////// The basic framework ///////////
class Blockable extends Thread {
  private Peeker peeker;
  protected TextField state = new TextField(40);
  protected int i;
  public Blockable(Container c) {
    c.add(state);
    peeker = new Peeker(this, c);
  }
  public synchronized int read() { return i; }
  protected synchronized void update() {
    state.setText(getClass().getName()



Chapter 14: Multiple Threads 627

      + " state: i = " + i);
  }
  public void stopPeeker() {
    // peeker.stop(); Deprecated in Java 1.2
    peeker.terminate(); // The preferred approach
  }
}

class Peeker extends Thread {
  private Blockable b;
  private int session;
  private TextField status = new TextField(40);
  private boolean stop = false;
  public Peeker(Blockable b, Container c) {
    c.add(status);
    this.b = b;
    start();
  }
  public void terminate() { stop = true; }
  public void run() {
    while (!stop) {
      status.setText(b.getClass().getName()
        + " Peeker " + (++session)
        + "; value = " + b.read());
       try {
        sleep(100);
      } catch (InterruptedException e){}
    }
  }
} ///:Continued

The Blockable class is meant to be a base class for all the classes in this example that
demonstrate blocking. A Blockable object contains a TextField called state that is used to
display information about the object. The method that displays this information is
update( ). You can see it uses getClass( ).getName( ) to produce the name of the class
instead of just printing it out; this is because update( ) cannot know the exact name of the
class it is called for, since it will be a class derived from Blockable.

The indicator of change in Blockable is an int i, which will be incremented by the run( )
method of the derived class.

There’s a thread of class Peeker that is started for each Blockable object, and the Peeker’s
job is to watch its associated Blockable object to see changes in i by calling read( ) and
reporting them in its status TextField. This is important: Note that read( ) and update( )
are both synchronized, which means they require that the object lock be free.

Sleeping
The first test in this program is with sleep( ):

///:Continuing
///////////// Blocking via sleep() ///////////
class Sleeper1 extends Blockable {
  public Sleeper1(Container c) { super(c); }
  public synchronized void run() {



628 Thinking in Java  www.BruceEckel.com

    while(true) {
      i++;
      update();
       try {
        sleep(1000);
      } catch (InterruptedException e){}
    }
  }
}

class Sleeper2 extends Blockable {
  public Sleeper2(Container c) { super(c); }
  public void run() {
    while(true) {
      change();
       try {
        sleep(1000);
      } catch (InterruptedException e){}
    }
  }
  public synchronized void change() {
      i++;
      update();
  }
} ///:Continued

In Sleeper1 the entire run( ) method is synchronized. You’ll see that the Peeker associated
with this object will run along merrily until you start the thread, and then the Peeker stops
cold. This is one form of blocking: since Sleeper1.run( ) is synchronized, and once the
thread starts it’s always inside run( ), the method never gives up the object lock and the
Peeker is blocked.

Sleeper2 provides a solution by making run un-synchronized. Only the change( ) method
is synchronized, which means that while run( ) is in sleep( ), the Peeker can access the
synchronized method it needs, namely read( ). Here you’ll see that the Peeker continues
running when you start the Sleeper2 thread.

Suspending and resuming
The next part of the example introduces the concept of suspension. The Thread class has a
method suspend( ) to temporarily halt the thread and resume( ) that re-starts it at the point
it was halted. Presumably, resume( ) is called by some thread outside the suspended one,
and in this case there’s a separate class called Resumer that does just that. Each of the
classes demonstrating suspend/resume has an associated resumer:

///:Continuing
/////////// Blocking via suspend() ///////////
class SuspendResume extends Blockable {
  public SuspendResume(Container c) {
    super(c);
    new Resumer(this);
  }
}



Chapter 14: Multiple Threads 629

class SuspendResume1 extends SuspendResume {
  public SuspendResume1(Container c) { super(c);}
  public synchronized void run() {
    while(true) {
      i++;
      update();
      suspend(); // Deprecated in Java 1.2
    }
  }
}

class SuspendResume2 extends SuspendResume {
  public SuspendResume2(Container c) { super(c);}
  public void run() {
    while(true) {
      change();
      suspend(); // Deprecated in Java 1.2
    }
  }
  public synchronized void change() {
      i++;
      update();
  }
}

class Resumer extends Thread {
  private SuspendResume sr;
  public Resumer(SuspendResume sr) {
    this.sr = sr;
    start();
  }
  public void run() {
    while(true) {
       try {
        sleep(1000);
      } catch (InterruptedException e){}
      sr.resume(); // Deprecated in Java 1.2
    }
  }
} ///:Continued

SuspendResume1 also has a synchronized run( ) method. Again, when you start this
thread you’ll see that its associated Peeker gets blocked waiting for the lock to become
available, which never happens. This is fixed as before in SuspendResume2, which does not
synchronize the entire run( ) method but instead uses a separate synchronized change( )
method.

You should be aware that Java 1.2 deprecates the use of suspend( ) and resume( ), because
suspend( ) holds the object’s lock and is thus deadlock-prone. That is, you can easily get a
number of locked objects waiting on each other, and this will cause your program to freeze.
Although you might see them used in older programs you should not use suspend( ) and
resume( ). The proper solution is described later in this chapter.



630 Thinking in Java  www.BruceEckel.com

Wait and notify
The point with the first two examples is that both sleep( ) and suspend( ) do not release the
lock as they are called. You must be aware of this when working with locks. On the other
hand, the method wait( ) does release the lock when it is called, which means that other
synchronized methods in the thread object could be called during a wait( ). In the following
two classes, you’ll see that the run( ) method is fully synchronized in both cases, however,
the Peeker still has full access to the synchronized methods during a wait( ). This is
because wait( ) releases the lock on the object as it suspends the method it’s called within.

You’ll also see that there are two forms of wait( ). The first takes an argument in
milliseconds that has the same meaning as in sleep( ): pause for this period of time. The
difference is that in wait( ), the object lock is released and you can come out of the wait( )
because of a notify( ) as well as having the clock run out.

The second form takes no arguments, and means that the wait( ) will continue until a
notify( ) comes along and will not automatically terminate after a time.

One fairly unique aspect of wait( ) and notify( ) is that both methods are part of the base
class Object and not part of Thread as are sleep( ), suspend( ), and resume( ). Although
this seems a bit strange at first – to have something that’s exclusively for threading as part
of the universal base class – it’s essential because they manipulate the lock that’s also part of
every object. As a result, you can put a wait( ) inside any synchronized method, regardless
of whether there’s any threading going on inside that particular class. In fact, the only place
you can call wait( ) is within a synchronized method or block. If you call wait( ) or
notify( ) within a method that’s not synchronized, the program will compile, but when
you run it you’ll get an IllegalMonitorStateException with the somewhat non-intuitive
message “current thread not owner.” Note that sleep( ), suspend( ), and resume( ) can all be
called within non-synchronized methods since they don’t manipulate the lock.

You can call wait( ) or notify( ) only for your own lock. Again, you can compile code that
tries to use the wrong lock, but it will produce the same IllegalMonitorStateException
message as before. You can’t fool with someone else’s lock, but you can ask another object to
perform an operation that manipulates its own lock. So one approach is to create a
synchronized method that calls notify( ) for its own object. However, in Notifier you’ll see
the notify( ) call inside a synchronized block:

synchronized(wn2) {
  wn2.notify();
}

where wn2 is the object of type WaitNotify2. This method, which is not part of
WaitNotify2, acquires the lock on the wn2 object, at which point it’s legal for it to call
notify( ) for wn2 and you won’t get the IllegalMonitorStateException.

///:Continuing
/////////// Blocking via wait() ///////////
class WaitNotify1 extends Blockable {
  public WaitNotify1(Container c) { super(c); }
  public synchronized void run() {
    while(true) {
      i++;
      update();
       try {
        wait(1000);



Chapter 14: Multiple Threads 631

      } catch (InterruptedException e){}
    }
  }
}

class WaitNotify2 extends Blockable {
  public WaitNotify2(Container c) {
    super(c);
    new Notifier(this);
  }
  public synchronized void run() {
    while(true) {
      i++;
      update();
       try {
        wait();
      } catch (InterruptedException e){}
    }
  }
}

class Notifier extends Thread {
  private WaitNotify2 wn2;
  public Notifier(WaitNotify2 wn2) {
    this.wn2 = wn2;
    start();
  }
  public void run() {
    while(true) {
       try {
        sleep(2000);
      } catch (InterruptedException e){}
      synchronized(wn2) {
        wn2.notify();
      }
    }
  }
} ///:Continued

wait( ) is typically used when you’ve gotten to the point where you’re waiting for some
other condition, under the control of forces outside your thread, to change and you don’t
want to idly wait by inside the thread. So wait( ) allows you to put the thread to sleep while
waiting for the world to change, and only when a notify( ) or notifyAll( ) occurs does the
thread wake up and check for changes. Thus, it provides a way to synchronize between
threads.

Blocking on IO
If a stream is waiting for some IO activity, it will automatically block. In the following
portion of the example, the two classes work with generic Reader and Writer objects (using
the Java 1.1 Streams), but in the test framework a piped stream will be set up to allow the
two threads to safely pass data to each other (which is the purpose of piped streams).



632 Thinking in Java  www.BruceEckel.com

The Sender puts data into the Writer and sleeps for a random amount of time. However,
Receiver has no sleep( ), suspend( ), or wait( ). But when it does a read( ) it automatically
blocks when there is no more data.

///:Continuing
class Sender extends Blockable { // send
  private Writer out;
  public Sender(Container c, Writer out) {
    super(c);
    this.out = out;
  }
  public void run() {
    while(true) {
      for(char c = 'A'; c <= 'z'; c++) {
         try {
          i++;
          out.write(c);
          state.setText("Sender sent: "
            + (char)c);
          sleep((int)(3000 * Math.random()));
        } catch (InterruptedException e){}
          catch (IOException e) {}
      }
    }
  }
}

class Receiver extends Blockable {
  private Reader in;
  public Receiver(Container c, Reader in) {
    super(c);
    this.in = in;
  }
  public void run() {
    try {
      while(true) {
        i++; // Show peeker it's alive
        // Blocks until characters are there:
        state.setText("Receiver read: "
          + (char)in.read());
      }
    } catch(IOException e) { e.printStackTrace();}
  }
} ///:Continued

Both classes also put information into their state fields and change i so the Peeker can see
that the thread is running.

Testing
The main applet class is surprisingly simple because most of the work has been put into the
Blockable framework. Basically, an array of Blockable objects is created, and since each one
is a thread, they perform their own activities when you press the “start” button. There’s also



Chapter 14: Multiple Threads 633

a button and actionPerformed( ) clause to stop all of the Peeker objects, which provides a
demonstration of the alternative to the deprecated (in Java 1.2) stop( ) method of Thread.

To set up a connection between the Sender and Receiver objects, a PipedWriter and
PipedReader are created. Note that the PipedReader in must be connected to the
PipedWriter out via a constructor argument. After that, anything that’s placed in out can
later be extracted from in, as if it passed through a pipe (hence the name). The in and out
objects are then passed to the Receiver and Sender constructors, respectively, which treat
them as Reader and Writer objects of any type (that is, they are upcast).

The array of Blockable handles b is not initialized at its point of definition because the piped
streams cannot be set up before that definition takes place (the need for the try block
prevents this).

///:Continuing
/////////// Testing Everything ///////////
public class Blocking extends Applet {
  private Button
    start = new Button("Start"),
    stopPeekers = new Button("Stop Peekers");
  private boolean started = false;
  private Blockable[] b;
  private PipedWriter out;
  private PipedReader in;
  public void init() {
     out = new PipedWriter();
    try {
      in = new PipedReader(out);
    } catch(IOException e) {}
    b = new Blockable[] {
      new Sleeper1(this),
      new Sleeper2(this),
      new SuspendResume1(this),
      new SuspendResume2(this),
      new WaitNotify1(this),
      new WaitNotify2(this),
      new Sender(this, out),
      new Receiver(this, in)
    };
    start.addActionListener(new StartL());
    add(start);
    stopPeekers.addActionListener(
      new StopPeekersL());
    add(stopPeekers);
  }
  class StartL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      if(!started) {
        started = true;
        for(int i = 0; i < b.length; i++)
          b[i].start();
      }
    }
  }



634 Thinking in Java  www.BruceEckel.com

  class StopPeekersL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      // Demonstration of the preferred
      // alternative to Thread.stop():
      for(int i = 0; i < b.length; i++)
        b[i].stopPeeker();
    }
  }
  public static void main(String[] args) {
    Blocking applet = new Blocking();
    Frame aFrame = new Frame("Blocking");
    aFrame.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e) {
          System.exit(0);
        }
      });
    aFrame.add(applet, BorderLayout.CENTER);
    aFrame.setSize(350,550);
    applet.init();
    applet.start();
    aFrame.setVisible(true);
  }
} ///:~

In init( ), notice the loop that moves through the entire array and adds the state and
peeker.status text fields to the page.

When the Blockable threads are initially created, each one automatically creates and starts
its own Peeker. So you’ll see the Peekers running before the Blockable threads are started.
This is essential, as some of the Peekers will get blocked and stop when the Blockable
threads start, and it’s essential to see this to understand that particular aspect of blocking.

Deadlock
Because threads can become blocked and because objects can have synchronized methods
that prevent threads from accessing that object until the synchronization lock is released, it’s
possible for one thread to get stuck waiting for another thread, which in turn waits for
another thread, etc., until the chain leads back to a thread waiting on the first one. Thus,
there’s a continuous loop of threads waiting on each other and no one can move. This is
called deadlock. The claim is that it doesn’t happen that often, but when it happens to you
it’s frustrating to debug.

There is no language support to help prevent deadlock; it’s up to you to avoid it by careful
design. These are not comforting words to the person who’s trying to debug a deadlocking
program.

The deprecation of sstop( ), ssuspend( ),
resume( ), and ddestroy( ) in Java 1.2
One change that has been made in Java 1.2 to reduce the possibility of deadlock is the
deprecation of Thread’s stop( ), suspend( ), resume( ), and destroy( ) methods.



Chapter 14: Multiple Threads 635

The reason that the stop( ) method is deprecated is because it is unsafe. It releases all the
locks that the thread had acquired, and if the objects are in an inconsistent state (“damaged”)
other threads can view and modify them in that state. The resulting problems can be subtle
and difficult to detect. Instead of using stop( ), you should follow the example in
Blocking.java and use a flag to tell the thread when to terminate itself by exiting its run( )
method.

There are times when a thread blocks, such as when it is waiting for input, and it cannot
poll a flag as it does in Blocking.java. In these cases, you still shouldn’t use stop( ), but
instead you can use the interrupt( ) method in Thread to break out of the blocked code:

//: Interrupt.java
// The alternative approach to using stop()
// when a thread is blocked
import java.awt.*;
import java.awt.event.*;
import java.applet.*;

class Blocked extends Thread {
  public synchronized void run() {
    try {
      wait(); // Blocks
    } catch(InterruptedException e) {
      System.out.println("InterruptedException");
    }
    System.out.println("Exiting run()");
  }
}

public class Interrupt extends Applet {
  private Button
    interrupt = new Button("Interrupt");
  private Blocked blocked = new Blocked();
  public void init() {
    add(interrupt);
    interrupt.addActionListener(
      new ActionListener() {
        public
        void actionPerformed(ActionEvent e) {
          System.out.println("Button pressed");
          if(blocked == null) return;
          Thread remove = blocked;
          blocked = null; // to release it
          remove.interrupt();
        }
      });
    blocked.start();
  }
  public static void main(String[] args) {
    Interrupt applet = new Interrupt();
    Frame aFrame = new Frame("Interrupt");
    aFrame.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e) {



636 Thinking in Java  www.BruceEckel.com

          System.exit(0);
        }
      });
    aFrame.add(applet, BorderLayout.CENTER);
    aFrame.setSize(200,100);
    applet.init();
    applet.start();
    aFrame.setVisible(true);
  }
} ///:~

The wait( ) inside Blocked.run( ) produces the blocked thread. When you press the button,
the blocked handle is set to null so the garbage collector will clean it up, and then the
object’s interrupt( ) method is called. The first time you press the button you’ll see that the
thread quits, but after that there’s no thread to kill so you just see that the button has been
pressed.

The suspend( ) and resume( ) methods turn out to be inherently deadlock-prone. When you
call suspend( ), the target thread stops but it still holds any locks that it has acquired up to
that point. So no other thread can access the locked resources until the thread is resumed.
Any thread that wants to resume the target thread and also tries to use any of the locked
resources produces deadlock. You should not use suspend( ) and resume( ), but instead put
a flag in your Thread class to indicate whether the thread should be active or suspended. If
the flag indicates that the thread is suspended, the thread goes into a wait using wait( ).
When the flag indicates that the thread should be resumed the thread is restarted with
notify( ). An example can be produced by modifying Counter2.java. Although the effect is
similar, you’ll notice that the code organization is quite different – anonymous inner classes
are used for all of the listeners and the Thread is an inner class, which makes programming
slightly more convenient since it eliminates some of the extra bookkeeping necessary in
Counter2.java:

//: Suspend.java
// The alternative approach to using suspend()
// and resume(), which have been deprecated
// in Java 1.2.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;

public class Suspend extends Applet {
  private TextField t = new TextField(10);
  private Button
    suspend = new Button("Suspend"),
    resume = new Button("Resume");
  class Suspendable extends Thread {
    private int count = 0;
    private boolean suspended = false;
    public Suspendable() { start(); }
    public void fauxSuspend() {
      suspended = true;
    }
    public synchronized void fauxResume() {
      suspended = false;
      notify();



Chapter 14: Multiple Threads 637

    }
    public void run() {
      while (true) {
        try {
          sleep(100);
          synchronized(this) {
            while(suspended)
              wait();
          }
        } catch (InterruptedException e){}
        t.setText(Integer.toString(count++));
      }
    }
  }
  private Suspendable ss = new Suspendable();
  public void init() {
    add(t);
    suspend.addActionListener(
      new ActionListener() {
        public
        void actionPerformed(ActionEvent e) {
          ss.fauxSuspend();
        }
      });
    add(suspend);
    resume.addActionListener(
      new ActionListener() {
        public
        void actionPerformed(ActionEvent e) {
          ss.fauxResume();
        }
      });
    add(resume);
  }
  public static void main(String[] args) {
    Suspend applet = new Suspend();
    Frame aFrame = new Frame("Suspend");
    aFrame.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e){
          System.exit(0);
        }
      });
    aFrame.add(applet, BorderLayout.CENTER);
    aFrame.setSize(300,100);
    applet.init();
    applet.start();
    aFrame.setVisible(true);
  }
} ///:~

The flag suspended inside Suspendable is used to turn suspension on and off. To suspend,
the flag is set to true by calling fauxSuspend( ) and this is detected inside run( ). The
wait( ), as described earlier in this chapter, must be synchronized so that it has the object



638 Thinking in Java  www.BruceEckel.com

lock. In fauxResume( ), the suspended flag is set to false and notify( ) is called – since this
wakes up wait( ) inside a synchronized clause the fauxResume( ) method must also be
synchronized so that it acquires the lock before calling notify( ) (thus the lock is available
for the wait( ) to wake up with). If you follow the style shown in this program you can
avoid using wait( ) and notify( ).

The destroy( ) method of Thread has never been implemented; it’s like a suspend( ) that
cannot resume, so it has the same deadlock issues as suspend( ). However, this is not a
deprecated method and it might be implemented in a future version of Java (after 1.2) for
special situations in which the risk of a deadlock is acceptable.

You might wonder why these methods, now deprecated, were included in Java in the first
place. It seems a clear admission of a rather significant mistake to simply remove them
outright (and pokes yet another hole in the arguments for Java’s exceptional design and
infallibility touted by Sun marketing people). The heartening part about the change is that it
clearly indicates that the technical people and not the marketing people are running the
show – they discovered a problem and they are fixing it. I find this much more promising
and hopeful than leaving the problem in because fixing it would admit an error. It means
that Java will continue to improve, even if it means a little discomfort on the part of Java
programmers. I’d rather deal with the discomfort than watch the language stagnate.

Priorities
The priority of a thread tells the scheduler how important this thread is. If there are a
number of threads blocked and waiting to be run, the scheduler will run the one with the
highest priority first. However, this doesn’t mean that threads with lower priority don’t get
run (that is, you can’t get deadlocked because of priorities). Lower priority threads just tend
to run less often.

You can read the priority of a thread with getPriority( ) and change it with setPriority( ).
The form of the prior “counter” examples can be used to show the effect of changing the
priorities. In this applet you’ll see that the counters slow down as the associated threads
have their priorities lowered:

//: Counter5.java
// Adjusting the priorities of threads
import java.awt.*;
import java.awt.event.*;
import java.applet.*;

class Ticker2 extends Thread {
  private Button
    b = new Button("Toggle"),
    incPriority = new Button("up"),
    decPriority = new Button("down");
  private TextField
    t = new TextField(10),
    pr = new TextField(3); // Display priority
  private int count = 0;
  private boolean runFlag = true;
  public Ticker2(Container c) {
    b.addActionListener(new ToggleL());
    incPriority.addActionListener(new UpL());



Chapter 14: Multiple Threads 639

    decPriority.addActionListener(new DownL());
    Panel p = new Panel();
    p.add(t);
    p.add(pr);
    p.add(b);
    p.add(incPriority);
    p.add(decPriority);
    c.add(p);
  }
  class ToggleL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      runFlag = !runFlag;
    }
  }
  class UpL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      int newPriority = getPriority() + 1;
      if(newPriority > Thread.MAX_PRIORITY)
        newPriority = Thread.MAX_PRIORITY;
      setPriority(newPriority);
    }
  }
  class DownL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      int newPriority = getPriority() - 1;
      if(newPriority < Thread.MIN_PRIORITY)
        newPriority = Thread.MIN_PRIORITY;
      setPriority(newPriority);
    }
  }
  public void run() {
    while (true) {
      if(runFlag) {
        t.setText(Integer.toString(count++));
        pr.setText(
          Integer.toString(getPriority()));
      }
      yield();
    }
  }
}

public class Counter5 extends Applet {
  private Button
    start = new Button("Start"),
    upMax = new Button("Inc Max Priority"),
    downMax = new Button("Dec Max Priority");
  private boolean started = false;
  private static final int SIZE = 10;
  private Ticker2[] s = new Ticker2[SIZE];
  private TextField mp = new TextField(3);
  public void init() {
    for(int i = 0; i < s.length; i++)
      s[i] = new Ticker2(this);



640 Thinking in Java  www.BruceEckel.com

    add(new Label("MAX_PRIORITY = "
      + Thread.MAX_PRIORITY));
    add(new Label("MIN_PRIORITY = "
      + Thread.MIN_PRIORITY));
    add(new Label("Group Max Priority = "));
    add(mp);
    add(start);
    add(upMax); add(downMax);
    start.addActionListener(new StartL());
    upMax.addActionListener(new UpMaxL());
    downMax.addActionListener(new DownMaxL());
    showMaxPriority();
    // Recursively display parent thread groups:
    ThreadGroup parent =
      s[0].getThreadGroup().getParent();
    while(parent != null) {
      add(new Label(
        "Parent threadgroup max priority = "
        + parent.getMaxPriority()));
      parent = parent.getParent();
    }
  }
  public void showMaxPriority() {
    mp.setText(Integer.toString(
      s[0].getThreadGroup().getMaxPriority()));
  }
  class StartL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      if(!started) {
        started = true;
        for(int i = 0; i < s.length; i++)
          s[i].start();
      }
    }
  }
  class UpMaxL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      int maxp =
        s[0].getThreadGroup().getMaxPriority();
      if(++maxp > Thread.MAX_PRIORITY)
        maxp = Thread.MAX_PRIORITY;
      s[0].getThreadGroup().setMaxPriority(maxp);
      showMaxPriority();
    }
  }
  class DownMaxL implements ActionListener {
    public void actionPerformed(ActionEvent e) {
      int maxp =
        s[0].getThreadGroup().getMaxPriority();
      if(--maxp < Thread.MIN_PRIORITY)
        maxp = Thread.MIN_PRIORITY;
      s[0].getThreadGroup().setMaxPriority(maxp);
      showMaxPriority();
    }



Chapter 14: Multiple Threads 641

  }
  public static void main(String[] args) {
    Counter5 applet = new Counter5();
    Frame aFrame = new Frame("Counter5");
    aFrame.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e) {
          System.exit(0);
        }
      });
    aFrame.add(applet, BorderLayout.CENTER);
    aFrame.setSize(300, 600);
    applet.init();
    applet.start();
    aFrame.setVisible(true);
  }
} ///:~

Ticker2 follows the form established earlier in this chapter, but there’s an extra TextField for
displaying the priority of the thread and two more buttons for incrementing and
decrementing the priority.

Also notice the use of yield( ), which voluntarily hands control back to the scheduler.
Without this the multithreading mechanism still works, but you’ll notice it runs slowly (try
removing the call to yield( )!). You could also call sleep( ), but then the rate of counting
would be controlled by the sleep( ) duration instead of the priority.

The init( ) in Counter5 creates an array of 10 Ticker2s; their buttons and fields are placed
on the form by the Ticker2 constructor. Counter5 adds buttons to start everything up as
well as increment and decrement the maximum priority of the threadgroup. In addition,
there are labels that display the maximum and minimum priorities possible for a thread and
a TextField to show the thread group’s maximum priority. (The next section will fully
describe thread groups.) Finally, the priorities of the parent thread groups are also displayed
as labels.

When you press an “up” or “down” button, that Ticker2’s priority is fetched and
incremented or decremented accordingly.

When you run this program, you’ll notice several things. First of all, the thread group’s
default priority is 5. Even if you decrement the maximum priority below 5 before starting
the threads (or before creating the threads, which requires a code change), each thread will
have a default priority of 5.

The simple test is to take one counter and decrement its priority to one, and observe that it
counts much slower. But now try to increment it again. You can get it back up to the thread
group’s priority, but no higher. Now decrement the thread group’s priority a couple of
times. The thread priorities are unchanged, but if you try to modify them either up or down
you’ll see that they’ll automatically pop to the priority of the thread group. Also, new
threads will still be given a default priority, even if that’s higher than the group priority.
(Thus the group priority is not a way to prevent new threads from having higher priorities
than existing ones.)

Finally, try to increment the group maximum priority. It can’t be done. You can only reduce
thread group maximum priorities, not increase them.



642 Thinking in Java  www.BruceEckel.com

Thread groups
All threads belong to a thread group. This can be either the default thread group or a group
you explicitly specify when you create the thread. At creation, the thread is bound to a
group and cannot change to a different group. Each application has at least one thread that
belongs to the system thread group. If you create more threads without specifying a group,
they will also belong to the system thread group.

Thread groups must also belong to other thread groups. The thread group that a new one
belongs to must be specified in the constructor. If you create a thread group without
specifying a thread group for it to belong to, it will be placed under the system thread group.
Thus, all thread groups in your application will ultimately have the system thread group as
the parent.

The reason for the existence of thread groups is hard to determine from the literature, which
tends to be confusing on this subject. It’s often cited as “security reasons.” According to
Arnold & Gosling,1 “Threads within a thread group can modify the other threads in the
group, including any farther down the hierarchy. A thread cannot modify threads outside of
its own group or contained groups.” It’s hard to know what “modify” is supposed to mean
here. The following example shows a thread in a “leaf” subgroup modifying the priorities of
all the threads in its tree of thread groups as well as calling a method for all the threads in
its tree.

//: TestAccess.java
// How threads can access other threads
// in a parent thread group

public class TestAccess {
  public static void main(String[] args) {
    ThreadGroup
      x = new ThreadGroup("x"),
      y = new ThreadGroup(x, "y"),
      z = new ThreadGroup(y, "z");
    Thread
      one = new TestThread1(x, "one"),
      two = new TestThread2(z, "two");
  }
}

class TestThread1 extends Thread {
  private int i;
  TestThread1(ThreadGroup g, String name) {
    super(g, name);
  }
  void f() {
    i++; // modify this thread
    System.out.println(getName() + " f()");
  }
}

                                                

1 The Java Programming Language, by Ken Arnold and James Gosling, Addison-Wesley 1996 pp 179.



Chapter 14: Multiple Threads 643

class TestThread2 extends TestThread1 {
  TestThread2(ThreadGroup g, String name) {
    super(g, name);
    start();
  }
  public void run() {
    ThreadGroup g =
      getThreadGroup().getParent().getParent();
    g.list();
    Thread[] gAll = new Thread[g.activeCount()];
    g.enumerate(gAll);
    for(int i = 0; i < gAll.length; i++) {
      gAll[i].setPriority(Thread.MIN_PRIORITY);
      ((TestThread1)gAll[i]).f();
    }
    g.list();
  }
} ///:~

In main( ), several ThreadGroups are created, leafing off from each other: x has no
argument but its name (a String), so it is automatically placed in the “system” thread group,
while y is under x and z is under y. Note that initialization happens in textual order so this
code is legal.

Two threads are created and placed in different thread groups. TestThread1 doesn’t have a
run( ) method but it does have an f( ) that modifies the thread and prints something so you
can see it was called. TestThread2 is a subclass of TestThread1 and its run( ) is fairly
elaborate. It first gets the thread group of the current thread, then moves up the heritage
tree by two levels using getParent( ). (This is contrived since I purposely place the
TestThread2 object two levels down in the hierarchy.) At this point, an array of handles to
Threads is created using the method activeCount( ) to ask how many threads are in this
thread group and all the child thread groups. The enumerate( ) method places handles to all
of these threads in the array gAll, then I simply move through the entire array calling the
f( ) method for each thread, as well as modifying the priority. Thus, a thread in a “leaf”
thread group modifies threads in parent thread groups.

The debugging method list( ) prints all the information about a thread group to standard
output and is helpful when investigating thread group behavior. Here’s the output of the
program:

java.lang.ThreadGroup[name=x,maxpri=10]
    Thread[one,5,x]
    java.lang.ThreadGroup[name=y,maxpri=10]
        java.lang.ThreadGroup[name=z,maxpri=10]
            Thread[two,5,z]
one f()
two f()
java.lang.ThreadGroup[name=x,maxpri=10]
    Thread[one,1,x]
    java.lang.ThreadGroup[name=y,maxpri=10]
        java.lang.ThreadGroup[name=z,maxpri=10]
            Thread[two,1,z]

Not only does list( ) print the class name of ThreadGroup or Thread, but it also prints the
thread group name and its maximum priority. For threads, the thread name is printed,



644 Thinking in Java  www.BruceEckel.com

followed by the thread priority and the group that it belongs to. Note that list( ) indents the
threads and thread groups to indicate that they are children of the un-indented thread
group.

You can see that f( ) is called by the TestThread2 run( ) method, so it’s obvious that all
threads in a group are vulnerable. However, you can access only the threads that branch off
from your own system thread group tree, and perhaps this is what is meant by “safety.”
You cannot access anyone else’s system thread group tree.

Controlling thread groups
Putting aside the safety issue, one thing thread groups do seem to be useful for is control:
you can perform certain operations on an entire thread group with a single command. The
following example demonstrates this and the restrictions on priorities within thread groups.
The commented numbers in parentheses provide a reference to compare to the output.

//: ThreadGroup1.java
// How thread groups control priorities
// of the threads inside them.

public class ThreadGroup1 {
  public static void main(String[] args) {
    // Get the system thread & print its Info:
    ThreadGroup sys =
      Thread.currentThread().getThreadGroup();
    sys.list(); // (1)
    // Reduce the system thread group priority:
    sys.setMaxPriority(Thread.MAX_PRIORITY - 1);
    // Increase the main thread priority:
    Thread curr = Thread.currentThread();
    curr.setPriority(curr.getPriority() + 1);
    sys.list(); // (2)
    // Attempt to set a new group to the max:
    ThreadGroup g1 = new ThreadGroup("g1");
    g1.setMaxPriority(Thread.MAX_PRIORITY);
    // Attempt to set a new thread to the max:
    Thread t = new Thread(g1, "A");
    t.setPriority(Thread.MAX_PRIORITY);
    g1.list(); // (3)
    // Reduce g1's max priority, then attempt
    // to increase it:
    g1.setMaxPriority(Thread.MAX_PRIORITY - 2);
    g1.setMaxPriority(Thread.MAX_PRIORITY);
    g1.list(); // (4)
    // Attempt to set a new thread to the max:
    t = new Thread(g1, "B");
    t.setPriority(Thread.MAX_PRIORITY);
    g1.list(); // (5)
    // Lower the max priority below the default
    // thread priority:
    g1.setMaxPriority(Thread.MIN_PRIORITY + 2);
    // Look at a new thread's priority before
    // and after changing it:
    t = new Thread(g1, "C");



Chapter 14: Multiple Threads 645

    g1.list(); // (6)
    t.setPriority(t.getPriority() -1);
    g1.list(); // (7)
    // Make g2 a child Threadgroup of g1 and
    // try to increase its priority:
    ThreadGroup g2 = new ThreadGroup(g1, "g2");
    g2.list(); // (8)
    g2.setMaxPriority(Thread.MAX_PRIORITY);
    g2.list(); // (9)
    // Add a bunch of new threads to g2:
    for (int i = 0; i < 5; i++)
      new Thread(g2, Integer.toString(i));
    // Show information about all threadgroups
    // and threads:
    sys.list(); // (10)
    System.out.println("Starting all threads:");
    Thread[] all = new Thread[sys.activeCount()];
    sys.enumerate(all);
    for(int i = 0; i < all.length; i++)
      if(!all[i].isAlive())
        all[i].start();
    // Suspends & Stops all threads in
    // this group and its subgroups:
    System.out.println("All threads started");
    sys.suspend(); // Deprecated in Java 1.2
    // Never gets here...
    System.out.println("All threads suspended");
    sys.stop(); // Deprecated in Java 1.2
    System.out.println("All threads stopped");
  }
} ///:~

The output that follows has been edited to allow it to fit on the page (the java.lang. has
been removed) and to add numbers to correspond to the commented numbers in the listing
above.

(1) ThreadGroup[name=system,maxpri=10]
      Thread[main,5,system]
(2) ThreadGroup[name=system,maxpri=9]
      Thread[main,6,system]
(3) ThreadGroup[name=g1,maxpri=9]
      Thread[A,9,g1]
(4) ThreadGroup[name=g1,maxpri=8]
      Thread[A,9,g1]
(5) ThreadGroup[name=g1,maxpri=8]
      Thread[A,9,g1]
      Thread[B,8,g1]
(6) ThreadGroup[name=g1,maxpri=3]
      Thread[A,9,g1]
      Thread[B,8,g1]
      Thread[C,6,g1]
(7) ThreadGroup[name=g1,maxpri=3]
      Thread[A,9,g1]
      Thread[B,8,g1]



646 Thinking in Java  www.BruceEckel.com

      Thread[C,3,g1]
(8) ThreadGroup[name=g2,maxpri=3]
(9) ThreadGroup[name=g2,maxpri=3]
(10)ThreadGroup[name=system,maxpri=9]
      Thread[main,6,system]
      ThreadGroup[name=g1,maxpri=3]
        Thread[A,9,g1]
        Thread[B,8,g1]
        Thread[C,3,g1]
        ThreadGroup[name=g2,maxpri=3]
          Thread[0,6,g2]
          Thread[1,6,g2]
          Thread[2,6,g2]
          Thread[3,6,g2]
          Thread[4,6,g2]
Starting all threads:
All threads started

All programs have at least one thread running, and the first action in main( ) is to call the
static method of Thread called currentThread( ). From this thread, the thread group is
produced and list( ) is called for the result. The output is:

(1) ThreadGroup[name=system,maxpri=10]
      Thread[main,5,system]

You can see that the name of the main thread group is system, and the name of the main
thread is main, and it belongs to the system thread group.

The second exercise shows that the system group’s maximum priority can be reduced and
the main thread can have its priority increased:

(2) ThreadGroup[name=system,maxpri=9]
      Thread[main,6,system]

The third exercise creates a new thread group, g1, which automatically belongs to the
system thread group since it isn’t otherwise specified. A new thread A is placed in g1. After
attempting to set this group’s maximum priority to the highest level and A’s priority to the
highest level, the result is:

(3) ThreadGroup[name=g1,maxpri=9]
      Thread[A,9,g1]

Thus, it’s not possible to change the thread group’s maximum priority to be higher than its
parent thread group.

The fourth exercise reduces g1’s maximum priority by two and then tries to increase it up to
Thread.MAX_PRIORITY. The result is:

(4) ThreadGroup[name=g1,maxpri=8]
      Thread[A,9,g1]

You can see that the increase in maximum priority didn’t work. You can only decrease a
thread group’s maximum priority, not increase it. Also, notice that thread A’s priority didn’t
change, and now it is higher than the thread group’s maximum priority. Changing a thread
group’s maximum priority doesn’t affect existing threads.



Chapter 14: Multiple Threads 647

The fifth exercise attempts to set a new thread to maximum priority:

(5) ThreadGroup[name=g1,maxpri=8]
      Thread[A,9,g1]
      Thread[B,8,g1]

The new thread cannot be changed to anything higher than the maximum thread group
priority.

The default thread priority for this program is 6; that’s the priority a new thread will be
created at and where it will stay if you don’t manipulate the priority. Exercise six lowers the
maximum thread group priority below the default thread priority to see what happens
when you create a new thread under this condition:

(6) ThreadGroup[name=g1,maxpri=3]
      Thread[A,9,g1]
      Thread[B,8,g1]
      Thread[C,6,g1]

Even though the maximum priority of the thread group is 3, the new thread is still created
using the default priority of 6. Thus, maximum thread group priority does not affect default
priority. (In fact, there appears to be no way to set the default priority for new threads.)

After changing the priority, attempting to decrement it by one, the result is:

(7) ThreadGroup[name=g1,maxpri=3]
      Thread[A,9,g1]
      Thread[B,8,g1]
      Thread[C,3,g1]

Only when you attempt to change the priority is the thread group’s maximum priority
enforced.

A similar experiment is performed in (8) and (9), in which a new thread group g2 is created
as a child of g1 and its maximum priority is changed. You can see that it’s impossible for
g2’s maximum to go higher than g1’s:

(8) ThreadGroup[name=g2,maxpri=3]
(9) ThreadGroup[name=g2,maxpri=3]

Also notice that g2 is automatically set to the thread group maximum priority of g1 as g2 is
created.

After all of these experiments, the entire system of thread groups and threads is printed out:

(10)ThreadGroup[name=system,maxpri=9]
      Thread[main,6,system]
      ThreadGroup[name=g1,maxpri=3]
        Thread[A,9,g1]
        Thread[B,8,g1]
        Thread[C,3,g1]
        ThreadGroup[name=g2,maxpri=3]
          Thread[0,6,g2]
          Thread[1,6,g2]
          Thread[2,6,g2]
          Thread[3,6,g2]
          Thread[4,6,g2]



648 Thinking in Java  www.BruceEckel.com

So because of the rules of thread groups, a child group must always have a maximum
priority that’s less than or equal to its parent’s maximum priority.

The last part of this program demonstrates methods for an entire group of threads. First the
program moves through the entire tree of threads and starts each one that hasn’t been
started. For drama, the system group is then suspended and finally stopped. (Although it’s
interesting to see that suspend( ) and stop( ) work on entire thread groups, you should keep
in mind that these methods are deprecated in Java 1.2.) But when you suspend the system
group you also suspend the main thread and the whole program shuts down, so it never
gets to the point where the threads are stopped. Actually, if you do stop the main thread it
throws a ThreadDeath exception, so this is not a typical thing to do. Since ThreadGroup is
inherited from Object, which contains the wait( ) method, you can also choose to suspend
the program for any number of seconds by calling wait(seconds * 1000). This must acquire
the lock inside a synchronized block, of course.

The ThreadGroup class also has suspend( ) and resume( ) methods so you can stop and
start an entire thread group and all of its threads and subgroups with a single command.
(Again, suspend( ) and resume( ) are deprecated in Java 1.2.)

Thread groups can seem a bit mysterious at first, but keep in mind that you probably won’t
be using them directly very often.

Runnable revisited
Earlier in this chapter, I suggested that you think carefully before making an applet or main
Frame as an implementation of Runnable. If you take that approach, you can make only
one of those threads in your program. This limits your flexibility if you decide that you
want to have more than one thread of that type.

Of course, if you must inherit from a class and you want to add threading behavior to the
class, Runnable is the correct solution. The final example in this chapter exploits this by
making a Runnable Canvas class that paints different colors on itself. This application is set
up to take values from the command line to determine how big the grid of colors is and how
long to sleep( ) between color changes. By playing with these values you’ll discover some
interesting and possibly inexplicable features of threads:

//: ColorBoxes.java
// Using the Runnable interface
import java.awt.*;
import java.awt.event.*;

class CBox extends Canvas implements Runnable {
  private Thread t;
  private int pause;
  private static final Color[] colors = {
    Color.black, Color.blue, Color.cyan,
    Color.darkGray, Color.gray, Color.green,
    Color.lightGray, Color.magenta,
    Color.orange, Color.pink, Color.red,
    Color.white, Color.yellow
  };
  private Color cColor = newColor();
  private static final Color newColor() {



Chapter 14: Multiple Threads 649

    return colors[
      (int)(Math.random() * colors.length)
    ];
  }
  public void paint(Graphics  g) {
    g.setColor(cColor);
    Dimension s = getSize();
    g.fillRect(0, 0, s.width, s.height);
  }
  public CBox(int pause) {
    this.pause = pause;
    t = new Thread(this);
    t.start();
  }
  public void run() {
    while(true) {
      cColor = newColor();
      repaint();
      try {
        t.sleep(pause);
      } catch(InterruptedException e) {}
    }
  }
}

public class ColorBoxes extends Frame {
  public ColorBoxes(int pause, int grid) {
    setTitle("ColorBoxes");
    setLayout(new GridLayout(grid, grid));
    for (int i = 0; i < grid * grid; i++)
      add(new CBox(pause));
    addWindowListener(new WindowAdapter() {
      public void windowClosing(WindowEvent e) {
        System.exit(0);
      }
    });
  }
  public static void main(String[] args) {
    int pause = 50;
    int grid = 8;
    if(args.length > 0)
      pause = Integer.parseInt(args[0]);
    if(args.length > 1)
      grid = Integer.parseInt(args[1]);
    Frame f = new ColorBoxes(pause, grid);
    f.setSize(500, 400);
    f.setVisible(true);
  }
} ///:~

ColorBoxes is a typical application with a constructor that sets up the GUI. This constructor
takes an argument of int grid to set up the GridLayout so that it has grid cells in each
dimension. Then it adds the appropriate number of CBox objects to fill the grid, passing the



650 Thinking in Java  www.BruceEckel.com

pause value to each one. In main( ) you can see how pause and grid have default values
that can be changed if you pass in command-line arguments.

CBox is where all the work takes place. This is inherited from Canvas and it implements the
Runnable interface so each Canvas can also be a Thread. Remember that when you
implement Runnable, you don’t make a Thread object, just a class that has a run( )
method. Thus, you must explicitly create a Thread object and hand the Runnable object to
the constructor, then call start( ) (this happens in the constructor). In CBox this thread is
called t.

Notice the array colors, which is an enumeration of all the colors in class Color. This is used
in newColor( ) to produce a randomly-selected color. The current cell color is cColor.

paint( ) is quite simple – it just sets the color to cColor and fills the entire canvas with that
color.

In run( ), you see the infinite loop that sets the cColor to a new random color and then calls
repaint( ) to show it. Then the thread goes to sleep( ) for the amount of time specified on
the command line.

Precisely because this design is flexible and threading is tied to each Canvas element, you can
experiment by making as many threads as you want. (In reality, there is a restriction
imposed by the number of threads your JVM can comfortably handle.)

This program also makes an interesting benchmark, since it can show dramatic speed
differences between one JVM implementation and another.

Too many threads
At some point, you’ll find that ColorBoxes bogs down. On my machine, this occurred
somewhere after a 10 x 10 grid. Why does this happen? You’re naturally suspicious that the
AWT might have something to do with it, so here’s an example that tests that premise by
making fewer threads. The code is reorganized so that a Vector implements Runnable and
that Vector holds a number of color blocks and randomly chooses ones to update. Then a
number of these Vector objects are created, depending roughly on the grid dimension you
choose. As a result, you have far fewer threads than color blocks, so if there’s a speedup
we’ll know it was because there were too many threads in the previous example:

//: ColorBoxes2.java
// Balancing thread use
import java.awt.*;
import java.awt.event.*;
import java.util.*;

class CBox2 extends Canvas {
  private static final Color[] colors = {
    Color.black, Color.blue, Color.cyan,
    Color.darkGray, Color.gray, Color.green,
    Color.lightGray, Color.magenta,
    Color.orange, Color.pink, Color.red,
    Color.white, Color.yellow
  };
  private Color cColor = newColor();
  private static final Color newColor() {
    return colors[



Chapter 14: Multiple Threads 651

      (int)(Math.random() * colors.length)
    ];
  }
  void nextColor() {
    cColor = newColor();
    repaint();
  }
  public void paint(Graphics  g) {
    g.setColor(cColor);
    Dimension s = getSize();
    g.fillRect(0, 0, s.width, s.height);
  }
}

class CBoxVector
  extends Vector implements Runnable {
  private Thread t;
  private int pause;
  public CBoxVector(int pause) {
    this.pause = pause;
    t = new Thread(this);
  }
  public void go() { t.start(); }
  public void run() {
    while(true) {
      int i = (int)(Math.random() * size());
      ((CBox2)elementAt(i)).nextColor();
      try {
        t.sleep(pause);
      } catch(InterruptedException e) {}
    }
  }
}

public class ColorBoxes2 extends Frame {
  private CBoxVector[] v;
  public ColorBoxes2(int pause, int grid) {
    setTitle("ColorBoxes2");
    setLayout(new GridLayout(grid, grid));
    v = new CBoxVector[grid];
    for(int i = 0; i < grid; i++)
      v[i] = new CBoxVector(pause);
    for (int i = 0; i < grid * grid; i++) {
      v[i % grid].addElement(new CBox2());
      add((CBox2)v[i % grid].lastElement());
    }
    for(int i = 0; i < grid; i++)
      v[i].go();
    addWindowListener(new WindowAdapter() {
      public void windowClosing(WindowEvent e) {
        System.exit(0);
      }
    });
  }



652 Thinking in Java  www.BruceEckel.com

  public static void main(String[] args) {
    // Shorter default pause than ColorBoxes:
    int pause = 5;
    int grid = 8;
    if(args.length > 0)
      pause = Integer.parseInt(args[0]);
    if(args.length > 1)
      grid = Integer.parseInt(args[1]);
    Frame f = new ColorBoxes2(pause, grid);
    f.setSize(500, 400);
    f.setVisible(true);
  }
} ///:~

In ColorBoxes2 an array of CBoxVector is created and initialized to hold grid CBoxVectors,
each of which knows how long to sleep. An equal number of Cbox2 objects is then added to
each CBoxVector, and each vector is told to go( ), which starts its thread.

CBox2 is similar to CBox: it paints itself with a randomly-chosen color. But that’s all a
CBox2 does. All of the threading has been moved into CBoxVector.

The CBoxVector could also have inherited Thread and had a member object of type Vector.
That design has the advantage that the addElement( ) and elementAt( ) methods could then
be given specific argument and return value types instead of generic Objects. (Their names
could also be changed to something shorter.) However, the design used here seemed at first
glance to require less code. In addition, it automatically retains all the other behaviors of a
Vector. With all the casting and parentheses necessary for elementAt( ), this might not be
the case as your body of code grows.

As before, when you implement Runnable you don’t get all of the equipment that comes
with Thread, so you have to create a new Thread and hand yourself to its constructor in
order to have something to start( ), as you can see in the CBoxVector constructor and in
go( ). The run( ) method simply chooses a random element number within the vector and
calls nextColor( ) for that element to cause it to choose a new randomly-selected color.

Upon running this program, you see that it does indeed run faster and respond more quickly
(for instance, when you interrupt it, it stops more quickly), and it doesn’t seem to bog down
as much at higher grid sizes. Thus, a new factor is added into the threading equation: you
must watch to see that you don’t have “too many threads” (whatever that turns out to
mean for your particular program and platform). If you do, you must try to use techniques
like the one above to “balance” the number of threads in your program. If you see
performance problems in a multithreaded program you now have a number of issues to
examine:

1. Do you have enough calls to sleep( ), yield( ), and/or wait( )?

2. Are calls to sleep( ) long enough?

3. Are you running too many threads?

4. Have you tried different platforms and JVMs?

Issues like this are one reason that multithreaded programming is often considered an art.



Chapter 14: Multiple Threads 653

Summary
It is vital to learn when to use multithreading and when to avoid it. The main reason to use
it is to manage a number of tasks whose intermingling will make more efficient use of the
computer or be more convenient for the user. The classic example of resource balancing is
using the CPU during I/O waits. The classic example of user convenience is monitoring a
“stop” button during long downloads.

The main drawbacks to multithreading are:

1. Slowdown while waiting for shared resources

2. Additional CPU overhead required to manage threads

3. Unrewarded complexity, such as the silly idea of having a separate thread to update each
element of an array

4. Pathologies including starving, racing, and deadlock

An additional advantage to threads is that they substitute “light” execution context switches
(of the order of 100 instructions) for “heavy” process context switches (of the order of 1000s
of instructions). Since all threads in a given process share the same memory space, a light
context switch changes only program execution and local variables. On the other hand, a
process change, the heavy context switch, must exchange the full memory space.

Threading is like stepping into an entirely new world and learning a whole new
programming language, or at least a new set of language concepts. With the appearance of
thread support in most microcomputer operating systems, extensions for threads have also
been appearing in programming languages or libraries. In all cases, thread programming (1)
seems mysterious and requires a shift in the way you think about programming and (2)
looks similar to thread support in other languages, so when you understand threads, you
understand a common tongue. And although support for threads can make Java seem like a
more complicated language, don’t blame Java. Threads are tricky.

One of the biggest difficulties with threads occurs because more than one thread might be
sharing a resource, such as the memory in an object, and you must make sure that multiple
threads don’t try to read and change that resource at the same time. This requires judicious
use of the synchronized keyword, which is a helpful tool but must be understood
thoroughly because it can quietly introduce deadlock situations.

In addition, there’s a certain art to the application of threads. Java is designed to allow you
to create as many objects as you need to solve your problem – at least in theory. (Creating
millions of objects for an engineering finite-element analysis, for example, might not be
practical in Java.) However, it seems that there is an upper bound to the number of threads
you’ll want to create because at some point a large number of threads seems to become
unwieldy. This critical point is not in the many thousands as it might be with objects, but
rather in the neighborhood of less than 100. As you often create only a handful of threads to
solve a problem, this is typically not much of a limit, yet in a more general design it becomes
a constraint.

A significant non-intuitive issue in threading is that, because of thread scheduling, you can
typically make your applications run faster by inserting calls to sleep( ) inside run( )’s main
loop. This definitely makes it feel like an art, in particular when the longer delays seem to
speed up performance. Of course, the reason this happens is that shorter delays can cause
the end-of-sleep( ) scheduler interrupt to happen before the running thread is ready to go to



654 Thinking in Java  www.BruceEckel.com

sleep, forcing the scheduler to stop it and restart it later so it can finish what it was doing
and then go to sleep. It takes extra thought to realize how messy things can get.

One thing you might notice missing in this chapter is an animation example, which is one of
the most popular things to do with applets. However, a complete solution (with sound) to
this problem comes with the Java JDK (available at java.sun.com) in the demo section. In
addition, we can expect better animation support to become part of future versions of Java,
while completely different non-Java, non-programming solutions to animation for the Web
are appearing that will probably be superior to traditional approaches. For explanations
about how Java animation works, see Core Java by Cornell & Horstmann, Prentice-Hall
1997. For more advanced discussions of threading, see Concurrent Programming in Java by
Doug Lea, Addison-Wesley 1997, or Java Threads by Oaks & Wong, O’Reilly 1997.

Exercises
 1.  Inherit a class from Thread and override the run( ) method. Inside run( ), print a

message, then call sleep( ). Repeat this three times, then return from run( ). Put a start-
up message in the constructor and override finalize( ) to print a shut-down message.
Make a separate thread class that calls System.gc( ) and System.runFinalization( ) inside
run( ), printing a message as it does so. Make several thread objects of both types and run
them to see what happens.

 2.  Modify Counter2.java so that the thread is an inner class and doesn’t need to explicitly
store a handle to a Counter2.

 3.  Modify Sharing2.java to add a synchronized block inside the run( ) method of
TwoCounter instead of synchronizing the entire run( ) method.

 4.  Create two Thread subclasses, one with a run( ) that starts up, captures the handle of the
second Thread object and then calls wait( ). The other class’ run( ) should call notifyAll( )
for the first thread after some number of seconds have passed, so the first thread can print
out a message.

 5.  In Counter5.java inside Ticker2, remove the yield( ) and explain the results. Replace the
yield( ) with a sleep( ) and explain the results.

 6.  In ThreadGroup1.java, replace the call to sys.suspend( ) with a call to wait( ) for the
thread group, causing it to wait for two seconds. For this to work correctly you must
acquire the lock for sys inside a synchronized block.

 7.  Change Daemons.java so that main( ) has a sleep( ) instead of a readLine( ). Experiment
with different sleep times to see what happens.

 8.  (Intermediate) In Chapter 7, locate the GreenhouseControls.java example, which consists
of three files. In Event.java, the class Event is based on watching the time. Change Event
so that it is a Thread, and change the rest of the design so that it works with this new
Thread-based Event.



655

w

15: Network
programming

Historically, network programming has been error-prone, difficult, and
complex.
The programmer had to know many details about the network and sometimes even the
hardware. You usually needed to understand the various “layers” of the networking
protocol, and there were a lot of different functions in each different networking library
concerned with connecting, packing, and unpacking blocks of information; shipping those
blocks back and forth; and handshaking. It was a daunting task.

However, the concept of networking is not so difficult. You want to get some information
from that machine over there and move it to this machine here, or vice versa. It’s quite
similar to reading and writing files, except that the file exists on a remote machine and the
remote machine can decide exactly what it wants to do about the information you’re
requesting or sending.

One of Java’s great strengths is painless networking. As much as possible, the underlying
details of networking have been abstracted away and taken care of within the JVM and local
machine installation of Java. The programming model you use is that of a file; in fact, you
actually wrap the network connection (a “socket”) with stream objects, so you end up using
the same method calls as you do with all other streams. In addition, Java’s built-in
multithreading is exceptionally handy when dealing with another networking issue:
handling multiple connections at once.

This chapter introduces Java’s networking support using easy-to-understand examples.



656 Thinking in Java  www.BruceEckel.com

Identifying a machine
Of course, in order to tell one machine from another and to make sure that you are
connected with the machine you want, there must be some way of uniquely identifying
machines on a network. Early networks were satisfied to provide unique names for
machines within the local network. However, Java works within the Internet, which
requires a way to uniquely identify a machine from all the others in the world. This is
accomplished with the IP (Internet Protocol) address that can exist in two forms:

1. The familiar DNS (Domain Name Service) form. My domain name is bruceeckel.com, so
suppose I have a computer called Opus in my domain. Its domain name would be
Opus.bruceeckel.com. This is exactly the kind of name that you use when you send
email to people, and is often incorporated into a World-Wide-Web address.

2. Alternatively, you can use the “dotted quad” form, which is four numbers separated by
dots, such as 123.255.28.120.

In both cases, the IP address is represented internally as a 32-bit number1 (so each of the
quad numbers cannot exceed 255), and you can get a special Java object to represent this
number from either of the forms above by using the static InetAddress.getByName( )
method that’s in java.net. The result is an object of type InetAddress that you can use to
build a “socket” as you will see later.

As a simple example of using InetAddress.getByName( ), consider what happens if you
have a dial-up Internet service provider (ISP). Each time you dial up, you are assigned a
temporary IP address. But while you’re connected, your IP address has the same validity as
any other IP address on the Internet. If someone connects to your machine using your IP
address then they can connect to a Web server or FTP server that you have running on your
machine. Of course, they need to know your IP address, and since it’s assigned each time
you dial up, how can you find out what it is?

The following program uses InetAddress.getByName( ) to produce your IP address. To use
it, you must know the name of your computer. It has been tested only on Windows 95, but
there you can go to “Settings,” “Control Panel,” “Network,” and then select the
“Identification” tab. “Computer name” is the name to put on the command line.

//: WhoAmI.java
// Finds out your network address when you're
// connected to the Internet.
package c15;
import java.net.*;

public class WhoAmI {
  public static void main(String[] args)
      throws Exception {
    if(args.length != 1) {
      System.err.println(
        "Usage: WhoAmI MachineName");

                                                

1 This means a maximum of just over four billion numbers, which is rapidly running out. The new
standard for IP addresses will use a 128-bit number, which should produce enough unique IP addresses
for the foreseeable future.



Chapter 15: Network Programming 657

      System.exit(1);
    }
    InetAddress a =
      InetAddress.getByName(args[0]);
    System.out.println(a);
  }
} ///:~

In my case, the machine is called “Colossus” (from the movie of the same name, because I
keep putting bigger disks on it). So, once I’ve connected to my ISP I run the program:

java WhoAmI Colossus

I get back a message like this (of course, the address is different each time):

Colossus/199.190.87.75

If I tell my friend this address, he can log onto my personal Web server by going to the URL
http://199.190.87.75 (only as long as I continue to stay connected during that session). This
can sometimes be a handy way to distribute information to someone else or to test out a
Web site configuration before posting it to a “real” server.

Servers and clients
The whole point of a network is to allow two machines to connect and talk to each other.
Once the two machines have found each other they can have a nice, two-way conversation.
But how do they find each other? It’s like getting lost in an amusement park: one machine
has to stay in one place and listen while the other machine says, “Hey, where are you?”

The machine that “stays in one place” is called the server, and the one that seeks is called the
client. This distinction is important only while the client is trying to connect to the server.
Once they’ve connected, it becomes a two-way communication process and it doesn’t matter
anymore that one happened to take the role of server and the other happened to take the role
of the client.

So the job of the server is to listen for a connection, and that’s performed by the special
server object that you create. The job of the client is to try to make a connection to a server,
and this is performed by the special client object you create. Once the connection is made,
you’ll see that at both server and client ends, the connection is just magically turned into an
IO stream object, and from then on you can treat the connection as if you were reading from
and writing to a file. Thus, after the connection is made you will just use the familiar IO
commands from Chapter 10. This is one of the nice features of Java networking.

Testing programs without a network
For many reasons, you might not have a client machine, a server machine, and a network
available to test your programs. You might be performing exercises in a classroom situation,
or you could be writing programs that aren’t yet stable enough to put onto the network.
The creators of the Internet Protocol were aware of this issue, and they created a special
address called localhost to be the “local loopback” IP address for testing without a network.
The generic way to produce this address in Java is:

InetAddress addr = InetAddress.getByName(null);



658 Thinking in Java  www.BruceEckel.com

If you hand getByName( ) a null, it defaults to using the localhost. The InetAddress is
what you use to refer to the particular machine, and you must produce this before you can
go any further. You can’t manipulate the contents of an InetAddress (but you can print
them out, as you’ll see in the next example). The only way you can create an InetAddress is
through one of that class’s static member methods getByName( ) (which is what you’ll
usually use), getAllByName( ), or getLocalHost( ).

You can also produce the local loopback address by handing it the string localhost:

InetAddress.getByName("localhost");

or by using its dotted quad form to name the reserved IP number for the loopback:

InetAddress.getByName("127.0.0.1");

All three forms produce the same result.

Port: a unique place
within the machine

An IP address isn’t enough to identify a unique server, since many servers can exist on one
machine. Each IP machine also contains ports, and when you’re setting up a client or a
server you must choose a port where both client and server agree to connect; if you’re
meeting someone, the IP address is the neighborhood and the port is the bar.

The port is not a physical location in a machine, but a software abstraction (mainly for
bookkeeping purposes). The client program knows how to connect to the machine via its IP
address, but how does it connect to a desired service (potentially one of many on that
machine)? That’s where the port numbers come in as second level of addressing. The idea is
that if you ask for a particular port, you’re requesting the service that’s associated with the
port number. The time of day is a simple example of a service. Typically, each service is
associated with a unique port number on a given server machine. It’s up to the client to
know ahead of time which port number the desired service is running on.

The system services reserve the use of ports 1 through 1024, so you shouldn’t use those or
any other port that you know to be in use. The first choice for examples in this book will be
port 8080 (in memory of the venerable old 8-bit Intel 8080 chip in my first computer, a
CP/M machine).

Sockets
The socket is the software abstraction used to represent the “terminals” of a connection
between two machines. For a given connection, there’s a socket on each machine, and you
can imagine a hypothetical “cable” running between the two machines with each end of the
“cable” plugged into a socket. Of course, the physical hardware and cabling between
machines is completely unknown. The whole point of the abstraction is that we don’t have
to know more than is necessary.

In Java, you create a socket to make the connection to the other machine, then you get an
InputStream and OutputStream (or, with the appropriate converters, Reader and Writer)
from the socket in order to be able to treat the connection as an IO stream object. There are
two stream-based socket classes: a ServerSocket that a server uses to “listen” for incoming
connections and a Socket that a client uses in order to initiate a connection. Once a client



Chapter 15: Network Programming 659

makes a socket connection, the ServerSocket returns (via the accept( ) method) a
corresponding server side Socket through which direct communications will take place.
From then on, you have a true Socket to Socket connection and you treat both ends the
same way because they are the same. At this point, you use the methods getInputStream( )
and getOutputStream( ) to produce the corresponding InputStream and OutputStream
objects from each Socket. These must be wrapped inside buffers and formatting classes just
like any other stream object described in Chapter 10.

The use of the term ServerSocket would seem to be another example of a confusing name
scheme in the Java libraries. You might think ServerSocket would be better named
“ServerConnector” or something without the word “Socket” in it. You might also think that
ServerSocket and Socket should both be inherited from some common base class. Indeed,
the two classes do have several methods in common but not enough to give them a common
base class. Instead, ServerSocket’s job is to wait until some other machine connects to it,
then to return an actual Socket. This is why ServerSocket seems to be a bit misnamed,
since its job isn’t really to be a socket but instead to make a Socket object when someone else
connects to it.

However, the ServerSocket does create a physical “server” or listening socket on the host
machine. This socket listens for incoming connections and then returns an “established”
socket (with the local and remote endpoints defined) via the accept( ) method. The confusing
part is that both of these sockets (listening and established) are associated with the same
server socket. The listening socket can accept only new connection requests and not data
packets. So while ServerSocket doesn’t make much sense programmatically, it does
“physically.”

When you create a ServerSocket, you give it only a port number. You don’t have to give it
an IP address because it’s already on the machine it represents. When you create a Socket,
however, you must give both the IP address and the port number where you’re trying to
connect. (On the other hand, the Socket that comes back from ServerSocket.accept( )
already contains all this information.)

A simple server and client
This example makes the simplest use of servers and clients using sockets. All the server does
is wait for a connection, then uses the Socket produced by that connection to create an
InputStream and OutputStream. After that, everything it reads from the InputStream it
echoes to the OutputStream until it receives the line END, at which time it closes the
connection.

The client makes the connection to the server, then creates an OutputStream. Lines of text
are sent through the OutputStream. The client also creates an InputStream to hear what
the server is saying (which, in this case, is just the words echoed back).

Both the server and client use the same port number and the client uses the local loopback
address to connect to the server on the same machine so you don’t have to test it over a
network. (For some configurations, you might need to be connected to a network for the
programs to work, even if you aren’t communicating over that network.)

Here is the server:

//: JabberServer.java
// Very simple server that just
// echoes whatever the client sends.
import java.io.*;



660 Thinking in Java  www.BruceEckel.com

import java.net.*;

public class JabberServer {
  // Choose a port outside of the range 1-1024:
  public static final int PORT = 8080;
  public static void main(String[] args)
      throws IOException {
    ServerSocket s = new ServerSocket(PORT);
    System.out.println("Started: " + s);
    try {
      // Blocks until a connection occurs:
      Socket socket = s.accept();
      try {
        System.out.println(
          "Connection accepted: "+ socket);
        BufferedReader in =
          new BufferedReader(
            new InputStreamReader(
              socket.getInputStream()));
        // Output is automatically flushed
        // by PrintWriter:
        PrintWriter out =
          new PrintWriter(
            new BufferedWriter(
              new OutputStreamWriter(
                socket.getOutputStream())),true);
        while (true) {
          String str = in.readLine();
          if (str.equals("END")) break;
          System.out.println("Echoing: " + str);
          out.println(str);
        }
      // Always close the two sockets...
      } finally {
        System.out.println("closing...");
        socket.close();
      }
    } finally {
      s.close();
    }
  }
} ///:~

You can see that the ServerSocket just needs a port number, not an IP address (since it’s
running on this machine!). When you call accept( ), the method blocks until some client tries
to connect to it. That is, it’s there waiting for a connection but other processes can run (see
Chapter 14). When a connection is made, accept( ) returns with a Socket object representing
that connection.

The responsibility for cleaning up the sockets is crafted carefully here. If the ServerSocket
constructor fails, the program just quits (notice we must assume that the constructor for
ServerSocket doesn’t leave any open network sockets lying around if it fails). For this case,
main( ) throws IOException so a try block is not necessary. If the ServerSocket



Chapter 15: Network Programming 661

constructor is successful then all other method calls must be guarded in a try-finally block
to ensure that, no matter how the block is left, the ServerSocket is properly closed.

The same logic is used for the Socket returned by accept( ). If accept( ) fails, then we must
assume that the Socket doesn’t exist or hold any resources, so it doesn’t need to be cleaned
up. If it’s successful, however, the following statements must be in a try-finally block so
that if they fail the Socket will still be cleaned up. Care is required here because sockets use
important non-memory resources, so you must be diligent in order to clean them up (since
there is no destructor in Java to do it for you).

Both the ServerSocket and the Socket produced by accept( ) are printed to System.out.
This means that their toString( ) methods are automatically called. These produce:

ServerSocket[addr=0.0.0.0,PORT=0,localport=8080]
Socket[addr=127.0.0.1,PORT=1077,localport=8080]

Shortly, you’ll see how these fit together with what the client is doing.

The next part of the program looks just like opening files for reading and writing except that
the InputStream and OutputStream are created from the Socket object. Both the
InputStream and OutputStream objects are converted to Java 1.1 Reader and Writer
objects using the “converter” classes InputStreamReader and OutputStreamWriter,
respectively. You could also have used the Java 1.0 InputStream and OutputStream classes
directly, but with output there’s a distinct advantage to using the Writer approach. This
appears with PrintWriter, which has an overloaded constructor that takes a second
argument, a boolean flag that indicates whether to automatically flush the output at the
end of each println( ) (but not print( )) statement. Every time you write to out, its buffer
must be flushed so the information goes out over the network. Flushing is important for this
particular example because the client and server each wait for a line from the other party
before proceeding. If flushing doesn’t occur, the information will not be put onto the
network until the buffer is full, which causes lots of problems in this example.

When writing network programs you need to be careful about using automatic flushing.
Every time you flush the buffer a packet must be created and sent. In this case, that’s exactly
what we want, since if the packet containing the line isn’t sent then the handshaking back
and forth between server and client will stop. Put another way, the end of a line is the end of
a message. But in many cases messages aren’t delimited by lines so it’s much more efficient
to not use auto flushing and instead let the built-in buffering decide when to build and send
a packet. This way, larger packets can be sent and the process will be faster.

Note that, like virtually all streams you open, these are buffered. There’s an exercise at the
end of the chapter to show you what happens if you don’t buffer the streams (things get
slow).

The infinite while loop reads lines from the BufferedReader in and writes information to
System.out and to the PrintWriter out. Note that these could be any streams, they just
happen to be connected to the network.

When the client sends the line consisting of “END” the program breaks out of the loop and
closes the Socket.

Here’s the client:

//: JabberClient.java
// Very simple client that just sends
// lines to the server and reads lines



662 Thinking in Java  www.BruceEckel.com

// that the server sends.
import java.net.*;
import java.io.*;

public class JabberClient {
  public static void main(String[] args)
      throws IOException {
    // Passing null to getByName() produces the
    // special "Local Loopback" IP address, for
    // testing on one machine w/o a network:
    InetAddress addr =
      InetAddress.getByName(null);
    // Alternatively, you can use
    // the address or name:
    // InetAddress addr =
    //    InetAddress.getByName("127.0.0.1");
    // InetAddress addr =
    //    InetAddress.getByName("localhost");
    System.out.println("addr = " + addr);
    Socket socket =
      new Socket(addr, JabberServer.PORT);
    // Guard everything in a try-finally to make
    // sure that the socket is closed:
    try {
      System.out.println("socket = " + socket);
      BufferedReader in =
        new BufferedReader(
          new InputStreamReader(
            socket.getInputStream()));
      // Output is automatically flushed
      // by PrintWriter:
      PrintWriter out =
        new PrintWriter(
          new BufferedWriter(
            new OutputStreamWriter(
              socket.getOutputStream())),true);
      for(int i = 0; i < 10; i ++) {
        out.println("howdy " + i);
        String str = in.readLine();
        System.out.println(str);
      }
      out.println("END");
    } finally {
      System.out.println("closing...");
      socket.close();
    }
  }
} ///:~

In main( ) you can see all three ways to produce the InetAddress of the local loopback IP
address: using null, localhost, or the explicit reserved address 127.0.0.1. Of course, if you
want to connect to a machine across a network you substitute that machine’s IP address.
When the InetAddress addr is printed (via the automatic call to its toString( ) method) the
result is:



Chapter 15: Network Programming 663

localhost/127.0.0.1

By handing getByName( ) a null, it defaulted to finding the localhost, and that produced
the special address 127.0.0.1.

Note that the Socket called socket is created with both the InetAddress and the port
number. To understand what it means when you print out one of these Socket objects,
remember that an Internet connection is determined uniquely by these four pieces of data:
clientHost, clientPortNumber, serverHost, and serverPortNumber. When the server
comes up, it takes up its assigned port (8080) on the localhost (127.0.0.1). When the client
comes up, it is allocated to the next available port on its machine, 1077 in this case, which
also happens to be on the same machine (127.0.0.1) as the server. Now, in order for data to
move between the client and server, each side has to know where to send it. Therefore,
during the process of connecting to the “known” server, the client sends a “return address”
so the server knows where to send its data. This is what you see in the example output for
the server side:

Socket[addr=127.0.0.1,port=1077,localport=8080]

This means that the server just accepted a connection from 127.0.0.1 on port 1077 while
listening on its local port (8080). On the client side:

Socket[addr=localhost/127.0.0.1,PORT=8080,localport=1077]

which means that the client made a connection to 127.0.0.1 on port 8080 using the local
port 1077.

You’ll notice that every time you start up the client anew, the local port number is
incremented. It starts at 1025 (one past the reserved block of ports) and keeps going up until
you reboot the machine, at which point it starts at 1025 again. (On UNIX machines, once
the upper limit of the socket range is reached, the numbers will wrap around to the lowest
available number again.)

Once the Socket object has been created, the process of turning it into a BufferedReader and
PrintWriter is the same as in the server (again, in both cases you start with a Socket). Here,
the client initiates the conversation by sending the string “howdy” followed by a number.
Note that the buffer must again be flushed (which happens automatically via the second
argument to the PrintWriter constructor). If the buffer isn’t flushed, the whole conversation
will hang because the initial “howdy” will never get sent (the buffer isn’t full enough to
cause the send to happen automatically). Each line that is sent back from the server is
written to System.out to verify that everything is working correctly. To terminate the
conversation, the agreed-upon “END” is sent. If the client simply hangs up, then the server
throws an exception.

You can see that the same care is taken here to ensure that the network resources
represented by the Socket are properly cleaned up, using a try-finally block.

Sockets produce a “dedicated” connection that persists until it is explicitly disconnected. (The
dedicated connection can still be disconnected un-explicitly if one side, or an intermediary
link, of the connection crashes.) This means the two parties are locked in communication
and the connection is constantly open. This seems like a logical approach to networking, but
it puts an extra load on the network. Later in the chapter you’ll see a different approach to
networking, in which the connections are only temporary.



664 Thinking in Java  www.BruceEckel.com

Serving multiple clients
The JabberServer works, but it can handle only one client at a time. In a typical server,
you’ll want to be able to deal with many clients at once. The answer is multithreading, and
in languages that don’t directly support multithreading this means all sorts of
complications. In Chapter 14 you saw that multithreading in Java is about as simple as
possible, considering that multithreading is a rather complex topic. Because threading in
Java is reasonably straightforward, making a server that handles multiple clients is
relatively easy.

The basic scheme is to make a single ServerSocket in the server and call accept( ) to wait
for a new connection. When accept( ) returns, you take the resulting Socket and use it to
create a new thread whose job is to serve that particular client. Then you call accept( ) again
to wait for a new client.

In the following server code, you can see that it looks similar to the JabberServer.java
example except that all of the operations to serve a particular client have been moved inside a
separate thread class:

//: MultiJabberServer.java
// A server that uses multithreading to handle
// any number of clients.
import java.io.*;
import java.net.*;

class ServeOneJabber extends Thread {
  private Socket socket;
  private BufferedReader in;
  private PrintWriter out;
  public ServeOneJabber(Socket s)
      throws IOException {
    socket = s;
    in =
      new BufferedReader(
        new InputStreamReader(
          socket.getInputStream()));
    // Enable auto-flush:
    out =
      new PrintWriter(
        new BufferedWriter(
          new OutputStreamWriter(
            socket.getOutputStream())), true);
    // If any of the above calls throw an
    // exception, the caller is responsible for
    // closing the socket. Otherwise the thread
    // will close it.
    start(); // Calls run()
  }
  public void run() {
    try {
      while (true) {
        String str = in.readLine();
        if (str.equals("END")) break;



Chapter 15: Network Programming 665

        System.out.println("Echoing: " + str);
        out.println(str);
      }
      System.out.println("closing...");
    } catch (IOException e) {
    } finally {
      try {
        socket.close();
      } catch(IOException e) {}
    }
  }
}

public class MultiJabberServer {
  static final int PORT = 8080;
  public static void main(String[] args)
      throws IOException {
    ServerSocket s = new ServerSocket(PORT);
    System.out.println("Server Started");
    try {
      while(true) {
        // Blocks until a connection occurs:
        Socket socket = s.accept();
        try {
          new ServeOneJabber(socket);
        } catch(IOException e) {
          // If it fails, close the socket,
          // otherwise the thread will close it:
          socket.close();
        }
      }
    } finally {
      s.close();
    }
  }
} ///:~

The ServeOneJabber thread takes the Socket object that’s produced by accept( ) in main( )
every time a new client makes a connection. Then, as before, it creates a BufferedReader
and auto-flushed PrintWriter object using the Socket. Finally, it calls the special Thread
method start( ), which performs thread initialization and then calls run( ). This performs
the same kind of action as in the previous example: reading something from the socket and
then echoing it back until it reads the special “END” signal.

The responsibility for cleaning up the socket must again be carefully designed. In this case,
the socket is created outside of the ServeOneJabber so the responsibility can be shared. If
the ServeOneJabber constructor fails, it will just throw the exception to the caller, who will
then clean up the thread. But if the constructor succeeds, then the ServeOneJabber object
takes over responsibility for cleaning up the thread, in its run( ).

Notice the simplicity of the MultiJabberServer. As before, a ServerSocket is created and
accept( ) is called to allow a new connection. But this time, the return value of accept( ) (a
Socket) is passed to the constructor for ServeOneJabber, which creates a new thread to
handle that connection. When the connection is terminated, the thread simply goes away.



666 Thinking in Java  www.BruceEckel.com

If the creation of the ServerSocket fails, the exception is again thrown through main( ). But
if it succeeds, the outer try-finally guarantees its cleanup. The inner try-catch guards only
against the failure of the ServeOneJabber constructor; if the constructor succeeds, then the
ServeOneJabber thread will close the associated socket.

To test that the server really does handle multiple clients, the following program creates
many clients (using threads) that connect to the same server. Each thread has a limited
lifetime, and when it goes away, that leaves space for the creation of a new thread. The
maximum number of threads allowed is determined by the final int maxthreads. You’ll
notice that this value is rather critical, since if you make it too high the threads seem to run
out of resources and the program mysteriously fails.

//: MultiJabberClient.java
// Client that tests the MultiJabberServer
// by starting up multiple clients.
import java.net.*;
import java.io.*;

class JabberClientThread extends Thread {
  private Socket socket;
  private BufferedReader in;
  private PrintWriter out;
  private static int counter = 0;
  private int id = counter++;
  private static int threadcount = 0;
  public static int threadCount() {
    return threadcount;
  }
  public JabberClientThread(InetAddress addr) {
    System.out.println("Making client " + id);
    threadcount++;
    try {
      socket =
        new Socket(addr, MultiJabberServer.PORT);
    } catch(IOException e) {
      // If the creation of the socket fails,
      // nothing needs to be cleaned up.
    }
    try {
      in =
        new BufferedReader(
          new InputStreamReader(
            socket.getInputStream()));
      // Enable auto-flush:
      out =
        new PrintWriter(
          new BufferedWriter(
            new OutputStreamWriter(
              socket.getOutputStream())), true);
      start();
    } catch(IOException e) {
      // The socket should be closed on any
      // failures other than the socket
      // constructor:



Chapter 15: Network Programming 667

      try {
        socket.close();
      } catch(IOException e2) {}
    }
    // Otherwise the socket will be closed by
    // the run() method of the thread.
  }
  public void run() {
    try {
      for(int i = 0; i < 25; i++) {
        out.println("Client " + id + ": " + i);
        String str = in.readLine();
        System.out.println(str);
      }
      out.println("END");
    } catch(IOException e) {
    } finally {
      // Always close it:
      try {
        socket.close();
      } catch(IOException e) {}
      threadcount--; // Ending this thread
    }
  }
}

public class MultiJabberClient {
  static final int MAX_THREADS = 40;
  public static void main(String[] args)
      throws IOException, InterruptedException {
    InetAddress addr =
      InetAddress.getByName(null);
    while(true) {
      if(JabberClientThread.threadCount()
         < MAX_THREADS)
        new JabberClientThread(addr);
      Thread.currentThread().sleep(100);
    }
  }
} ///:~

The JabberClientThread constructor takes an InetAddress and uses it to open a Socket.
You’re probably starting to see the pattern: the Socket is always used to create some kind of
Reader and/or Writer (or InputStream and/or OutputStream) object, which is the only
way that the Socket can be used. (You can, of course, write a class or two to automate this
process instead of doing all the typing if it becomes painful.) Again, start( ) performs thread
initialization and calls run( ). Here, messages are sent to the server and information from
the server is echoed to the screen. However, the thread has a limited lifetime and eventually
completes. Note that the socket is cleaned up if the constructor fails after the socket is
created but before the constructor completes. Otherwise the responsibility for calling close( )
for the socket is relegated to the run( ) method.

The threadcount keeps track of how many JabberClientThread objects currently exist. It is
incremented as part of the constructor and decremented as run( ) exits (which means the



668 Thinking in Java  www.BruceEckel.com

thread is terminating). In MultiJabberClient.main( ), you can see that the number of
threads is tested, and if there are too many, no more are created. Then the method sleeps.
This way, some threads will eventually terminate and more can be created. You can
experiment with MAX_THREADS to see where your particular system begins to have trouble
with too many connections.

Datagrams
The examples you’ve seen so far use the Transmission Control Protocol (TCP, also known as
stream-based sockets), which is designed for ultimate reliability and guarantees that the data
will get there. It allows retransmission of lost data, it provides multiple paths through
different routers in case one goes down, and bytes are delivered in the order they are sent.
All this control and reliability comes at a cost: TCP has a high overhead.

There’s a second protocol, called User Datagram Protocol (UDP), which doesn’t guarantee that
the packets will be delivered and doesn’t guarantee that they will arrive in the order they
were sent. It’s called an “unreliable protocol” (TCP is a “reliable protocol”), which sounds
bad, but because it’s much faster it can be useful. There are some applications, such as an
audio signal, in which it isn’t so critical if a few packets are dropped here or there but speed
is vital. Or consider a time-of-day server, where it really doesn’t matter if one of the
messages is lost. Also, some applications might be able to fire off a UDP message to a server
and can then assume, if there is no response in a reasonable period of time, that the message
was lost.

The support for datagrams in Java has the same feel as its support for TCP sockets, but there
are significant differences. With datagrams, you put a DatagramSocket on both the client
and server, but there is no analogy to the ServerSocket that waits around for a connection.
That’s because there is no “connection,” but instead a datagram just shows up. Another
fundamental difference is that with TCP sockets, once you’ve made the connection you don’t
need to worry about who’s talking to whom anymore; you just send the data back and
forth through conventional streams. However, with datagrams, the datagram packet must
know where it came from and where it’s supposed to go. That means you must know these
things for each datagram packet that you load up and ship off.

A DatagramSocket sends and receives the packets, and the DatagramPacket contains the
information. When you’re receiving a datagram, you need only provide a buffer in which
the data will be placed; the information about the Internet address and port number where
the information came from will be automatically initialized when the packet arrives through
the DatagramSocket. So the constructor for a DatagramPacket to receive datagrams is:

DatagramPacket(buf, buf.length)

in which buf is an array of byte. Since buf is an array, you might wonder why the
constructor couldn’t figure out the length of the array on its own. I wondered this, and can
only guess that it’s a throwback to C-style programming, in which of course arrays can’t
tell you how big they are.

You can reuse a receiving datagram; you don’t have to make a new one each time. Every
time you reuse it, the data in the buffer is overwritten.

The maximum size of the buffer is restricted only by the allowable datagram packet size,
which limits it to slightly less than 64Kbytes. However, in many applications you’ll want it
to be much smaller, certainly when you’re sending data. Your chosen packet size depends on
what you need for your particular application.



Chapter 15: Network Programming 669

When you send a datagram, the DatagramPacket must contain not only the data, but also
the Internet address and port where it will be sent. So the constructor for an outgoing
DatagramPacket is:

DatagramPacket(buf, length, inetAddress, port)

This time, buf (which is a byte array) already contains the data that you want to send out.
The length might be the length of buf, but it can also be shorter, indicating that you want
to send only that many bytes. The other two arguments are the Internet address where the
packet is going and the destination port within that machine.2

You might think that the two constructors create two different objects: one for receiving
datagrams and one for sending them. Good OO design would suggest that these should be
two different classes, rather than one class with different behavior depending on how you
construct the object. This is probably true, but fortunately the use of DatagramPackets is
simple enough that you’re not tripped up by the problem, as you can see in the following
example. This example is similar to the MultiJabberServer and MultiJabberClient example
for TCP sockets. Multiple clients will send datagrams to a server, which will echo them back
to the same client that sent the message.

To simplify the creation of a DatagramPacket from a String and vice-versa, the example
begins with a utility class, Dgram, to do the work for you:

//: Dgram.java
// A utility class to convert back and forth
// Between Strings and DataGramPackets.
import java.net.*;

public class Dgram {
  public static DatagramPacket toDatagram(
    String s, InetAddress destIA, int destPort) {
    // Deprecated in Java 1.1, but it works:
    byte[] buf = new byte[s.length() + 1];
    s.getBytes(0, s.length(), buf, 0);
    // The correct Java 1.1 approach, but it's
    // Broken (it truncates the String):
    // byte[] buf = s.getBytes();
    return new DatagramPacket(buf, buf.length,
      destIA, destPort);
  }
  public static String toString(DatagramPacket p){
    // The Java 1.0 approach:
    // return new String(p.getData(),
    //  0, 0, p.getLength());
    // The Java 1.1 approach:
    return
      new String(p.getData(), 0, p.getLength());
  }
} ///:~

                                                

2 TCP and UDP ports are considered unique. That is, you can simultaneously run a TCP and UDP
server on port 8080 without interference.



670 Thinking in Java  www.BruceEckel.com

The first method of Dgram takes a String, an InetAddress, and a port number and builds a
DatagramPacket by copying the contents of the String into a byte buffer and passing the
buffer into the DatagramPacket constructor. Notice the “+1” in the buffer allocation – this
was necessary to prevent truncation. The getBytes( ) method of String is a special operation
that copies the chars of a String into a byte buffer. This method is now deprecated; Java 1.1
has a “better” way to do this but it’s commented out here because it truncates the String. So
you’ll get a deprecation message when you compile it under Java 1.1, but the behavior will
be correct. (This bug might be fixed by the time you read this.)

The Dgram.toString( ) method shows both the Java 1.0 approach and the Java 1.1
approach (which is different because there’s a new kind of String constructor).

Here is the server for the datagram demonstration:

//: ChatterServer.java
// A server that echoes datagrams
import java.net.*;
import java.io.*;
import java.util.*;

public class ChatterServer {
  static final int INPORT = 1711;
  private byte[] buf = new byte[1000];
  private DatagramPacket dp =
    new DatagramPacket(buf, buf.length);
  // Can listen & send on the same socket:
  private DatagramSocket socket;

  public ChatterServer() {
    try {
      socket = new DatagramSocket(INPORT);
      System.out.println("Server started");
      while(true) {
        // Block until a datagram appears:
        socket.receive(dp);
        String rcvd = Dgram.toString(dp) +
          ", from address: " + dp.getAddress() +
          ", port: " + dp.getPort();
        System.out.println(rcvd);
        String echoString =
          "Echoed: " + rcvd;
        // Extract the address and port from the
        // received datagram to find out where to
        // send it back:
        DatagramPacket echo =
          Dgram.toDatagram(echoString,
            dp.getAddress(), dp.getPort());
        socket.send(echo);
      }
    } catch(SocketException e) {
      System.err.println("Can't open socket");
      System.exit(1);
    } catch(IOException e) {
      System.err.println("Communication error");



Chapter 15: Network Programming 671

      e.printStackTrace();
    }
  }
  public static void main(String[] args) {
    new ChatterServer();
  }
} ///:~

The ChatterServer contains a single DatagramSocket for receiving messages, instead of
creating one each time you’re ready to receive a new message. The single DatagramSocket
can be used repeatedly. This DatagramSocket has a port number because this is the server
and the client must have an exact address where it wants to send the datagram. It is given a
port number but not an Internet address because it resides on “this” machine so it knows
what its Internet address is (in this case, the default localhost). In the infinite while loop,
the socket is told to receive( ), whereupon it blocks until a datagram shows up, and then
sticks it into our designated receiver, the DatagramPacket dp. The packet is converted to a
String along with information about the Internet address and socket where the packet came
from. This information is displayed, and then an extra string is added to indicate that it is
being echoed back from the server.

Now there’s a bit of a quandary. As you will see, there are potentially many different
Internet addresses and port numbers that the messages might come from – that is, the
clients can reside on any machine. (In this demonstration they all reside on the localhost,
but the port number for each client is different.) To send a message back to the client that
originated it, you need to know that client’s Internet address and port number. Fortunately,
this information is conveniently packaged inside the DatagramPacket that sent the
message, so all you have to do is pull it out using getAddress( ) and getPort( ), which are
used to build the DatagramPacket echo that is sent back through the same socket that’s
doing the receiving. In addition, when the socket sends the datagram, it automatically adds
the Internet address and port information of this machine, so that when the client receives
the message, it can use getAddress( ) and getPort( ) to find out where the datagram came
from. In fact, the only time that getAddress( ) and getPort( ) don’t tell you where the
datagram came from is if you create a datagram to send and you call getAddress( ) and
getPort( ) before you send the datagram (in which case it tells the address and port of this
machine, the one the datagram is being sent from). This is an essential part of datagrams:
you don’t need to keep track of where a message came from because it’s always stored inside
the datagram. In fact, the most reliable way to program is if you don’t try to keep track, but
instead always extract the address and port from the datagram in question (as is done here).

To test this server, here’s a program that makes a number of clients, all of which fire
datagram packets to the server and wait for the server to echo them back.

//: ChatterClient.java
// Tests the ChatterServer by starting multiple
// clients, each of which sends datagrams.
import java.lang.Thread;
import java.net.*;
import java.io.*;

public class ChatterClient extends Thread {
  // Can listen & send on the same socket:
  private DatagramSocket s;
  private InetAddress hostAddress;
  private byte[] buf = new byte[1000];



672 Thinking in Java  www.BruceEckel.com

  private DatagramPacket dp =
    new DatagramPacket(buf, buf.length);
  private int id;

  public ChatterClient(int identifier) {
    id = identifier;
    try {
      // Auto-assign port number:
      s = new DatagramSocket();
      hostAddress =
        InetAddress.getByName("localhost");
    } catch(UnknownHostException e) {
      System.err.println("Cannot find host");
      System.exit(1);
    } catch(SocketException e) {
      System.err.println("Can't open socket");
      e.printStackTrace();
      System.exit(1);
    }
    System.out.println("ChatterClient starting");
  }
  public void run() {
    try {
      for(int i = 0; i < 25; i++) {
        String outMessage = "Client #" +
          id + ", message #" + i;
        // Make and send a datagram:
        s.send(Dgram.toDatagram(outMessage,
          hostAddress,
          ChatterServer.INPORT));
        // Block until it echoes back:
        s.receive(dp);
        // Print out the echoed contents:
        String rcvd = "Client #" + id +
          ", rcvd from " +
          dp.getAddress() + ", " +
          dp.getPort() + ": " +
          Dgram.toString(dp);
        System.out.println(rcvd);
      }
    } catch(IOException e) {
      e.printStackTrace();
      System.exit(1);
    }
  }
  public static void main(String[] args) {
    for(int i = 0; i < 10; i++)
      new ChatterClient(i).start();
  }
} ///:~

ChatterClient is created as a Thread so that multiple clients can be made to bother the
server. Here you can see that the receiving DatagramPacket looks just like the one used for
ChatterServer. In the constructor, the DatagramSocket is created with no arguments since



Chapter 15: Network Programming 673

it doesn’t need to advertise itself as being at a particular port number. The Internet address
used for this socket will be “this machine” (for the example, localhost) and the port number
will be automatically assigned, as you will see from the output. This DatagramSocket, like
the one for the server, will be used both for sending and receiving.

The hostAddress is the Internet address of the host machine you want to talk to. The one
part of the program in which you must know an exact Internet address and port number is
the part in which you make the outgoing DatagramPacket. As is always the case, the host
must be at a known address and port number so that clients can originate conversations
with the host.

Each thread is given a unique identification number (although the port number
automatically assigned to the thread would also provide a unique identifier). In run( ), a
message String is created that contains the thread’s identification number and the message
number this thread is currently sending. This String is used to create a datagram that is sent
to the host at its address; the port number is taken directly from a constant in
ChatterServer. Once the message is sent, receive( ) blocks until the server replies with an
echoing message. All of the information that’s shipped around with the message allows you
to see that what comes back to this particular thread is derived from the message that
originated from it. In this example, even though UDP is an “unreliable” protocol, you’ll see
that all of the datagrams get where they’re supposed to. (This will be true for localhost and
LAN situations, but you might begin to see some failures for non-local connections.)

When you run this program, you’ll see that each of the threads finishes, which means that
each of the datagram packets sent to the server is turned around and echoed to the correct
recipient; otherwise one or more threads would hang, blocking until their input shows up.

You might think that the only right way to, for example, transfer a file from one machine to
another is through TCP sockets, since they’re “reliable.” However, because of the speed of
datagrams they can actually be a better solution. You simply break the file up into packets
and number each packet. The receiving machine takes the packets and reassembles them; a
“header packet” tells the machine how many to expect and any other important
information. If a packet is lost, the receiving machine sends a datagram back telling the
sender to retransmit.

A Web application
Now let’s consider creating an application to run on the Web, which will show Java in all its
glory. Part of this application will be a Java program running on the Web server, and the
other part will be an applet that’s downloaded to the browser. The applet collects
information from the user and sends it back to the application running on the Web server.
The task of the program will be simple: the applet will ask for the email address of the user,
and after verifying that this address is reasonably legitimate (it doesn’t contain spaces, and it
does contain an ‘@’ symbol) the applet will send the email address to the Web server. The
application running on the server will capture the data and check a data file in which all of
the email addresses are kept. If that address is already in the file, it will send back a message
to that effect, which is displayed by the applet. If the address isn’t in the file, it is placed in
the list and the applet is informed that the address was added successfully.

Traditionally, the way to handle such a problem is to create an HTML page with a text field
and a “submit” button. The user can type whatever he or she wants into the text field, and it
will be submitted to the server without question. As it submits the data, the Web page also
tells the server what to do with the data by mentioning the Common Gateway Interface



674 Thinking in Java  www.BruceEckel.com

(CGI) program that the server should run after receiving this data. This CGI program is
typically written in either Perl or C (and sometimes C++, if the server supports it), and it
must handle everything. First it looks at the data and decides whether it’s in the correct
format. If not, the CGI program must create an HTML page to describe the problem; this
page is handed to the server, which sends it back to the user. The user must then back up a
page and try again. If the data is correct, the CGI program opens the data file and either adds
the email address to the file or discovers that the address is already in the file. In both cases it
must format an appropriate HTML page for the server to return to the user.

As Java programmers, this seems like an awkward way for us to solve the problem, and
naturally, we’d like to do the whole thing in Java. First, we’ll use a Java applet to take care
of data validation at the client site, without all that tedious Web traffic and page formatting.
Then let’s skip the Perl CGI script in favor of a Java application running on the server. In
fact, let’s skip the Web server altogether and simply make our own network connection from
the applet to the Java application on the server!

As you’ll see, there are a number of issues that make this a more complicated problem than
it seems. It would be ideal to write the applet using Java 1.1 but that’s hardly practical. At
this writing, the number of users running Java 1.1-enabled browsers is small, and although
such browsers are now commonly available, you’ll probably need to take into account that a
significant number of users will be slow to upgrade. So to be on the safe side, the applet will
be programmed using only Java 1.0 code. With this in mind, there will be no JAR files to
combine .class files in the applet, so the applet should be designed to create as few .class files
as possible to minimize download time.

Well, it turns out the Web server (the one available to me when I wrote the example) does
have Java in it, but only Java 1.0! So the server application must also be written using Java
1.0.

The server application
Now consider the server application, which will be called NameCollector. What happens if
more than one user at a time tries to submit their email addresses? If NameCollector uses
TCP/IP sockets, then it must use the multithreading approach shown earlier to handle more
than one client at a time. But all of these threads will try to write to a single file where all
the email addresses will be kept. This would require a locking mechanism to make sure that
more than one thread doesn’t access the file at once. A semaphore will do the trick, but
perhaps there’s a simpler way.

If we use datagrams instead, multithreading is unnecessary. A single datagram socket will
listen for incoming datagrams, and when one appears the program will process the message
and send the reply as a datagram back to whomever sent the request. If the datagram gets
lost, then the user will notice that no reply comes and can then re-submit the request.

When the server application receives a datagram and unpacks it, it must extract the email
address and check the file to see if that address is there already (and if it isn’t, add it). And
now we run into another problem. It turns out that Java 1.0 doesn’t quite have the
horsepower to easily manipulate the file containing the email addresses (Java 1.1 does).
However, the problem can be solved in C quite readily, and this will provide an excuse to
show you the easiest way to connect a non-Java program to a Java program. A Runtime
object for a program has a method called exec( ) that will start up a separate program on
the machine and return a Process object. You can get an OutputStream that connects to
standard input for this separate program and an InputStream that connects to standard
output. All you need to do is write a program using any language that takes its input from



Chapter 15: Network Programming 675

standard input and writes the output to standard output. This is a convenient trick when
you run into a problem that can’t be solved easily or quickly enough in Java (or when you
have legacy code you don’t want to rewrite). You can also use Java’s native methods (see
Appendix A) but those are much more involved.

The C program
The job of this non-Java application (written in C because Java wasn’t appropriate for CGI
programming; if nothing else, the startup time is prohibitive) is to manage the list of email
addresses. Standard input will accept an email address and the program will look up the
name in the list to see if it’s already there. If not, it will add it and report success, but if the
name is already there then it will report that. Don’t worry if you don’t completely
understand what the following code means; it’s just one example of how you can write a
program in another language and use it from Java. The particular programming language
doesn’t really matter as long as it can read from standard input and write to standard
output.

//: Listmgr.c
// Used by NameCollector.java to manage
// the email list file on the server
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define BSIZE 250

int alreadyInList(FILE* list, char* name) {
  char lbuf[BSIZE];
  // Go to the beginning of the list:
  fseek(list, 0, SEEK_SET);
  // Read each line in the list:
  while(fgets(lbuf, BSIZE, list)) {
    // Strip off the newline:
    char * newline = strchr(lbuf, '\n');
    if(newline != 0)
      *newline = '\0';
    if(strcmp(lbuf, name) == 0)
      return 1;
  }
  return 0;
}

int main() {
  char buf[BSIZE];
  FILE* list = fopen("emlist.txt", "a+t");
  if(list == 0) {
    perror("could not open emlist.txt");
    exit(1);
  }
  while(1) {
    gets(buf); /* From stdin */
    if(alreadyInList(list, buf)) {
      printf("Already in list: %s", buf);
      fflush(stdout);
    }



676 Thinking in Java  www.BruceEckel.com

    else {
      fseek(list, 0, SEEK_END);
      fprintf(list, "%s\n", buf);
      fflush(list);
      printf("%s added to list", buf);
      fflush(stdout);
    }
  }
} ///:~

This assumes that the C compiler accepts ‘//’ style comments. (Many do, and you can also
compile this program with a C++ compiler.) If yours doesn’t, simply delete those comments.

The first function in the file checks to see whether the name you hand it as a second
argument (a pointer to a char) is in the file. Here, the file is passed as a FILE pointer to an
already-opened file (the file is opened inside main( )). The function fseek( ) moves around in
the file; here it is used to move to the top of the file. fgets( ) reads a line from the file list
into the buffer lbuf, not exceeding the buffer size BSIZE. This is inside a while loop so that
each line in the file is read. Next, strchr( ) is used to locate the newline character so that it
can be stripped off. Finally, strcmp( ) is used to compare the name you’ve passed into the
function to the current line int the file. strcmp( ) returns zero if it finds a match. In this case
the function exits and a one is returned to indicate that yes, the name was already in the list.
(Note that the function returns as soon as it discovers the match, so it doesn’t waste time
looking at the rest of the list.) If you get all the way through the list without a match, the
function returns zero.

In main( ), the file is opened using fopen( ). The first argument is the file name and the
second is the way to open the file; a+ means “Append, and open (or create if the file does not
exist) for update at the end of the file.” The fopen( ) function returns a FILE pointer which,
if it’s zero, means that the open was unsuccessful. This is dealt with by printing an error
message with perror( ) and terminating the program with exit( ).

Assuming that the file was opened successfully, the program enters an infinite loop. The
function call gets(buf) gets a line from standard input (which will be connected to the Java
program, remember) and places it in the buffer buf. This is simply passed to the
alreadyInList( ) function, and if it’s already in the list, printf( ) sends that message to
standard output (where the Java program is listening). fflush( ) is a way to flush the output
buffer.

If the name is not already in the list, fseek( ) is used to move to the end of the list and
fprintf( ) “prints” the name to the end of the list. Then printf( ) is used to indicate that the
name was added to the list (again flushing standard output) and the infinite loop goes back
to waiting for a new name.

Remember that you usually cannot compile this program on your computer and load it onto
the Web server machine, since that machine might use a different processor and operating
system. For example, my Web server runs on an Intel processor but it uses Linux, so I must
download the source code and compile using remote commands (via telnet) with the C
compiler that comes with the Linux distribution.

The Java program
This program will first start the C program above and make the necessary connections to
talk to it. Then it will create a datagram socket that will be used to listen for datagram
packets from the applet.



Chapter 15: Network Programming 677

//: NameCollector.java
// Extracts email names from datagrams and stores
// them inside a file, using Java 1.02.
import java.net.*;
import java.io.*;
import java.util.*;

public class NameCollector {
  final static int COLLECTOR_PORT = 8080;
  final static int BUFFER_SIZE = 1000;
  byte[] buf = new byte[BUFFER_SIZE];
  DatagramPacket dp =
    new DatagramPacket(buf, buf.length);
  // Can listen & send on the same socket:
  DatagramSocket socket;
  Process listmgr;
  PrintStream nameList;
  DataInputStream addResult;
  public NameCollector() {
    try {
      listmgr =
        Runtime.getRuntime().exec("listmgr.exe");
      nameList = new PrintStream(
        new BufferedOutputStream(
          listmgr.getOutputStream()));
      addResult = new DataInputStream(
        new BufferedInputStream(
          listmgr.getInputStream()));

    } catch(IOException e) {
      System.err.println(
        "Cannot start listmgr.exe");
      System.exit(1);
    }
    try {
      socket =
        new DatagramSocket(COLLECTOR_PORT);
      System.out.println(
        "NameCollector Server started");
      while(true) {
        // Block until a datagram appears:
        socket.receive(dp);
        String rcvd = new String(dp.getData(),
            0, 0, dp.getLength());
        // Send to listmgr.exe standard input:
        nameList.println(rcvd.trim());
        nameList.flush();
        byte[] resultBuf = new byte[BUFFER_SIZE];
        int byteCount =
          addResult.read(resultBuf);
        if(byteCount != -1) {
          String result =
            new String(resultBuf, 0).trim();
          // Extract the address and port from



678 Thinking in Java  www.BruceEckel.com

          // the received datagram to find out
          // where to send the reply:
          InetAddress senderAddress =
            dp.getAddress();
          int senderPort = dp.getPort();
          byte[] echoBuf = new byte[BUFFER_SIZE];
          result.getBytes(
            0, byteCount, echoBuf, 0);
          DatagramPacket echo =
            new DatagramPacket(
              echoBuf, echoBuf.length,
              senderAddress, senderPort);
          socket.send(echo);
        }
        else
          System.out.println(
            "Unexpected lack of result from " +
            "listmgr.exe");
      }
    } catch(SocketException e) {
      System.err.println("Can't open socket");
      System.exit(1);
    } catch(IOException e) {
      System.err.println("Communication error");
      e.printStackTrace();
    }
  }
  public static void main(String[] args) {
    new NameCollector();
  }
} ///:~

The first definitions in NameCollector should look familiar: the port is chosen, a datagram
packet is created, and there’s a handle to a DatagramSocket. The next three definitions
concern the connection to the C program: a Process object is what comes back when the C
program is fired up by the Java program, and that Process object produces the
InputStream and OutputStream objects representing, respectively, the standard output and
standard input of the C program. These must of course be “wrapped” as is usual with Java
IO, so we end up with a PrintStream and DataInputStream.

All the work for this program happens inside the constructor. To start up the C program, the
current Runtime object is procured. This is used to call exec( ), which returns the Process
object. You can see that there are simple calls to produce the streams from the Process
object: getOutputStream( ) and getInputStream( ). From this point on, all you need to
consider is sending data to the stream nameList and getting the results from addResult.

As before, a DatagramSocket is connected to a port. Inside the infinite while loop, the
program calls receive( ), which blocks until a datagram shows up. When the datagram
appears, its contents are extracted into the String rcvd. This is trimmed to remove white
space at each end and sent to the C program in the line:

nameList.println(rcvd.trim());



Chapter 15: Network Programming 679

This is only possible because Java’s exec( ) provides access to any executable that reads from
standard input and writes to standard output. There are other ways to talk to non-Java
code, which are discussed in Appendix A.

Capturing the result from the C program is slightly more complicated. You must call read( )
and provide a buffer where the results will be placed. The return value for read( ) is the
number of bytes that came from the C program, and if this value is -1 it means that
something is wrong. Otherwise, the resultBuf is turned into a String and the spaces are
trimmed off. This string is then placed into a DatagramPacket as before and shipped back
to the same address that sent the request in the first place. Note that the sender’s address is
part of the DatagramPacket we received.

Remember that although the C program must be compiled on the Web server, the Java
program can be compiled anywhere since the resulting byte codes will be the same regardless
of the platform on which the program will be running.

The NNameSender applet
As mentioned earlier, the applet must be written with Java 1.0 so that it will run on the
largest number of browsers, so it’s best if the number of classes produced is minimized.
Thus, instead of using the Dgram class developed earlier, all of the datagram manipulations
will be placed in line. In addition, the applet needs a thread to listen for the reply from the
server, and instead of making this a separate thread it’s integrated into the applet by
implementing the Runnable interface. This isn’t as easy to read, but it produces a one-class
(and one-server-hit) applet:

//: NameSender.java
// An applet that sends an email address
// as a datagram, using Java 1.02.
import java.awt.*;
import java.applet.*;
import java.net.*;
import java.io.*;

public class NameSender extends Applet
    implements Runnable {
  private Thread pl = null;
  private Button send = new Button(
    "Add email address to mailing list");
  private TextField t = new TextField(
    "type your email address here", 40);
  private String str = new String();
  private Label
    l = new Label(), l2 = new Label();
  private DatagramSocket s;
  private InetAddress hostAddress;
  private byte[] buf =
    new byte[NameCollector.BUFFER_SIZE];
  private DatagramPacket dp =
    new DatagramPacket(buf, buf.length);
  private int vcount = 0;
  public void init() {
    setLayout(new BorderLayout());
    Panel p = new Panel();



680 Thinking in Java  www.BruceEckel.com

    p.setLayout(new GridLayout(2, 1));
    p.add(t);
    p.add(send);
    add("North", p);
    Panel labels = new Panel();
    labels.setLayout(new GridLayout(2, 1));
    labels.add(l);
    labels.add(l2);
    add("Center", labels);
    try {
      // Auto-assign port number:
      s = new DatagramSocket();
      hostAddress = InetAddress.getByName(
        getCodeBase().getHost());
    } catch(UnknownHostException e) {
      l.setText("Cannot find host");
    } catch(SocketException e) {
      l.setText("Can't open socket");
    }
    l.setText("Ready to send your email address");
  }
  public boolean action (Event evt, Object arg) {
    if(evt.target.equals(send)) {
      if(pl != null) {
        // pl.stop(); Deprecated in Java 1.2
        Thread remove = pl;
        pl = null;
        remove.interrupt();
      }
      l2.setText("");
      // Check for errors in email name:
      str = t.getText().toLowerCase().trim();
      if(str.indexOf(' ') != -1) {
        l.setText("Spaces not allowed in name");
        return true;
      }
      if(str.indexOf(',') != -1) {
        l.setText("Commas not allowed in name");
        return true;
      }
      if(str.indexOf('@') == -1) {
        l.setText("Name must include '@'");
        l2.setText("");
        return true;
      }
      if(str.indexOf('@') == 0) {
        l.setText("Name must preceed '@'");
        l2.setText("");
        return true;
      }
      String end =
        str.substring(str.indexOf('@'));
      if(end.indexOf('.') == -1) {
        l.setText("Portion after '@' must " +



Chapter 15: Network Programming 681

          "have an extension, such as '.com'");
        l2.setText("");
        return true;
      }
      // Everything's OK, so send the name. Get a
      // fresh buffer, so it's zeroed. For some
      // reason you must use a fixed size rather
      // than calculating the size dynamically:
      byte[] sbuf =
        new byte[NameCollector.BUFFER_SIZE];
      str.getBytes(0, str.length(), sbuf, 0);
      DatagramPacket toSend =
        new DatagramPacket(
          sbuf, 100, hostAddress,
          NameCollector.COLLECTOR_PORT);
      try {
        s.send(toSend);
      } catch(Exception e) {
        l.setText("Couldn't send datagram");
        return true;
      }
      l.setText("Sent: " + str);
      send.setLabel("Re-send");
      pl = new Thread(this);
      pl.start();
      l2.setText(
        "Waiting for verification " + ++vcount);
    }
    else return super.action(evt, arg);
    return true;
  }
  // The thread portion of the applet watches for
  // the reply to come back from the server:
  public void run() {
    try {
      s.receive(dp);
    } catch(Exception e) {
      l2.setText("Couldn't receive datagram");
      return;
    }
    l2.setText(new String(dp.getData(),
      0, 0, dp.getLength()));
  }
} ///:~

The UI for the applet is quite simple. There’s a TextField in which you type your email
address, and a Button to send the email address to the server. Two Labels are used to report
status back to the user.

By now you can recognize the DatagramSocket, InetAddress, buffer, and DatagramPacket
as trappings of the network connection. Lastly, you can see the run( ) method that
implements the thread portion so the applet can listen for the reply sent back by the server.



682 Thinking in Java  www.BruceEckel.com

The init( ) method sets up the GUI with the familiar layout tools, then creates the
DatagramSocket that will be used both for sending and receiving datagrams.

The action( ) method (remember, we’re confined to Java 1.0 now, so we can’t use any slick
inner listener classes) watches only to see if you press the “send” button. When the button is
pressed, the first action is to check the Thread pl to see if it’s null. If it’s not null, there’s a
live thread running. The first time the message is sent a thread is started up to watch for the
reply. Thus, if a thread is running, it means this is not the first time the user has tried to
send the message. The pl handle is set to null and the old listener is interrupted. (This is the
preferred approach, since stop( ) is deprecated in Java 1.2 as explained in the previous
chapter.)

Regardless of whether this is the first time the button was pressed, the text in l2 is erased.

The next group of statements checks the email name for errors. The String.indexOf( )
method is used to search for illegal characters, and if one is found it is reported to the user.
Note that all of this happens without any network activity, so it’s fast and it doesn’t bog
down the Internet.

Once the name is verified, it is packaged into a datagram and sent to the host address and
port number in the same way that was described in the earlier datagram example. The first
label is changed to show you that the send has occurred, and the button text is changed so
that it reads “re-send.” At this point, the thread is started up and the second label informs
you that the applet is waiting for a reply from the server.

The run( ) method for the thread uses the DatagramSocket that lives in NameSender to
receive( ), which blocks until the datagram packet comes from the server. The resulting
packet is placed into NameSender’s DatagramPacket dp. The data is retrieved from the
packet and placed into the second label in NameSender. At this point, the thread terminates
and becomes dead. If the reply doesn’t come back from the server in a reasonable amount of
time, the user might become impatient and press the button again, thus terminating the
current thread (and, after re-sending the data, starting a new one). Because a thread is used
to listen for the reply, the user still has full use of the UI.

The Web page
Of course, the applet must go inside a Web page. Here is the complete Web page; you can see
that it’s intended to be used to automatically collect names for my mailing list:

<HTML>

<HEAD>

<META CONTENT="text/html">

<TITLE>

Add Yourself to Bruce Eckel's Java Mailing List

</TITLE>

</HEAD>

<BODY LINK="#0000ff" VLINK="#800080" BGCOLOR="#ffffff">

<FONT SIZE=6><P>

Add Yourself to Bruce Eckel's Java Mailing List

</P></FONT>

The applet on this page will automatically add your email address to the

mailing list, so you will receive update information about changes to the

online version of "Thinking in Java," notification when the book is in

print, information about upcoming Java seminars, and notification about



Chapter 15: Network Programming 683

the “Hands-on Java Seminar” Multimedia CD. Type in your email address and

press the button to automatically add yourself to this mailing list. <HR>

<applet code=NameSender width=400 height=100>

</applet>

<HR>

If after several tries, you do not get verification it means that the

Java application on the server is having problems. In this case, you can

add yourself to the list by sending email to

<A HREF="mailto:Bruce@EckelObjects.com">

Bruce@EckelObjects.com</A>

</BODY>

</HTML>

The applet tag is quite trivial, no different from the first one presented in Chapter 13.

Problems with this approach
This certainly seems like an elegant approach. There’s no CGI programming and so there are
no delays while the server starts up a CGI program. The datagram approach seems to
produce a nice quick response. In addition, when Java 1.1 is available everywhere, the server
portion can be written entirely in Java. (Although it’s quite interesting to see how easy it is
to connect to a non-Java program using standard input and output.)

There are problems, however. One problem is rather subtle: since the Java application is
running constantly on the server and it spends most of its time blocked in the
Datagram.receive( ) method, there might be some CPU hogging going on. At least, that’s
the way it appeared on the server where I was experimenting. On the other hand, there
wasn’t much else happening on that server, and starting the program using “nice” (a Unix
program to prevent a process from hogging the CPU) or its equivalent could solve the
problem if you have a more heavily-loaded server. In any event, it’s worth keeping your eye
on an application like this – a blocked receive( ) could hog the CPU.

The second problem is a show stopper. It concerns firewalls. A firewall is a machine that sits
between your network and the Internet. It monitors all traffic coming in from the Internet
and going out to the Internet, and makes sure that traffic conforms to what it expects.

Firewalls are conservative little beasts. They demand strict conformance to all the rules, and
if you’re not conforming they assume that you’re doing something sinful and shut you out
(not quite so bad as the Spanish Inquisition, but close). For example, if you are on a network
behind a firewall and you start connecting to the Internet using a Web browser, the firewall
expects that all your transactions will connect to the server using the accepted http port,
which is 80. Now along comes this Java applet NameSender, which is trying to send a
datagram to port 8080, which is way outside the range of the “protected” ports 0-1024. The
firewall naturally assumes the worst – that someone has a virus – and it doesn’t allow the
transaction to happen.

As long as your customers have raw connections to the Internet (for example, using a
typical Internet service provider) there’s no problem, but you might have some important
customers dwelling behind firewalls, and they won’t be able to use your program.

This is rather disheartening after learning so much Java, because it would seem that you
must give up Java on the server and learn how to write CGI scripts in C or Perl. But as it
turns out, despair is not in order.



684 Thinking in Java  www.BruceEckel.com

One scenario is part of Sun’s grand scheme. If everything goes as planned, Web servers will
be equipped with servlet servers. These will take a request from the client (going through the
firewall-accepted port 80) and instead of starting up a CGI program they will start up a Java
program called a servlet. This is a little application that’s designed to run only on the server.
A servlet server will automatically start up the servlet to handle the client request, which
means you can write all your programs in Java (further enabling the “100 percent pure Java
initiative”). It is admittedly an appealing idea: once you’re comfortable with Java, you don’t
have to switch to a more primitive language to handle requests on the server.

Since it’s only for handling requests on the server, the servlet API has no GUI abilities. This
fits quite well with NameCollector.java, which doesn’t have a GUI anyway.

At this writing, a low-cost servlet server was available from java.sun.com. In addition, Sun is
encouraging other Web server manufacturers to add servlet capabilities to their servers.

Connecting Java to CGI
A Java program can send a CGI request to a server just like an HTML page can. As with
HTML pages, this request can be either a GET or a POST. In addition, the Java program can
intercept the output of the CGI program, so you don’t have to rely on the program to
format a new page and force the user to back up from one page to another if something goes
wrong. In fact, the appearance of the program can be the same as the previous version.

It also turns out that the code is simpler, and that CGI isn’t difficult to write after all. (An
innocent statement that’s true of many things – after you understand them.) So in this
section you’ll get a crash course in CGI programming. To solve the general problem, some
CGI tools will be created in C++ that will allow you to easily write a CGI program to solve
any problem. The benefit to this approach is portability – the example you are about to see
will work on any system that supports CGI, and there’s no problem with firewalls.

This example also works out the basics of creating any connection with applets and CGI
programs, so you can easily adapt it to your own projects.

Encoding data for CGI
In this version, the name and the email address will be collected and stored in the file in the
form:

First Last <email@domain.com>;

This is a convenient form for many mailers. Since two fields are being collected, there are no
shortcuts because CGI has a particular format for encoding the data in fields. You can see
this for yourself if you make an ordinary HTML page and add the lines:

<Form method="GET" ACTION="/cgi-bin/Listmgr2.exe">
<P>Name: <INPUT TYPE = "text" NAME = "name"
VALUE = "" size = "40"></p>
<P>Email Address: <INPUT TYPE = "text"
NAME = "email" VALUE = "" size = "40"></p>
<p><input type = "submit" name = "submit" > </p>
</Form>



Chapter 15: Network Programming 685

This creates two data entry fields called name and email, along with a submit button that
collects the data and sends it to a CGI program. Listmgr2.exe is the name of the executable
program that resides in the directory that’s typically called “cgi-bin” on your Web server.3 (If
the named program is not in the cgi-bin directory, you won’t see any results.) If you fill out
this form and press the “submit” button, you will see in the URL address window of the
browser something like:

http://www.myhome.com/cgi-bin/Listmgr2.exe?
name=First+Last&email=email@domain.com&submit=Submit

(Without the line break, of course). Here you see a little bit of the way that data is encoded
to send to CGI. For one thing, spaces are not allowed (since spaces typically separate
command-line arguments). Spaces are replaced by ‘+’ signs. In addition, each field contains
the field name (which is determined by the HTML page) followed by an ‘=’ and the field
data, and terminated by a ‘&’.

At this point, you might wonder about the ‘+’, ‘=,’ and ‘&’. What if those are used in the
field, as in “John & Marsha Smith”? This is encoded to:

John+%26+Marsha+Smith

That is, the special character is turned into a ‘%’ followed by its ASCII value in hex.

Fortunately, Java has a tool to perform this encoding for you. It’s a static method of the
class URLEncoder called encode( ). You can experiment with this method using the
following program:

//: EncodeDemo.java
// Demonstration of URLEncoder.encode()
import java.net.*;

public class EncodeDemo {
  public static void main(String[] args) {
    String s = "";
    for(int i = 0; i < args.length; i++)
      s += args[i] + " ";
    s = URLEncoder.encode(s.trim());
    System.out.println(s);
  }
} ///:~

This takes the command-line arguments and combines them into a string of words separated
by spaces (the final space is removed using String.trim( )). These are then encoded and
printed.

To invoke a CGI program, all the applet needs to do is collect the data from its fields (or
wherever it needs to collect the data from), URL-encode each piece of data, and then assemble
it into a single string, placing the name of each field followed by an ‘=’, followed by the
data, followed by an ‘&’. To form the entire CGI command, this string is placed after the URL

                                                

3 You can test this under Windows32 using the Microsoft Personal Web Server that comes with
Microsoft Office 97 and some of their other products. This is a nice way to experiment since you can
perform local tests (and it's also fast). If you're on a different platform or if you don't have Office 97,
you might be able to find a freeware Web server for testing by searching the Internet.



686 Thinking in Java  www.BruceEckel.com

of the CGI program and a ‘?’. That’s all it takes to invoke any CGI program, and as you’ll see
you can easily do it within an applet.

The applet
The applet is actually considerably simpler than NameSender.java, partly because it’s so
easy to send a GET request and also because no thread is required to wait for the reply. There
are now two fields instead of one, but you’ll notice that much of the applet looks familiar,
from NameSender.java.

//: NameSender2.java
// An applet that sends an email address
// via a CGI GET, using Java 1.02.
import java.awt.*;
import java.applet.*;
import java.net.*;
import java.io.*;

public class NameSender2 extends Applet {
  final String CGIProgram = "Listmgr2.exe";
  Button send = new Button(
    "Add email address to mailing list");
  TextField name = new TextField(
    "type your name here", 40),
    email = new TextField(
    "type your email address here", 40);
  String str = new String();
  Label l = new Label(), l2 = new Label();
  int vcount = 0;
  public void init() {
    setLayout(new BorderLayout());
    Panel p = new Panel();
    p.setLayout(new GridLayout(3, 1));
    p.add(name);
    p.add(email);
    p.add(send);
    add("North", p);
    Panel labels = new Panel();
    labels.setLayout(new GridLayout(2, 1));
    labels.add(l);
    labels.add(l2);
    add("Center", labels);
    l.setText("Ready to send email address");
  }
  public boolean action (Event evt, Object arg) {
    if(evt.target.equals(send)) {
      l2.setText("");
      // Check for errors in data:
      if(name.getText().trim()
         .indexOf(' ') == -1) {
        l.setText(
          "Please give first and last name");
        l2.setText("");



Chapter 15: Network Programming 687

        return true;
      }
      str = email.getText().trim();
      if(str.indexOf(' ') != -1) {
        l.setText(
          "Spaces not allowed in email name");
        l2.setText("");
        return true;
      }
      if(str.indexOf(',') != -1) {
        l.setText(
          "Commas not allowed in email name");
        return true;
      }
      if(str.indexOf('@') == -1) {
        l.setText("Email name must include '@'");
        l2.setText("");
        return true;
      }
      if(str.indexOf('@') == 0) {
        l.setText(
          "Name must preceed '@' in email name");
        l2.setText("");
        return true;
      }
      String end =
        str.substring(str.indexOf('@'));
      if(end.indexOf('.') == -1) {
        l.setText("Portion after '@' must " +
          "have an extension, such as '.com'");
        l2.setText("");
        return true;
      }
      // Build and encode the email data:
      String emailData =
        "name=" + URLEncoder.encode(
          name.getText().trim()) +
        "&email=" + URLEncoder.encode(
          email.getText().trim().toLowerCase()) +
        "&submit=Submit";
      // Send the name using CGI's GET process:
      try {
        l.setText("Sending...");
        URL u = new URL(
          getDocumentBase(), "cgi-bin/" +
          CGIProgram + "?" + emailData);
        l.setText("Sent: " + email.getText());
        send.setLabel("Re-send");
        l2.setText(
          "Waiting for reply " + ++vcount);
        DataInputStream server =
          new DataInputStream(u.openStream());
        String line;
        while((line = server.readLine()) != null)



688 Thinking in Java  www.BruceEckel.com

          l2.setText(line);
      } catch(MalformedURLException e) {
        l.setText("Bad URl");
      } catch(IOException e) {
        l.setText("IO Exception");
      }
    }
    else return super.action(evt, arg);
    return true;
  }
} ///:~

The name of the CGI program (which you’ll see later) is Listmgr2.exe. Many Web servers
are Unix machines (mine runs Linux) that don’t traditionally use the .exe extension for their
executable programs, but you can call the program anything you want under Unix. By
using the .exe extension the program can be tested without change under both Unix and
Win32.

As before, the applet sets up its user interface (with two fields this time instead of one). The
only significant difference occurs inside the action( ) method, which handles the button
press. After the name has been checked, you see the lines:

      String emailData =
        "name=" + URLEncoder.encode(
          name.getText().trim()) +
        "&email=" + URLEncoder.encode(
          email.getText().trim().toLowerCase()) +
        "&submit=Submit";
      // Send the name using CGI's GET process:
      try {
        l.setText("Sending...");
        URL u = new URL(
          getDocumentBase(), "cgi-bin/" +
          CGIProgram + "?" + emailData);
        l.setText("Sent: " + email.getText());
        send.setLabel("Re-send");
        l2.setText(
          "Waiting for reply " + ++vcount);
        DataInputStream server =
          new DataInputStream(u.openStream());
        String line;
        while((line = server.readLine()) != null)
          l2.setText(line);
        // ...

The name and email data are extracted from their respective text boxes, and the spaces are
trimmed off both ends using trim( ). The email name is forced to lower case so all email
addresses in the list can be accurately compared (to prevent accidental duplicates based on
capitalization). The data from each field is URL-encoded, and then the GET string is
assembled in the same way that an HTML page would do it. (This way you can use a Java
applet in concert with any existing CGI program designed to work with regular HTML GET
requests.)

At this point, some Java magic happens: if you want to connect to any URL, just create a
URL object and hand the address to the constructor. The constructor makes the connection



Chapter 15: Network Programming 689

with the server (and, with Web servers, all the action happens in making the connection, via
the string used as the URL). In this case, the URL points to the cgi-bin directory of the
current Web site (the base address of the current Web site is produced with
getDocumentBase( )). When the Web server sees “cgi-bin” in a URL, it expects that to be
followed by the name of the program inside the cgi-bin directory that you want it to run.
Following the program name is a question mark and the argument string that the CGI
program will look for in the QUERY_STRING environment variable, as you’ll see.

Usually when you make any sort of request, you get back (you’re forced to accept in return)
an HTML page. With Java URL objects, however, you can intercept anything that comes
back from the CGI program by getting an InputStream from the URL object. This is
performed with the URL openStream( ) method, which is in turn wrapped in a
DataInputStream. Then you can read lines, and when readLine( ) returns null the CGI
program has finished its output.

The CGI program you’re about to see returns only one line, a string indicating success or
failure (and the details of the failure). This line is captured and placed into the second Label
field so the user can see the results.

Displaying a Web page from within an applet
It’s also possible for the applet to display the result of the CGI program as a Web page, just
as if it were running in normal HTML mode. You can do this with the following line:

getAppletContext().showDocument(u);

 in which u is the URL object. Here’s a simple example that redirects you to another Web
page. The page happens to be the output of a CGI program, but you can as easily go to an
ordinary HTML page, so you could build on this applet to produce a password-protected
gateway to a particular portion of your Web site:

//: ShowHTML.java
import java.awt.*;
import java.applet.*;
import java.net.*;
import java.io.*;

public class ShowHTML extends Applet {
  static final String CGIProgram = "MyCGIProgram";
  Button send = new Button("Go");
  Label l = new Label();
  public void init() {
    add(send);
    add(l);
  }
  public boolean action (Event evt, Object arg) {
    if(evt.target.equals(send)) {
      try {
        // This could be an HTML page instead of
        // a CGI program. Notice that this CGI
        // program doesn't use arguments, but
        // you can add them in the usual way.
        URL u = new URL(
          getDocumentBase(),
          "cgi-bin/" + CGIProgram);



690 Thinking in Java  www.BruceEckel.com

        // Display the output of the URL using
        // the Web browser, as an ordinary page:
        getAppletContext().showDocument(u);
      } catch(Exception e) {
        l.setText(e.toString());
      }
    }
    else return super.action(evt, arg);
    return true;
  }
} ///:~

The beauty of the URL class is how much it shields you from. You can connect to Web
servers without knowing much at all about what’s going on under the covers.

The CGI program in C++
At this point you could follow the previous example and write the CGI program for the
server using ANSI C. One argument for doing this is that ANSI C can be found virtually
everywhere. However, C++ has become quite ubiquitous, especially in the form of the GNU
C++ Compiler4 (g++) that can be downloaded free from the Internet for virtually any
platform (and often comes pre-installed with operating systems such as Linux). As you will
see, this means that you can get the benefit of object-oriented programming in a CGI
program.

To avoid throwing too many new concepts at you all at once, this program will not be a
“pure” C++ program; some code will be written in plain C even though C++ alternatives
exist. This isn’t a significant issue because the biggest benefit in using C++ for this program
is the ability to create classes. Since what we’re concerned with when parsing the CGI
information is the field name-value pairs, one class (Pair) will be used to represent a single
name-value pair and a second class (CGI_vector) will automatically parse the CGI string into
Pair objects that it will hold (as a vector) so you can fetch each Pair out at your leisure.

This program is also interesting because it demonstrates some of the pluses and minuses of
C++ in contrast with Java. You’ll see some similarities; for example the class keyword.
Access control has identical keywords public and private, but they’re used differently: they
control a block instead of a single method or field (that is, if you say private: each following
definition is private until you say public:). Also, when you create a class, all the definitions
automatically default to private.

One of the reasons for using C++ here is the convenience of the C++ Standard Template
Library. Among other things, the STL contains a vector class. This is a C++ template,
which means that it will be configured at compile time so it will hold objects of only a
particular type (in this case, Pair objects). Unlike the Java Vector, which will accept
anything, the C++ vector template will cause a compile-time error message if you try to
put anything but a Pair object into the vector, and when you get something out of the
vector it will automatically be a Pair object, without casting. Thus, the checking happens at

                                                

4 GNU stands for “Gnu’s Not Unix.” The project, created by the Free Software Foundation, was
originally intended to replace the Unix operating system with a free version of that OS. Linux appears
to have replaced this initiative, but the GNU tools have played an integral part in the development of
Linux, which comes packaged with many GNU components.



Chapter 15: Network Programming 691

compile time and produces a more robust program. In addition, the program can run faster
since you don’t have to perform run-time casts. The vector also overloads the operator[] so
you have a convenient syntax for extracting Pair objects. The vector template will be used
in the creation of CGI_vector, which you’ll see is a fairly short definition considering how
powerful it is.

On the down side, look at the complexity of the definition of Pair in the following code. Pair
has more method definitions than you’re used to seeing in Java code, because the C++
programmer must know how to control copying with the copy-constructor and assignment
with the overloaded operator=. As described in Chapter 12, occasionally you need to
concern yourself with similar things in Java, but in C++ you must be aware of them almost
constantly.

The project will start with a reusable portion, which consists of Pair and CGI_vector in a
C++ header file. Technically, you shouldn’t cram this much into a header file, but for these
examples it doesn’t hurt anything and it will also look more Java-like, so it will be easier for
you to read:

//: CGITools.h
// Automatically extracts and decodes data
// from CGI GETs and POSTs. Tested with GNU C++
// (available for most server machines).
#include <string.h>
#include <vector> // STL vector
using namespace std;

// A class to hold a single name-value pair from
// a CGI query. CGI_vector holds Pair objects and
// returns them from its operator[].
class Pair {
  char* nm;
  char* val;
public:
  Pair() { nm = val = 0; }
  Pair(char* name, char* value) {
    // Creates new memory:
    nm = decodeURLString(name);
    val = decodeURLString(value);
  }
  const char* name() const { return nm; }
  const char* value() const { return val; }
  // Test for "emptiness"
  bool empty() const {
    return (nm == 0) || (val == 0);
  }
  // Automatic type conversion for boolean test:
  operator bool() const {
    return (nm != 0) && (val != 0);
  }
  // The following constructors & destructor are
  // necessary for bookkeeping in C++.
  // Copy-constructor:
  Pair(const Pair& p) {
    if(p.nm == 0 || p.val == 0) {



692 Thinking in Java  www.BruceEckel.com

      nm = val = 0;
    } else {
      // Create storage & copy rhs values:
      nm = new char[strlen(p.nm) + 1];
      strcpy(nm, p.nm);
      val = new char[strlen(p.val) + 1];
      strcpy(val, p.val);
    }
  }
  // Assignment operator:
  Pair& operator=(const Pair& p) {
    // Clean up old lvalues:
    delete nm;
    delete val;
    if(p.nm == 0 || p.val == 0) {
      nm = val = 0;
    } else {
      // Create storage & copy rhs values:
      nm = new char[strlen(p.nm) + 1];
      strcpy(nm, p.nm);
      val = new char[strlen(p.val) + 1];
      strcpy(val, p.val);
    }
    return *this;
  }
  ~Pair() { // Destructor
    delete nm; // 0 value OK
    delete val;
  }
  // If you use this method outide this class,
  // you're responsible for calling 'delete' on
  // the pointer that's returned:
  static char*
  decodeURLString(const char* URLstr) {
    int len = strlen(URLstr);
    char* result = new char[len + 1];
    memset(result, len + 1, 0);
    for(int i = 0, j = 0; i <= len; i++, j++) {
      if(URLstr[i] == '+')
        result[j] = ' ';
      else if(URLstr[i] == '%') {
        result[j] =
          translateHex(URLstr[i + 1]) * 16 +
          translateHex(URLstr[i + 2]);
        i += 2; // Move past hex code
      } else // An ordinary character
        result[j] = URLstr[i];
    }
    return result;
  }
  // Translate a single hex character; used by
  // decodeURLString():
  static char translateHex(char hex) {
    if(hex >= 'A')



Chapter 15: Network Programming 693

      return (hex & 0xdf) - 'A' + 10;
    else
      return hex - '0';
  }
};

// Parses any CGI query and turns it
// into an STL vector of Pair objects:
class CGI_vector : public vector<Pair> {
  char* qry;
  const char* start; // Save starting position
  // Prevent assignment and copy-construction:
  void operator=(CGI_vector&);
  CGI_vector(CGI_vector&);
public:
  // const fields must be initialized in the C++
  // "Constructor initializer list":
  CGI_vector(char* query) :
      start(new char[strlen(query) + 1]) {
    qry = (char*)start; // Cast to non-const
    strcpy(qry, query);
    Pair p;
    while((p = nextPair()) != 0)
      push_back(p);
  }
  // Destructor:
  ~CGI_vector() { delete start; }
private:
  // Produces name-value pairs from the query
  // string. Returns an empty Pair when there's
  // no more query string left:
  Pair nextPair() {
    char* name = qry;
    if(name == 0 || *name == '\0')
      return Pair(); // End, return null Pair
    char* value = strchr(name, '=');
    if(value == 0)
      return Pair(); // Error, return null Pair
    // Null-terminate name, move value to start
    // of its set of characters:
    *value = '\0';
    value++;
    // Look for end of value, marked by '&':
    qry = strchr(value, '&');
    if(qry == 0) qry = ""; // Last pair found
    else {
      *qry = '\0'; // Terminate value string
      qry++; // Move to next pair
    }
    return Pair(name, value);
  }
}; ///:~

After the #include statements, you see a line that says:



694 Thinking in Java  www.BruceEckel.com

using namespace std;

Namespaces in C++ solve one of the problems taken care of by the package scheme in Java:
hiding library names. The std namespace refers to the Standard C++ library, and vector is
in this library so the line is required.

The Pair class starts out looking pretty simple: it just holds two (private) character
pointers, one for the name and one for the value. The default constructor simply sets these
pointers to zero, since in C++ an object’s memory isn’t automatically zeroed. The second
constructor calls the method decodeURLString( ) that produces a decoded string in newly-
allocated heap memory. This memory must be managed and destroyed by the object, as you
will see in the destructor. The name( ) and value( ) methods produce read-only pointers to
the respective fields. The empty( ) method is a way for you to ask the Pair object whether
either of its fields are empty; it returns a bool, which is C++’s built-in primitive Boolean
data type. The operator bool( ) uses a special case of C++ operator overloading, which
allows you to control automatic type conversion. If you have a Pair object called p and you
use it in an expression in which a Boolean result is expected, such as if(p) { //…, then the
compiler will recognize that it has a Pair and it needs a Boolean, so it will automatically call
operator bool( ) to perform the necessary conversion.

The next three methods are part of the bookkeeping that’s necessary when you create a class
in C++. In the so-called “canonical form” for a C++ class, you must define the necessary
“ordinary” constructors as well as a copy-constructor and the assignment operator,
operator= (and the destructor, to clean up the memory). You must define these because
they can be quietly called by the compiler when you pass objects in and out of a function
(this calls the copy-constructor) or when you assign objects (the assignment operator). Once
you’ve gone through the trouble to understand how the copy-constructor and assignment
operator work you can write robust classes in C++, but it is a bit of a learning experience.5

The copy-constructor Pair(const Pair&) is automatically called whenever you pass an object
into or out of a function by value. That is, you aren’t passing the address of the object you’re
making a copy of the whole object inside the function frame. This isn’t an option in Java
since you pass only handles, thus there’s no copy-constructor in Java. (If you want to make
a local duplicate, you clone( ) the object – see Chapter 12.) Likewise, if you assign a handle
in Java, it’s simply copied. But assignment in C++ means that the entire object is copied. In
the copy-constructor, you create new storage and copy the source data, but with the
assignment operator you must release the old storage before allocating new storage. What
you’re seeing is probably the worst-case complexity scenario for a C++ class, but it’s one of
the reasons Java proponents can argue that Java is a lot simpler than C++. In Java you pass
handles and there’s a garbage collector, so you don’t have to do this kind of thing.

This isn’t quite the whole story. The Pair class is using char* for nm and val, and the
worst-case complexity occurs primarily around pointers. If you use the more modern
Standard C++ string class instead of char*, things get much simpler (however, not all
compilers have caught up enough to come with string). Then, the first part of Pair looks
like this:

class Pair {
  string nm;
  string val;

                                                

5 My book Thinking in C++ (Prentice-Hall, 1995) devotes an entire chapter to this subject. Refer to this
if you need further information on the subject.



Chapter 15: Network Programming 695

public:
  Pair() { }
  Pair(char* name, char* value) {
    // Creates new memory:
    nm = decodeURLString(name);
    val = decodeURLString(value);
  }
  const char* name() const { return nm.c_str(); }
  const char* value() const { return val.c_str(); }
  // Test for "emptiness"
  bool empty() const {
    return (nm.length() == 0) || (val.length() == 0);
  }
  // Automatic type conversion for boolean test:
  operator bool() const {
    return (nm.length() != 0) && (val.length() != 0);
  }

(Also, for this case decodeURLString( ) returns a string instead of a char*.) You don’t need
to define a copy-constructor, operator=, or destructor because the compiler does that for
you, and does it correctly. But even if it sometimes works automatically, C++ programmers
must still know the details of copy-construction and assignment.

The remainder of the Pair class consists of the two methods decodeURLString( ) and a
helper method translateHex( ), which is used by decodeURLString( ). (Note that
translateHex( ) does not guard against bad user input such as “%1H.”) After allocating
adequate storage (which must be released by the destructor), decodeURLString( ) moves
through and replaces each ‘+’ with a space and each hex code (beginning with a ‘%’) with
the appropriate character.

CGI_vector parses and holds an entire CGI GET command. It is inherited from the STL
vector, which is instantiated to hold Pairs. Inheritance in C++ is denoted by using a colon
at the point you’d say extends in Java. In addition, inheritance defaults to private so you’ll
almost always need to use the public keyword as was done here. You can also see that
CGI_vector has a copy-constructor and an operator=, but they’re both declared as private.
This is to prevent the compiler from synthesizing the two functions (which it will do if you
don’t declare them yourself), but it also prevents the client programmer from passing a
CGI_vector by value or from using assignment.

CGI_vector’s job is to take the QUERY_STRING and parse it into name-value pairs, which it
will do with the aid of Pair. First it copies the string into locally-allocated memory and keeps
track of the starting address with the constant pointer start. (This is later used in the
destructor to release the memory.) Then it uses its method nextPair( ) to parse the string
into raw name-value pairs, delimited by ‘=’ and ‘&’ signs. These are handed by nextPair( )
to the Pair constructor so nextPair( ) can return the Pair object, which is then added to the
vector with push_back( ). When nextPair( ) runs out of QUERY_STRING, it returns zero.

Now that the basic tools are defined, they can easily be used in a CGI program, like this:

//: Listmgr2.cpp
// CGI version of Listmgr.c in C++, which
// extracts its input via the GET submission
// from the associated applet. Also works as
// an ordinary CGI program with HTML forms.
#include <stdio.h>



696 Thinking in Java  www.BruceEckel.com

#include "CGITools.h"
const char* dataFile = "list2.txt";
const char* notify = "Bruce@EckelObjects.com";
#undef DEBUG

// Similar code as before, except that it looks
// for the email name inside of '<>':
int inList(FILE* list, const char* emailName) {
  const int BSIZE = 255;
  char lbuf[BSIZE];
  char emname[BSIZE];
  // Put the email name in '<>' so there's no
  // possibility of a match within another name:
  sprintf(emname, "<%s>", emailName);
  // Go to the beginning of the list:
  fseek(list, 0, SEEK_SET);
  // Read each line in the list:
  while(fgets(lbuf, BSIZE, list)) {
    // Strip off the newline:
    char * newline = strchr(lbuf, '\n');
    if(newline != 0)
      *newline = '\0';
    if(strstr(lbuf, emname) != 0)
      return 1;
  }
  return 0;
}

void main() {
  // You MUST print this out, otherwise the
  // server will not send the response:
  printf("Content-type: text/plain\n\n");
  FILE* list = fopen(dataFile, "a+t");
  if(list == 0) {
    printf("error: could not open database. ");
    printf("Notify %s", notify);
    return;
  }
  // For a CGI "GET," the server puts the data
  // in the environment variable QUERY_STRING:
  CGI_vector query(getenv("QUERY_STRING"));
  #if defined(DEBUG)
  // Test: dump all names and values
  for(int i = 0; i < query.size(); i++) {
    printf("query[%d].name() = [%s], ",
      i, query[i].name());
    printf("query[%d].value() = [%s]\n",
      i, query[i].value());
  }
  #endif(DEBUG)
  Pair name = query[0];
  Pair email = query[1];
  if(name.empty() || email.empty()) {
    printf("error: null name or email");



Chapter 15: Network Programming 697

    return;
  }
  if(inList(list, email.value())) {
    printf("Already in list: %s", email.value());
    return;
  }
  // It's not in the list, add it:
  fseek(list, 0, SEEK_END);
  fprintf(list, "%s <%s>;\n",
    name.value(), email.value());
  fflush(list);
  fclose(list);
  printf("%s <%s> added to list\n",
    name.value(), email.value());
} ///:~

The alreadyInList( ) function is almost identical to the previous version, except that it
assumes all email names are inside ‘<>’.

When you use the GET approach (which is normally done in the HTML METHOD tag of the
FORM directive, but which is controlled here by the way the data is sent), the Web server
grabs everything after the ‘?’ and puts in into the environment variable QUERY_STRING. So
to read that information you have to get the value of QUERY_STRING, which you do using
the standard C library function getenv( ). In main( ), notice how simple the act of parsing
the QUERY_STRING is: you just hand it to the constructor for the CGI_vector object called
query and all the work is done for you. From then on you can pull out the names and
values from query as if it were an array. (This is because the operator[] is overloaded in
vector.) You can see how this works in the debug code, which is surrounded by the
preprocessor directives #if defined(DEBUG) and #endif(DEBUG).

Now it’s important to understand something about CGI. A CGI program is handed its input
in one of two ways: through QUERY_STRING during a GET (as in this case) or through
standard input during a POST. But a CGI program sends its output through standard output,
typically using printf( ) in a C program. Where does this output go? Back to the Web server,
which decides what to do with it. The server makes this decision based on the content-type
header, which means that if the content-type header isn’t the first thing it sees, it won’t
know what to do with the data. Thus, it’s essential that you start the output of all CGI
programs with the content-type header.

In this case, we want the server to feed all the information directly back to the client
program (which is our applet, waiting for its reply). The information should be unchanged,
so the content-type is text/plain. Once the server sees this, it will echo all strings right back
to the client. So each of the strings you see, three for error conditions and one for a
successful add, will end up back at the applet.

Adding the email name uses the same code. In the case of the CGI script, however, there isn’t
an infinite loop – the program just responds and then terminates. Each time a CGI request
comes in, the program is started in response to that request, and then it shuts down. Thus
there is no possibility of CPU hogging, and the only performance issue concerns starting the
program up and opening the file, which are dwarfed by the overhead of the Web server as it
handles the CGI request.

One of the advantages of this design is that, now that Pair and CGI_vector are defined, most
of the work is done for you so you can easily create your own CGI program simply by



698 Thinking in Java  www.BruceEckel.com

modifying main( ). Eventually, servlet servers will probably be ubiquitous, but in the
meantime C++ is still handy for creating fast CGI programs.

What about POST?
Using a GET is fine for many applications. However, GET passes its data to the CGI program
through an environment variable, and some Web servers can run out of environment space
with long GET strings (you should start worrying at about 200 characters). CGI provides a
solution for this: POST. With POST, the data is encoded and concatenated the same way as a
GET, but POST uses standard input to pass the encoded query string to the CGI program. All
you have to do is determine the length of the query string, and this length is stored in the
environment variable CONTENT_LENGTH. Once you know the length, you can allocate
storage and read the precise number of bytes from standard input.

The Pair and CGI_vector from CGITools.h can be used as is for a CGI program that handles
POSTs. The following listing shows how simple it is to write such a CGI program. In this
example, “pure” C++ will be used so the stdio.h library will be dropped in favor of
iostreams. With iostreams, two predefined objects are available: cin, which connects to
standard input, and cout, which connects to standard output. There are several ways to read
from cin and write to cout, but the following program take the common approach of using
‘<<’ to send information to cout, and the use of a member function (in this case, read( )) to
read from cin.

//: POSTtest.cpp
// CGI_vector works as easily with POST as it
// does with GET. Written in "pure" C++.
#include <iostream.h>
#include "CGITools.h"

void main() {
  cout << "Content-type: text/plain\n" << endl;
  // For a CGI "POST," the server puts the length
  // of the content string in the environment
  // variable CONTENT_LENGTH:
  char* clen = getenv("CONTENT_LENGTH");
  if(clen == 0) {
    cout << "Zero CONTENT_LENGTH" << endl;
    return;
  }
  int len = atoi(clen);
  char* query_str = new char[len + 1];
  cin.read(query_str, len);
  query_str[len] = '\0';
  CGI_vector query(query_str);
  // Test: dump all names and values
  for(int i = 0; i < query.size(); i++)
    cout << "query[" << i << "].name() = [" <<
      query[i].name() << "], " <<
      "query[" << i << "].value() = [" <<
      query[i].value() << "]" << endl;
  delete query_str; // Release storage
} ///:~



Chapter 15: Network Programming 699

The getenv( ) function returns a pointer to a character string representing the content
length. If this pointer is zero, the CONTENT_LENGTH environment variable has not been set,
so something is wrong. Otherwise, the character string must be converted to an integer
using the ANSI C library function atoi( ). The length is used with new to allocate enough
storage to hold the query string (plus its null terminator), and then read( ) is called for cin.
The read( ) function takes a pointer to the destination buffer and the number of bytes to
read. The query_str is then null-terminated to indicate the end of the character string.

At this point, the query string is no different from a GET query string, so it is handed to the
constructor for CGI_vector. The different fields in the vector are then available just as in the
previous example.

To test this program, you must compile it in the cgi-bin directory of your host Web server.
Then you can perform a simple test by writing an HTML page like this:

<HTML>
<HEAD>
<META CONTENT="text/html">
<TITLE>A test of standard HTML POST</TITLE>
</HEAD>
Test, uses standard html POST
<Form method="POST" ACTION="/cgi-bin/POSTtest">
<P>Field1: <INPUT TYPE = "text" NAME = "Field1"
VALUE = "" size = "40"></p>
<P>Field2: <INPUT TYPE = "text" NAME = "Field2"
VALUE = "" size = "40"></p>
<P>Field3: <INPUT TYPE = "text" NAME = "Field3"
VALUE = "" size = "40"></p>
<P>Field4: <INPUT TYPE = "text" NAME = "Field4"
VALUE = "" size = "40"></p>
<P>Field5: <INPUT TYPE = "text" NAME = "Field5"
VALUE = "" size = "40"></p>
<P>Field6: <INPUT TYPE = "text" NAME = "Field6"
VALUE = "" size = "40"></p>
<p><input type = "submit" name = "submit" > </p>
</Form>
</HTML>

When you fill this out and submit it, you’ll get back a simple text page containing the parsed
results, so you can see that the CGI program works correctly.

Of course, it’s a little more interesting to submit the data using an applet. Submitting POST
data is a different process, however. After you invoke the CGI program in the usual way, you
must make a direct connection to the server so you can feed it the query string. The server
then turns around and feeds the query string to the CGI program via standard input.

To make a direct connection to the server, you must take the URL you’ve created and call
openConnection( ) to produce a URLConnection. Then, because a URLConnection doesn’t
usually allow you to send data to it, you must call the magic function setDoOutput(true)
along with setDoInput(true) and setAllowUserInteraction(false).6 Finally, you can call

                                                

6 I can’t say I really understand what’s going on here, but I managed to get it working by studying
Java Network Programming by Elliotte Rusty Harold (O’Reilly 1997). He alludes to a number of



700 Thinking in Java  www.BruceEckel.com

getOutputStream( ) to produce an OutputStream, which you wrap inside a
DataOutputStream so you can talk to it conveniently. Here’s an applet that does just that,
after collecting data from its various fields:

//: POSTtest.java
// An applet that sends its data via a CGI POST
import java.awt.*;
import java.applet.*;
import java.net.*;
import java.io.*;

public class POSTtest extends Applet {
  final static int SIZE = 10;
  Button submit = new Button("Submit");
  TextField[] t = new TextField[SIZE];
  String query = "";
  Label l = new Label();
  TextArea ta = new TextArea(15, 60);
  public void init() {
    Panel p = new Panel();
    p.setLayout(new GridLayout(t.length + 2, 2));
    for(int i = 0; i < t.length; i++) {
      p.add(new Label(
        "Field " + i + "  ", Label.RIGHT));
      p.add(t[i] = new TextField(30));
    }
    p.add(l);
    p.add(submit);
    add("North", p);
    add("South", ta);
  }
  public boolean action (Event evt, Object arg) {
    if(evt.target.equals(submit)) {
      query = "";
      ta.setText("");
      // Encode the query from the field data:
      for(int i = 0; i < t.length; i++)
         query += "Field" + i + "=" +
           URLEncoder.encode(
             t[i].getText().trim()) +
           "&";
      query += "submit=Submit";
      // Send the name using CGI's POST process:
      try {
        URL u = new URL(
          getDocumentBase(), "cgi-bin/POSTtest");
        URLConnection urlc = u.openConnection();
        urlc.setDoOutput(true);
        urlc.setDoInput(true);

                                                                                                                                                

confusing bugs in the Java networking libraries, so this is an area in which you can’t just write code
and have it work right away. Be warned.



Chapter 15: Network Programming 701

        urlc.setAllowUserInteraction(false);
        DataOutputStream server =
          new DataOutputStream(
            urlc.getOutputStream());
        // Send the data
        server.writeBytes(query);
        server.close();
        // Read and display the response. You
        // cannot use
        // getAppletContext().showDocument(u);
        // to display the results as a Web page!
        DataInputStream in =
          new DataInputStream(
            urlc.getInputStream());
        String s;
        while((s = in.readLine()) != null) {
          ta.appendText(s + "\n");
        }
        in.close();
      }
      catch (Exception e) {
        l.setText(e.toString());
      }
    }
    else return super.action(evt, arg);
    return true;
  }
} ///:~

Once the information is sent to the server, you can call getInputStream( ) and wrap the
return value in a DataInputStream so that you can read the results. One thing you’ll notice
is that the results are displayed as lines of text in a TextArea. Why not simply use
getAppletContext().showDocument(u)? Well, this is one of those mysteries. The code above
works fine, but if you try to use showDocument( ) instead, everything stops working –
almost. That is, showDocument( ) does work, but what you get back from POSTtest is
“Zero CONTENT_LENGTH.” So somehow, showDocument( ) prevents the POST query from
being passed on to the CGI program. It’s difficult to know whether this is a bug that will be
fixed, or some lack of understanding on my part (the books I looked at were equally
abstruse). In any event, if you can stand to limit yourself to looking at the text that comes
back from the CGI program, the above applet works fine.

Connecting to databases
with JDBC
It has been estimated that half of all software development involves client/server operations.
A great promise of Java has been the ability to build platform-independent client/server
database applications. In Java 1.1 this has come to fruition with Java DataBase Connectivity
(JDBC).

One of the major problems with databases has been the feature wars between the database
companies. There is a “standard” database language, Structured Query Language (SQL-92),



702 Thinking in Java  www.BruceEckel.com

but usually you must know which database vendor you’re working with despite the
standard. JDBC is designed to be platform-independent, so you don’t need to worry about
the database you’re using while you’re programming. However, it’s still possible to make
vendor-specific calls from JDBC so you aren’t restricted from doing what you must.

JDBC, like many of the APIs in Java, is designed for simplicity. The method calls you make
correspond to the logical operations you’d think of doing when gathering data from a
database: connect to the database, create a statement and execute the query, and look at the
result set.

To allow this platform independence, JDBC provides a driver manager that dynamically
maintains all the driver objects that your database queries will need. So if you have three
different kinds of vendor databases to connect to, you’ll need three different driver objects.
The driver objects register themselves with the driver manager at the time of loading, and
you can force the loading using Class.forName( ).

To open a database, you must create a “database URL” that specifies:

1. That you’re using JDBC with “jdbc”

2. The “subprotocol”: the name of the driver or the name of a database connectivity
mechanism. Since the design of JDBC was inspired by ODBC, the first subprotocol
available is the “jdbc-odbc bridge,” specified by “odbc”

3. The database identifier. This varies with the database driver used, but it generally
provides a logical name that is mapped by the database administration software to a
physical directory where the database tables are located. For your database identifier to
have any meaning, you must register the name using your database administration
software. (The process of registration varies from platform to platform.)

All this information is combined into one string, the “database URL.” For example, to connect
through the ODBC subprotocol to a database identified as “people,” the database URL could
be:

String dbUrl = "jdbc:odbc:people";

If you’re connecting across a network, the database URL will also contain the information
identifying the remote machine.

When you’re ready to connect to the database, you call the static method
DriverManager.getConnection( ), passing it the database URL, the user name, and a
password to get into the database. You get back a Connection object that you can then use
to query and manipulate the database.

The following example opens a database of contact information and looks for a person’s last
name as given on the command line. It selects only the names of people that have email
addresses, then prints out all the ones that match the given last name:

//: Lookup.java
// Looks up email addresses in a
// local database using JDBC
import java.sql.*;

public class Lookup {
  public static void main(String[] args) {
    String dbUrl = "jdbc:odbc:people";



Chapter 15: Network Programming 703

    String user = "";
    String password = "";
    try {
      // Load the driver (registers itself)
      Class.forName(
        "sun.jdbc.odbc.JdbcOdbcDriver");
      Connection c = DriverManager.getConnection(
        dbUrl, user, password);
      Statement s = c.createStatement();
      // SQL code:
      ResultSet r =
        s.executeQuery(
          "SELECT FIRST, LAST, EMAIL " +
          "FROM people.csv people " +
          "WHERE " +
          "(LAST='" + args[0] + "') " +
          " AND (EMAIL Is Not Null) " +
          "ORDER BY FIRST");
      while(r.next()) {
        // Capitalization doesn't matter:
        System.out.println(
          r.getString("Last") + ", "
          + r.getString("fIRST")
          + ": " + r.getString("EMAIL") );
      }
      s.close(); // Also closes ResultSet
    } catch(Exception e) {
      e.printStackTrace();
    }
  }
} ///:~

You can see the creation of the database URL as previously described. In this example, there is
no password protection on the database so the user name and password are empty strings.

Once the connection is made with DriverManager.getConnection( ), you can use the
resulting Connection object to create a Statement object using the createStatement( )
method. With the resulting Statement, you can call executeQuery( ), passing in a string
containing an SQL-92 standard SQL statement. (You’ll see shortly how you can generate this
statement automatically, so you don’t have to know much about SQL.)

The executeQuery( ) method returns a ResultSet object, which is quite a bit like an iterator:
the next( ) method moves the iterator to the next record in the statement, or returns null if
the end of the result set has been reached. You’ll always get a ResultSet object back from
executeQuery( ) even if a query results in an empty set (that is, an exception is not thrown).
Note that you must call next( ) once before trying to read any record data. If the result set is
empty, this first call to next( ) will return false. For each record in the result set, you can
select the fields using (among other approaches) the field name as a string. Also note that the
capitalization of the field name is ignored – it doesn’t matter with an SQL database. You
determine the type you’ll get back by calling getInt( ), getString( ), getFloat( ), etc. At this
point, you’ve got your database data in Java native format and can do whatever you want
with it using ordinary Java code.



704 Thinking in Java  www.BruceEckel.com

Getting the example to work
With JDBC, understanding the code is relatively simple. The confusing part is making it
work on your particular system. The reason this is confusing is that it requires you to figure
out how to get your JDBC driver to load properly, and how to set up a database using your
database administration software.

Of course, this process can vary radically from machine to machine, but the process I used to
make it work under 32-bit Windows might give you clues to help you attack your own
situation.

Step 1: Find the JDBC Driver
The program above contains the statement:

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

This implies a directory structure, which is deceiving. With this particular installation of JDK
1.1, there was no file called JdbcOdbcDriver.class, so if you looked at this example and
went searching for it you’d be frustrated. Other published examples use a pseudo name,
such as “myDriver.ClassName,” which is less than helpful. In fact, the load statement above
for the jdbc-odbc driver (the only one that actually comes with JDK 1.1) appears in only a
few places in the online documentation (in particular, a page labeled “JDBC-ODBC Bridge
Driver”). If the load statement above doesn’t work, then the name might have been changed
as part of a Java version change, so you should hunt through the documentation again.

If the load statement is wrong, you’ll get an exception at this point. To test whether your
driver load statement is working correctly, comment out the code after the statement and up
to the catch clause; if the program throws no exceptions it means that the driver is loading
properly.

Step 2: Configure the database
Again, this is specific to 32-bit Windows; you might need to do some research to figure it
out for your own platform.

First, open the control panel. You might find two icons that say “ODBC.” You must use the
one that says “32bit ODBC,” since the other one is for backwards compatibility with 16-bit
ODBC software and will produce no results for JDBC. When you open the “32bit ODBC”
icon, you’ll see a tabbed dialog with a number of tabs, including “User DSN,” “System DSN,”
“File DSN,” etc., in which “DSN” means “Data Source Name.” It turns out that for the JDBC-
ODBC bridge, the only place where it’s important to set up your database is “System DSN,”
but you’ll also want to test your configuration and create queries, and for that you’ll also
need to set up your database in “File DSN.” This will allow the Microsoft Query tool (that
comes with Microsoft Office) to find the database. Note that other query tools are also
available from other vendors.

The most interesting database is one that you’re already using. Standard ODBC supports a
number of different file formats including such venerable workhorses as DBase. However, it
also includes the simple “comma-separated ASCII” format, which virtually every data tool
has the ability to write. In my case, I just took my “people” database that I’ve been
maintaining for years using various contact-management tools and exported it as a comma-
separated ASCII file (these typically have an extension of .csv). In the “File DSN” section I
chose “Add,” chose the text driver to handle my comma-separated ASCII file, and then un-



Chapter 15: Network Programming 705

checked “use current directory” to allow me to specify the directory where I exported the
data file.

You’ll notice when you do this that you don’t actually specify a file, only a directory. That’s
because a database is typically represented as a collection of files under a single directory
(although it could be represented in other forms as well). Each file usually contains a single
table, and the SQL statements can produce results that are culled from multiple tables in the
database (this is called a join). A database that contains only a single table (like this one) is
usually called a flat-file database. Most problems that go beyond the simple storage and
retrieval of data generally require multiple tables that must be related by joins to produce
the desired results, and these are called relational databases.

Step 3: Test the configuration
To test the configuration you’ll need a way to discover whether the database is visible from a
program that queries it. Of course, you can simply run the JDBC program example above up
to and including the statement:

Connection c = DriverManager.getConnection(
  dbUrl, user, password);

If an exception is thrown, your configuration was incorrect.

However, it’s useful to get a query-generation tool involved at this point. I used Microsoft
Query that came with Microsoft Office, but you might prefer something else. The query tool
must know where the database is, and Microsoft Query required that I go to the ODBC
Administrator’s “File DSN” tab and add a new entry there, again specifying the text driver
and the directory where my database lives. You can name the entry anything you want, but
it’s helpful to use the same name you used in “System DSN.”

Once you’ve done this, you will see that your database is available when you create a new
query using your query tool.

Step 4: Generate your SQL query
The query that I created using Microsoft Query not only showed me that my database was
there and in good order, but it also automatically created the SQL code that I needed to insert
into my Java program. I wanted a query that would search for records that had the last
name that was typed on the command line when starting the Java program. So as a starting
point, I searched for a specific last name, ‘Eckel’. I also wanted to display only those names
that had email addresses associated with them. The steps I took to create this query were:

1. Start a new query and use the Query Wizard. Select the “people” database. (This is the
equivalent of opening the database connection using the appropriate database URL.)

2. Select the “people” table within the database. From within the table, choose the columns
FIRST, LAST, and EMAIL.

3. Under “Filter Data,” choose LAST and select “equals” with an argument of Eckel. Click
the “And” radio button.

4. Choose EMAIL and select “Is not Null.”

5. Under “Sort By,” choose FIRST.

The result of this query will show you whether you’re getting what you want.



706 Thinking in Java  www.BruceEckel.com

Now you can press the SQL button and without any research on your part, up will pop the
correct SQL code, ready for you to cut and paste. For this query, it looked like this:

SELECT people.FIRST, people.LAST, people.EMAIL
FROM people.csv people
WHERE (people.LAST='Eckel') AND
(people.EMAIL Is Not Null)
ORDER BY people.FIRST

With more complicated queries it’s easy to get things wrong, but with a query tool you can
interactively test your queries and automatically generate the correct code. It’s hard to argue
the case for doing this by hand.

Step 5: Modify and paste in your query
You’ll notice that the code above looks different from what’s used in the program. That’s
because the query tool uses full qualification for all of the names, even when there’s only
one table involved. (When more than one table is involved, the qualification prevents
collisions between columns from different tables that have the same names.) Since this query
involves only one table, you can optionally remove the “people” qualifier from most of the
names, like this:

SELECT FIRST, LAST, EMAIL
FROM people.csv people
WHERE (LAST='Eckel') AND
(EMAIL Is Not Null)
ORDER BY FIRST

In addition, you don’t want this program to be hard coded to look for only one name.
Instead, it should hunt for the name given as the command-line argument. Making these
changes and turning the SQL statement into a dynamically-created String produces:

"SELECT FIRST, LAST, EMAIL " +
"FROM people.csv people " +
"WHERE " +
"(LAST='" + args[0] + "') " +
" AND (EMAIL Is Not Null) " +
"ORDER BY FIRST");

SQL has another way to insert names into a query called stored procedures, which is used for
speed. But for much of your database experimentation and for your first cut, building your
own query strings in Java is fine.

You can see from this example that by using the tools currently available – in particular the
query-building tool – database programming with SQL and JDBC can be quite
straightforward.

A GUI version of the lookup program
It’s more useful to leave the lookup program running all the time and simply switch to it
and type in a name whenever you want to look someone up. The following program creates
the lookup program as an application/applet, and it also adds name completion so the data
will show up without forcing you to type the entire last name:

//: VLookup.java



Chapter 15: Network Programming 707

// GUI version of Lookup.java
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
import java.sql.*;

public class VLookup extends Applet {
  String dbUrl = "jdbc:odbc:people";
  String user = "";
  String password = "";
  Statement s;
  TextField searchFor = new TextField(20);
  Label completion =
    new Label("                        ");
  TextArea results = new TextArea(40, 20);
  public void init() {
    searchFor.addTextListener(new SearchForL());
    Panel p = new Panel();
    p.add(new Label("Last name to search for:"));
    p.add(searchFor);
    p.add(completion);
    setLayout(new BorderLayout());
    add(p, BorderLayout.NORTH);
    add(results, BorderLayout.CENTER);
    try {
      // Load the driver (registers itself)
      Class.forName(
        "sun.jdbc.odbc.JdbcOdbcDriver");
      Connection c = DriverManager.getConnection(
        dbUrl, user, password);
      s = c.createStatement();
    } catch(Exception e) {
      results.setText(e.getMessage());
    }
  }
  class SearchForL implements TextListener {
    public void textValueChanged(TextEvent te) {
      ResultSet r;
      if(searchFor.getText().length() == 0) {
        completion.setText("");
        results.setText("");
        return;
      }
      try {
        // Name completion:
        r = s.executeQuery(
          "SELECT LAST FROM people.csv people " +
          "WHERE (LAST Like '" +
          searchFor.getText()  +
          "%') ORDER BY LAST");
        if(r.next())
          completion.setText(
            r.getString("last"));
        r = s.executeQuery(



708 Thinking in Java  www.BruceEckel.com

          "SELECT FIRST, LAST, EMAIL " +
          "FROM people.csv people " +
          "WHERE (LAST='" +
          completion.getText() +
          "') AND (EMAIL Is Not Null) " +
          "ORDER BY FIRST");
      } catch(Exception e) {
        results.setText(
          searchFor.getText() + "\n");
        results.append(e.getMessage());
        return;
      }
      results.setText("");
      try {
        while(r.next()) {
          results.append(
            r.getString("Last") + ", "
            + r.getString("fIRST") +
            ": " + r.getString("EMAIL") + "\n");
        }
      } catch(Exception e) {
        results.setText(e.getMessage());
      }
    }
  }
  public static void main(String[] args) {
    VLookup applet = new VLookup();
    Frame aFrame = new Frame("Email lookup");
    aFrame.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e) {
          System.exit(0);
        }
      });
    aFrame.add(applet, BorderLayout.CENTER);
    aFrame.setSize(500,200);
    applet.init();
    applet.start();
    aFrame.setVisible(true);
  }
} ///:~

Much of the database logic is the same, but you can see that a TextListener is added to listen
to the TextField, so that whenever you type a new character it first tries to do a name
completion by looking up the last name in the database and using the first one that shows
up. (It places it in the completion Label, and uses that as the lookup text.) This way, as
soon as you’ve typed enough characters for the program to uniquely find the name you’re
looking for, you can stop.



Chapter 15: Network Programming 709

Why the JDBC API
seems so complex

When you browse the online documentation for JDBC it can seem daunting. In particular, in
the DatabaseMetaData interface – which is just huge, contrary to most of the interfaces
you see in Java – there are methods such as dataDefinitionCausesTransactionCommit( ),
getMaxColumnNameLength( ), getMaxStatementLength( ),
storesMixedCaseQuotedIdentifiers( ), supportsANSI92IntermediateSQL( ),
supportsLimitedOuterJoins( ), and so on. What’s this all about?

As mentioned earlier, databases have seemed from their inception to be in a constant state of
turmoil, primarily because the demand for database applications, and thus database tools, is
so great. Only recently has there been any convergence on the common language of SQL
(and there are plenty of other database languages in common use). But even with an SQL
“standard” there are so many variations on that theme that JDBC must provide the large
DatabaseMetaData interface so that your code can discover the capabilities of the
particular “standard” SQL database that it’s currently connected to. In short, you can write
simple, transportable SQL, but if you want to optimize speed your coding will multiply
tremendously as you investigate the capabilities of a particular vendor’s database.

This, of course, is not Java’s fault. The discrepancies between database products are just
something that JDBC tries to help compensate for. But bear in mind that your life will be
easier if you can either write generic queries and not worry too much about performance,
or, if you must tune for performance, know the platform you’re writing for so you don’t
need to write all that investigation code.

There is more JDBC information available in the electronic documents that come as part of
the Java 1.1 distribution from Sun. In addition, you can find more in the book JDBC
Database Access with Java (Hamilton, Cattel, and Fisher, Addison-Wesley 1997). Other JDBC
books are appearing regularly.

Remote methods
Traditional approaches to executing code on other machines across a network have been
confusing as well as tedious and error-prone to implement. The nicest way to think about
this problem is that some object happens to live on another machine, and you can send a
message to that object and get a result as if the object lived on your local machine. This
simplification is exactly what Java 1.1 Remote Method Invocation (RMI) allows you to do.
This section walks you through the steps necessary to create your own RMI objects.

Remote interfaces
RMI makes heavy use of interfaces. When you want to create a remote object, you mask the
underlying implementation by passing around an interface. Thus, when the client gets a
handle to a remote object, what they really get is an interface handle, which happens to
connect to some local stub code that talks across the network. But you don’t think about
this, you just send messages via your interface handle.

When you create a remote interface, you must follow these guidelines:



710 Thinking in Java  www.BruceEckel.com

1. The remote interface must be public (it cannot have “package access,” that is, it cannot
be “friendly”). Otherwise, a client will get an error when attempting to load a remote
object that implements the remote interface.

2. The remote interface must extend the interface java.rmi.Remote.

3. Each method in the remote interface must declare java.rmi.RemoteException in its
throws clause in addition to any application-specific exceptions.

4. A remote object passed as an argument or return value (either directly or embedded
within a local object) must be declared as the remote interface, not the implementation
class.

Here’s a simple remote interface that represents an accurate time service:

//: PerfectTimeI.java
// The PerfectTime remote interface
package c15.ptime;
import java.rmi.*;

interface PerfectTimeI extends Remote {
  long getPerfectTime() throws RemoteException;
} ///:~

It looks like any other interface except that it extends Remote and all of its methods throw
RemoteException. Remember that an interface and all of its methods are automatically
public.

Implementing the remote interface
The server must contain a class that extends UnicastRemoteObject and implements the
remote interface. This class can also have additional methods, but only the methods in the
remote interface will be available to the client, of course, since the client will get only a
handle to the interface, not the class that implements it.

You must explicitly define the constructor for the remote object even if you’re only defining
a default constructor that calls the base-class constructor. You must write it out since it
must throw RemoteException.

Here’s the implementation of the remote interface PerfectTimeI:

//: PerfectTime.java
// The implementation of the PerfectTime
// remote object
package c15.ptime;
import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;
import java.net.*;

public class PerfectTime
    extends UnicastRemoteObject
    implements PerfectTimeI {
  // Implementation of the interface:
  public long getPerfectTime()



Chapter 15: Network Programming 711

      throws RemoteException {
    return System.currentTimeMillis();
  }
  // Must implement constructor to throw
  // RemoteException:
  public PerfectTime() throws RemoteException {
    // super(); // Called automatically
  }
  // Registration for RMI serving:
  public static void main(String[] args) {
    System.setSecurityManager(
      new RMISecurityManager());
    try {
      PerfectTime pt = new PerfectTime();
      Naming.bind(
        "//colossus:2005/PerfectTime", pt);
      System.out.println("Ready to do time");
    } catch(Exception e) {
      e.printStackTrace();
    }
  }
} ///:~

Here, main( ) handles all the details of setting up the server. When you’re serving RMI
objects, at some point in your program you must:

1. Create and install a security manager that supports RMI. The only one available for RMI
as part of the Java distribution is RMISecurityManager.

2. Create one or more instances of a remote object. Here, you can see the creation of the
PerfectTime object.

3. Register at least one of the remote objects with the RMI remote object registry for
bootstrapping purposes. One remote object can have methods that produce handles to
other remote objects. This allows you to set it up so the client must go to the registry
only once, to get the first remote object.

Setting up the registry
Here, you see a call to the static method Naming.bind( ). However, this call requires that
the registry be running as a separate process on the computer. The name of the registry
server is rmiregistry, and under 32-bit Windows you say:

start rmiregistry

to start it in the background. On Unix, it is:

rmiregistry &

Like many network programs, the rmiregistry is located at the IP address of whatever
machine started it up, but it must also be listening at a port. If you invoke the rmiregistry
as above, with no argument, the registry’s port will default to 1099. If you want it to be at
some other port, you add an argument on the command line to specify the port. For this
example, the port will be located at 2005, so the rmiregistry should be started like this
under 32-bit Windows:



712 Thinking in Java  www.BruceEckel.com

start rmiregistry 2005

or for Unix:

rmiregistry 2005 &

The information about the port must also be given to the bind( ) command, as well as the IP
address of the machine where the registry is located. But this brings up what can be a
frustrating problem if you’re expecting to test RMI programs locally the way the network
programs have been tested so far in this chapter. In the JDK 1.1.1 release, there are a couple
of problems:7

1. localhost does not work with RMI. Thus, to experiment with RMI on a single machine,
you must provide the name of the machine. To find out the name of your machine under
32-bit Windows, go to the control panel and select “Network.” Select the “Identification”
tab, and you’ll see your computer name. In my case, I called my computer “Colossus”
(for all the hard disks I’ve had to put on to hold all the different development systems). It
appears that capitalization is ignored.

2. RMI will not work unless your computer has an active TCP/IP connection, even if all
your components are just talking to each other on the local machine. This means that
you must connect to your Internet service provider before trying to run the program or
you’ll get some obscure exception messages.

Will all this in mind, the bind( ) command becomes:

Naming.bind("//colossus:2005/PerfectTime", pt);

If you are using the default port 1099, you don’t need to specify a port, so you could say:

Naming.bind("//colossus/PerfectTime", pt);

In a future release of the JDK (after 1.1) when the localhost bug is fixed, you will be able to
perform local testing by leaving off the IP address and using only the identifier:

Naming.bind("PerfectTime", pt);

The name for the service is arbitrary; it happens to be PerfectTime here, just like the name of
the class, but you could call it anything you want. The important thing is that it’s a unique
name in the registry that the client knows to look for to procure the remote object. If the
name is already in the registry, you’ll get an AlreadyBoundException. To prevent this, you
can always use rebind( ) instead of bind( ), since rebind( ) either adds a new entry or
replaces the one that’s already there.

Even though main( ) exits, your object has been created and registered so it’s kept alive by
the registry, waiting for a client to come along and request it. As long as the rmiregistry is
running and you don’t call Naming.unbind( ) on your name, the object will be there. For
this reason, when you’re developing your code you need to shut down the rmiregistry and
restart it when you compile a new version of your remote object.

You aren’t forced to start up rmiregistry as an external process. If you know that your
application is the only one that’s going to use the registry, you can start it up inside your
program with the line:

                                                

7 Many brain cells died in agony to discover this information.



Chapter 15: Network Programming 713

LocateRegistry.createRegistry(2005);

Like before, 2005 is the port number we happen to be using in this example. This is the
equivalent of running rmiregistry 2005 from a command line, but it can often be more
convenient when you’re developing RMI code since it eliminates the extra steps of starting
and stopping the registry. Once you’ve executed this code, you can bind( ) using Naming as
before.

Creating stubs and skeletons
If you compile and run PerfectTime.java, it won’t work even if you have the rmiregistry
running correctly. That’s because the framework for RMI isn’t all there yet. You must first
create the stubs and skeletons that provide the network connection operations and allow you
to pretend that the remote object is just another local object on your machine.

What’s going on behind the scenes is complex. Any objects that you pass into or return from
a remote object must implement Serializable (if you want to pass remote references instead
of the entire objects, the object arguments can implement Remote), so you can imagine
that the stubs and skeletons are automatically performing serialization and deserialization as
they “marshal” all of the arguments across the network and return the result. Fortunately,
you don’t have to know any of this, but you do have to create the stubs and skeletons. This
is a simple process: you invoke the rmic tool on your compiled code, and it creates the
necessary files. So the only requirement is that another step be added to your compilation
process.

The rmic tool is particular about packages and classpaths, however. PerfectTime.java is in
the package c15.Ptime, and even if you invoke rmic in the same directory in which
PerfectTime.class is located, rmic won’t find the file, since it searches the classpath. So you
must specify the location off the class path, like so:

rmic c15.PTime.PerfectTime

You don’t have to be in the directory containing PerfectTime.class when you execute this
command, but the results will be placed in the current directory.

When rmic runs successfully, you’ll have two new classes in the directory:

PerfectTime_Stub.class
PerfectTime_Skel.class

corresponding to the stub and skeleton. Now you’re ready to get the server and client to talk
to each other.

Using the remote object
The whole point of RMI is to make the use of remote objects simple. The only extra thing
that you must do in your client program is to look up and fetch the remote interface from
the server. From then on, it’s just regular Java programming: sending messages to objects.
Here’s the program that uses PerfectTime:

//: DisplayPerfectTime.java
// Uses remote object PerfectTime
package c15.ptime;
import java.rmi.*;
import java.rmi.registry.*;



714 Thinking in Java  www.BruceEckel.com

public class DisplayPerfectTime {
  public static void main(String[] args) {
    System.setSecurityManager(
      new RMISecurityManager());
    try {
      PerfectTimeI t =
        (PerfectTimeI)Naming.lookup(
          "//colossus:2005/PerfectTime");
      for(int i = 0; i < 10; i++)
        System.out.println("Perfect time = " +
          t.getPerfectTime());
    } catch(Exception e) {
      e.printStackTrace();
    }
  }
} ///:~

The ID string is the same as the one used to register the object with Naming, and the first
part represents the URL and port number. Since you’re using a URL, you can also specify a
machine on the Internet.

What comes back from Naming.lookup( ) must be cast to the remote interface, not to the
class. If you use the class instead, you’ll get an exception.

You can see in the method call

t.getPerfectTime( )

that once you have a handle to the remote object, programming with it is indistinguishable
from programming with a local object (with one difference: remote methods throw
RemoteException).

Alternatives to RMI
RMI is just one way to create objects that can be distributed across a network. It has the
advantage of being a “pure Java” solution, but if you have a lot of code written in some
other language, it might not meet your needs. The two most compelling alternatives are
Microsoft’s DCOM (which, according to Microsoft’s plan, will eventually be hosted on
platforms other than Windows) and CORBA, which is supported in Java 1.1 and was
designed from the start to be cross-platform. You can get an introduction to distributed
objects in Java (albeit with a clear bias towards CORBA) in Client/Server Programming with
Java and CORBA by Orfali & Harkey (John Wiley & Sons, 1997). A more serious treatment of
CORBA is given by Java Programming with CORBA by Andreas Vogel
and Keith Duddy (John Wiley & Sons, 1997).

Summary
There’s actually a lot more to networking than can be covered in this introductory
treatment. Java networking also provides fairly extensive support for URLs, including
protocol handlers for different types of content that can be discovered at an Internet site.



Chapter 15: Network Programming 715

In addition, an up-and-coming technology is the Servlet Server, which is an Internet server
that uses Java to handle requests instead of the slow and rather awkward CGI (Common
Gateway Interface) protocol. This means that to provide services on the server side you’ll be
able to write in Java instead of using some other language that you might not know as well.
You’ll also get the portability benefits of Java so you won’t have to worry about the
particular platform the server is hosted on.

These and other features are fully and carefully described in Java Network Programming by
Elliotte Rusty Harold (O’Reilly, 1997).

Exercises
 1.  Compile and run the JabberServer and JabberClient programs in this chapter. Now

edit the files to remove all of the buffering for the input and output, then compile and
run them again to observe the results.

 2.  Create a server that asks for a password, then opens a file and sends the file over the
network connection. Create a client that connects to this server, gives the appropriate
password, then captures and saves the file. Test the pair of programs on your machine
using the localhost (the local loopback IP address 127.0.0.1 produced by calling
InetAddress.getByName(null)).

 3.  Modify the server in Exercise 2 so that it uses multithreading to handle multiple clients.

 4.  Modify JabberClient so that output flushing doesn’t occur and observe the effect.

 5.  Build on ShowHTML.java to produce an applet that is a password-protected gateway
to a particular portion of your Web site.

 6.  (More challenging) Create a client/server pair of programs that use datagrams to
transmit a file from one machine to the other. (See the description at the end of the
datagram section of this chapter.)

 7.  (More challenging) Take the VLookup.java program and modify it so that when you
click on the resulting name it automatically takes that name and copies it to the
clipboard (so you can simply paste it into your email). You’ll need to look back at the IO
stream chapter to remember how to use the Java 1.1 clipboard.



717

ij

16: Design patterns
This chapter introduces the important and yet non-traditional “patterns”
approach to program design.
Probably the most important step forward in object-oriented design is the “design patterns”
movement, chronicled in Design Patterns, by Gamma, Helm, Johnson & Vlissides (Addison-
Wesley 1995).1 That book shows 23 different solutions to particular classes of problems. In
this chapter, the basic concepts of design patterns will be introduced along with several
examples. This should whet your appetite to read Design Patterns (a source of what has now
become an essential, almost mandatory, vocabulary for OOP programmers).

The latter part of this chapter contains an example of the design evolution process, starting
with an initial solution and moving through the logic and process of evolving the solution to
more appropriate designs. The program shown (a trash sorting simulation) has evolved over
time, and you can look at that evolution as a prototype for the way your own design can
start as an adequate solution to a particular problem and evolve into a flexible approach to a
class of problems.

The pattern concept
Initially, you can think of a pattern as an especially clever and insightful way of solving a
particular class of problems. That is, it looks like a lot of people have worked out all the
angles of a problem and have come up with the most general, flexible solution for it. The
problem could be one you have seen and solved before, but your solution probably didn’t
have the kind of completeness you’ll see embodied in a pattern.

                                                

1 But be warned: the examples are in C++.



718 Thinking in Java  www.BruceEckel.com

Although they’re called “design patterns,” they really aren’t tied to the realm of design. A
pattern seems to stand apart from the traditional way of thinking about analysis, design,
and implementation. Instead, a pattern embodies a complete idea within a program, and
thus it can sometimes appear at the analysis phase or high-level design phase. This is
interesting because a pattern has a direct implementation in code and so you might not
expect it to show up before low-level design or implementation (and in fact you might not
realize that you need a particular pattern until you get to those phases).

The basic concept of a pattern can also be seen as the basic concept of program design:
adding a layer of abstraction. Whenever you abstract something you’re isolating particular
details, and one of the most compelling motivations behind this is to separate things that
change from things that stay the same. Another way to put this is that once you find some
part of your program that’s likely to change for one reason or another, you’ll want to keep
those changes from propagating other changes throughout your code. Not only does this
make the code much cheaper to maintain, but it also turns out that it is usually simpler to
understand (which results in lowered costs).

Often, the most difficult part of developing an elegant and cheap-to-maintain design is in
discovering what I call “the vector of change.” (Here, “vector” refers to the maximum
gradient and not a collection class.) This means finding the most important thing that
changes in your system, or put another way, discovering where your greatest cost is. Once
you discover the vector of change, you have the focal point around which to structure your
design.

So the goal of design patterns is to isolate changes in your code. If you look at it this way,
you’ve been seeing some design patterns already in this book. For example, inheritance can
be thought of as a design pattern (albeit one implemented by the compiler). It allows you to
express differences in behavior (that’s the thing that changes) in objects that all have the
same interface (that’s what stays the same). Composition can also be considered a pattern,
since it allows you to change – dynamically or statically – the objects that implement your
class, and thus the way that class works.

You’ve also already seen another pattern that appears in Design Patterns: the iterator (Java
1.0 and 1.1 capriciously calls it the Enumeration; Java 1.2 collections use “iterator”). This
hides the particular implementation of the collection as you’re stepping through and
selecting the elements one by one. The iterator allows you to write generic code that
performs an operation on all of the elements in a sequence without regard to the way that
sequence is built. Thus your generic code can be used with any collection that can produce
an iterator.

The singleton
Possibly the simplest design pattern is the singleton, which is a way to provide one and only
one instance of an object. This is used in the Java libraries, but here’s a more direct example:

//: SingletonPattern.java
// The Singleton design pattern: you can
// never instantiate more than one.
package c16;

// Since this isn't inherited from a Cloneable
// base class and cloneability isn't added,
// making it final prevents cloneability from
// being added in any derived classes:



Chapter 16: Design Patterns 719

final class Singleton {
  private static Singleton s = new Singleton(47);
  private int i;
  private Singleton(int x) { i = x; }
  public static Singleton getHandle() {
    return s;
  }
  public int getValue() { return i; }
  public void setValue(int x) { i = x; }
}

public class SingletonPattern {
  public static void main(String[] args) {
    Singleton s = Singleton.getHandle();
    System.out.println(s.getValue());
    Singleton s2 = Singleton.getHandle();
    s2.setValue(9);
    System.out.println(s.getValue());
    try {
      // Can't do this: compile-time error.
      // Singleton s3 = (Singleton)s2.clone();
    } catch(Exception e) {}
  }
} ///:~

The key to creating a singleton is to prevent the client programmer from having any way to
create an object except the ways you provide. You must make all constructors private, and
you must create at least one constructor to prevent the compiler from synthesizing a default
constructor for you (which it will create as “friendly”).

At this point, you decide how you’re going to create your object. Here, it’s created statically,
but you can also wait until the client programmer asks for one and create it on demand. In
any case, the object should be stored privately. You provide access through public methods.
Here, getHandle( ) produces the handle to the Singleton object. The rest of the interface
(getValue( ) and setValue( )) is the regular class interface.

Java also allows the creation of objects through cloning. In this example, making the class
final prevents cloning. Since Singleton is inherited directly from Object, the clone( ) method
remains protected so it cannot be used (doing so produces a compile-time error). However, if
you’re inheriting from a class hierarchy that has already overridden clone( ) as public and
implemented Cloneable, the way to prevent cloning is to override clone( ) and throw a
CloneNotSupportedException as described in Chapter 12. (You could also override clone( )
and simply return this, but that would be deceiving since the client programmer would
think they were cloning the object, but would instead still be dealing with the original.)

Note that you aren’t restricted to creating only one object. This is also a technique to create a
limited pool of objects. In that situation, however, you can be confronted with the problem
of sharing objects in the pool. If this is an issue, you can create a solution involving a check-
out and check-in of the shared objects.

Classifying patterns
The Design Patterns book discusses 23 different patterns, classified under three purposes (all
of which revolve around the particular aspect that can vary). The three purposes are:



720 Thinking in Java  www.BruceEckel.com

1. Creational: how an object can be created. This often involves isolating the details of
object creation so your code isn’t dependent on what types of objects there are and thus
doesn’t have to be changed when you add a new type of object. The aforementioned
Singleton is classified as a creational pattern, and later in this chapter you’ll see examples
of Factory Method and Prototype.

2. Structural: designing objects to satisfy particular project constraints. These work with
the way objects are connected with other objects to ensure that changes in the system
don’t require changes to those connections.

3. Behavioral: objects that handle particular types of actions within a program. These
encapsulate processes that you want to perform, such as interpreting a language,
fulfilling a request, moving through a sequence (as in an iterator), or implementing an
algorithm. This chapter contains examples of the Observer and the Visitor patterns.

The Design Patterns book has a section on each of its 23 patterns along with one or more
examples for each, typically in C++ but sometimes in Smalltalk. (You’ll find that this
doesn’t matter too much since you can easily translate the concepts from either language
into Java.) This book will not repeat all the patterns shown in Design Patterns since that book
stands on its own and should be studied separately. Instead, this chapter will give some
examples that should provide you with a decent feel for what patterns are about and why
they are so important.

The observer pattern
The observer pattern solves a fairly common problem: What if a group of objects needs to
update themselves when some object changes state? This can be seen in the “model-view”
aspect of Smalltalk’s MVC (model-view-controller), or the almost-equivalent “Document-
View Architecture.” Suppose that you have some data (the “document”) and more than one
view, say a plot and a textual view. When you change the data, the two views must know to
update themselves, and that’s what the observer facilitates. It’s a common enough problem
that its solution has been made a part of the standard java.util library.

There are two types of objects used to implement the observer pattern in Java. The
Observable class keeps track of everybody who wants to be informed when a change
happens, whether the “state” has changed or not. When someone says “OK, everybody
should check and potentially update themselves,” the Observable class performs this task by
calling the notifyObservers( ) method for each one on the list. The notifyObservers( )
method is part of the base class Observable.

There are actually two “things that change” in the observer pattern: the quantity of
observing objects and the way an update occurs. That is, the observer pattern allows you to
modify both of these without affecting the surrounding code.

The following example is similar to the ColorBoxes example from Chapter 14. Boxes are
placed in a grid on the screen and each one is initialized to a random color. In addition, each
box implements the Observer interface and is registered with an Observable object. When
you click on a box, all of the other boxes are notified that a change has been made because
the Observable object automatically calls each Observer object’s update( ) method. Inside
this method, the box checks to see if it’s adjacent to the one that was clicked, and if so it
changes its color to match the clicked box.

//: BoxObserver.java
// Demonstration of Observer pattern using



Chapter 16: Design Patterns 721

// Java's built-in observer classes.
import java.awt.*;
import java.awt.event.*;
import java.util.*;

// You must inherit a new type of Observable:
class BoxObservable extends Observable {
  public void notifyObservers(Object b) {
    // Otherwise it won't propagate changes:
    setChanged();
    super.notifyObservers(b);
  }
}

public class BoxObserver extends Frame {
  Observable notifier = new BoxObservable();
  public BoxObserver(int grid) {
    setTitle("Demonstrates Observer pattern");
    setLayout(new GridLayout(grid, grid));
    for(int x = 0; x < grid; x++)
      for(int y = 0; y < grid; y++)
        add(new OCBox(x, y, notifier));
  }
  public static void main(String[] args) {
    int grid = 8;
    if(args.length > 0)
      grid = Integer.parseInt(args[0]);
    Frame f = new BoxObserver(grid);
    f.setSize(500, 400);
    f.setVisible(true);
    f.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e) {
          System.exit(0);
        }
      });
  }
}

class OCBox extends Canvas implements Observer {
  Observable notifier;
  int x, y; // Locations in grid
  Color cColor = newColor();
  static final Color[] colors = {
    Color.black, Color.blue, Color.cyan,
    Color.darkGray, Color.gray, Color.green,
    Color.lightGray, Color.magenta,
    Color.orange, Color.pink, Color.red,
    Color.white, Color.yellow
  };
  static final Color newColor() {
    return colors[
      (int)(Math.random() * colors.length)
    ];



722 Thinking in Java  www.BruceEckel.com

  }
  OCBox(int x, int y, Observable notifier) {
    this.x = x;
    this.y = y;
    notifier.addObserver(this);
    this.notifier = notifier;
    addMouseListener(new ML());
  }
  public void paint(Graphics  g) {
    g.setColor(cColor);
    Dimension s = getSize();
    g.fillRect(0, 0, s.width, s.height);
  }
  class ML extends MouseAdapter {
    public void mousePressed(MouseEvent e) {
      notifier.notifyObservers(OCBox.this);
    }
  }
  public void update(Observable o, Object arg) {
    OCBox clicked = (OCBox)arg;
    if(nextTo(clicked)) {
      cColor = clicked.cColor;
      repaint();
    }
  }
  private final boolean nextTo(OCBox b) {
    return Math.abs(x - b.x) <= 1 &&
           Math.abs(y - b.y) <= 1;
  }
} ///:~

When you first look at the online documentation for Observable, it’s a bit confusing
because it appears that you can use an ordinary Observable object to manage the updates.
But this doesn’t work; try it – inside BoxObserver, create an Observable object instead of a
BoxObservable object and see what happens: nothing. To get an effect, you must inherit
from Observable and somewhere in your derived-class code call setChanged( ). This is the
method that sets the “changed” flag, which means that when you call notifyObservers( ) all
of the observers will, in fact, get notified. In the example above setChanged( ) is simply
called within notifyObservers( ), but you could use any criterion you want to decide when
to call setChanged( ).

BoxObserver contains a single Observable object called notifier, and every time an OCBox
object is created, it is tied to notifier. In OCBox, whenever you click the mouse the
notifyObservers( ) method is called, passing the clicked object in as an argument so that all
the boxes receiving the message (in their update( ) method) know who was clicked and can
decide whether to change themselves or not. Using a combination of code in
notifyObservers( ) and update( ) you can work out some fairly complex schemes.

It might appear that the way the observers are notified must be frozen at compile time in the
notifyObservers( ) method. However, if you look more closely at the code above you’ll see
that the only place in BoxObserver or OCBox where you're aware that you’re working with
a BoxObservable is at the point of creation of the Observable object – from then on
everything uses the basic Observable interface. This means that you could inherit other



Chapter 16: Design Patterns 723

Observable classes and swap them at run-time if you want to change notification behavior
then.

Simulating the trash recycler
The nature of this problem is that the trash is thrown unclassified into a single bin, so the
specific type information is lost. But later, the specific type information must be recovered to
properly sort the trash. In the initial solution, RTTI (described in Chapter 11) is used.

This is not a trivial design because it has an added constraint. That’s what makes it
interesting – it’s more like the messy problems you’re likely to encounter in your work. The
extra constraint is that the trash arrives at the trash recycling plant all mixed together. The
program must model the sorting of that trash. This is where RTTI comes in: you have a
bunch of anonymous pieces of trash, and the program figures out exactly what type they
are.

//: RecycleA.java
// Recycling with RTTI
package c16.recyclea;
import java.util.*;
import java.io.*;

abstract class Trash {
  private double weight;
  Trash(double wt) { weight = wt; }
  abstract double value();
  double weight() { return weight; }
  // Sums the value of Trash in a bin:
  static void sumValue(Vector bin) {
    Enumeration e = bin.elements();
    double val = 0.0f;
    while(e.hasMoreElements()) {
      // One kind of RTTI:
      // A dynamically-checked cast
      Trash t = (Trash)e.nextElement();
      // Polymorphism in action:
      val += t.weight() * t.value();
      System.out.println(
        "weight of " +
        // Using RTTI to get type
        // information about the class:
        t.getClass().getName() +
        " = " + t.weight());
    }
    System.out.println("Total value = " + val);
  }
}

class Aluminum extends Trash {
  static double val  = 1.67f;
  Aluminum(double wt) { super(wt); }
  double value() { return val; }
  static void value(double newval) {



724 Thinking in Java  www.BruceEckel.com

    val = newval;
  }
}

class Paper extends Trash {
  static double val = 0.10f;
  Paper(double wt) { super(wt); }
  double value() { return val; }
  static void value(double newval) {
    val = newval;
  }
}

class Glass extends Trash {
  static double val = 0.23f;
  Glass(double wt) { super(wt); }
  double value() { return val; }
  static void value(double newval) {
    val = newval;
  }
}

public class RecycleA {
  public static void main(String[] args) {
    Vector bin = new Vector();
    // Fill up the Trash bin:
    for(int i = 0; i < 30; i++)
      switch((int)(Math.random() * 3)) {
        case 0 :
          bin.addElement(new
            Aluminum(Math.random() * 100));
          break;
        case 1 :
          bin.addElement(new
            Paper(Math.random() * 100));
          break;
        case 2 :
          bin.addElement(new
            Glass(Math.random() * 100));
      }
    Vector
      glassBin = new Vector(),
      paperBin = new Vector(),
      alBin = new Vector();
    Enumeration sorter = bin.elements();
    // Sort the Trash:
    while(sorter.hasMoreElements()) {
      Object t = sorter.nextElement();
      // RTTI to show class membership:
      if(t instanceof Aluminum)
        alBin.addElement(t);
      if(t instanceof Paper)
        paperBin.addElement(t);
      if(t instanceof Glass)



Chapter 16: Design Patterns 725

        glassBin.addElement(t);
    }
    Trash.sumValue(alBin);
    Trash.sumValue(paperBin);
    Trash.sumValue(glassBin);
    Trash.sumValue(bin);
  }
} ///:~

The first thing you’ll notice is the package statement:

package c16.recyclea;

This means that in the source code listings available for the book, this file will be placed in
the subdirectory recyclea that branches off from the subdirectory c16 (for Chapter 16). The
unpacking tool in Chapter 17 takes care of placing it into the correct subdirectory. The
reason for doing this is that this chapter rewrites this particular example a number of times
and by putting each version in its own package the class names will not clash.

Several Vector objects are created to hold Trash handles. Of course, Vectors actually hold
Objects so they’ll hold anything at all. The reason they hold Trash (or something derived
from Trash) is only because you’ve been careful to not put in anything except Trash. If you
do put something “wrong” into the Vector, you won’t get any compile-time warnings or
errors – you’ll find out only via an exception at run-time.

When the Trash handles are added, they lose their specific identities and become simply
Object handles (they are upcast). However, because of polymorphism the proper behavior
still occurs when the dynamically-bound methods are called through the Enumeration
sorter, once the resulting Object has been cast back to Trash. sumValue( ) also uses an
Enumeration to perform operations on every object in the Vector.

It looks silly to upcast the types of Trash into a collection holding base type handles, and
then turn around and downcast. Why not just put the trash into the appropriate receptacle
in the first place? (Indeed, this is the whole enigma of recycling). In this program it would be
easy to repair, but sometimes a system’s structure and flexibility can benefit greatly from
downcasting.

The program satisfies the design requirements: it works. This might be fine as long as it’s a
one-shot solution. However, a useful program tends to evolve over time, so you must ask,
“What if the situation changes?” For example, cardboard is now a valuable recyclable
commodity, so how will that be integrated into the system (especially if the program is large
and complicated). Since the above type-check coding in the switch statement could be
scattered throughout the program, you must go find all that code every time a new type is
added, and if you miss one the compiler won’t give you any help by pointing out an error.

The key to the misuse of RTTI here is that every type is tested. If you’re looking for only a
subset of types because that subset needs special treatment, that’s probably fine. But if
you’re hunting for every type inside a switch statement, then you’re probably missing an
important point, and definitely making your code less maintainable. In the next section we’ll
look at how this program evolved over several stages to become much more flexible. This
should prove a valuable example in program design.



726 Thinking in Java  www.BruceEckel.com

Improving the design
The solutions in Design Patterns are organized around the question “What will change as this
program evolves?” This is usually the most important question that you can ask about any
design. If you can build your system around the answer, the results will be two-pronged:
not only will your system allow easy (and inexpensive) maintenance, but you might also
produce components that are reusable, so that other systems can be built more cheaply. This
is the promise of object-oriented programming, but it doesn’t happen automatically; it
requires thought and insight on your part. In this section we’ll see how this process can
happen during the refinement of a system.

The answer to the question “What will change?” for the recycling system is a common one:
more types will be added to the system. The goal of the design, then, is to make this addition
of types as painless as possible. In the recycling program, we’d like to encapsulate all places
where specific type information is mentioned, so (if for no other reason) any changes can be
localized to those encapsulations. It turns out that this process also cleans up the rest of the
code considerably.

“Make more objects”
This brings up a general object-oriented design principle that I first heard spoken by Grady
Booch: “If the design is too complicated, make more objects.” This is simultaneously
counterintuitive and ludicrously simple, and yet it’s the most useful guideline I’ve found.
(You might observe that “making more objects” is often equivalent to “add another level of
indirection.”) In general, if you find a place with messy code, consider what sort of class
would clean that up. Often the side effect of cleaning up the code will be a system that has
better structure and is more flexible.

Consider first the place where Trash objects are created, which is a switch statement inside
main( ):

    for(int i = 0; i < 30; i++)
      switch((int)(Math.random() * 3)) {
        case 0 :
          bin.addElement(new
            Aluminum(Math.random() * 100));
          break;
        case 1 :
          bin.addElement(new
            Paper(Math.random() * 100));
          break;
        case 2 :
          bin.addElement(new
            Glass(Math.random() * 100));
      }

This is definitely messy, and also a place where you must change code whenever a new type
is added. If new types are commonly added, a better solution is a single method that takes all
of the necessary information and produces a handle to an object of the correct type, already
upcast to a trash object. In Design Patterns this is broadly referred to as a creational pattern
(of which there are several). The specific pattern that will be applied here is a variant of the
Factory Method. Here, the factory method is a static member of Trash, but more commonly
it is a method that is overridden in the derived class.



Chapter 16: Design Patterns 727

The idea of the factory method is that you pass it the essential information it needs to know
to create your object, then stand back and wait for the handle (already upcast to the base
type) to pop out as the return value. From then on, you treat the object polymorphically.
Thus, you never even need to know the exact type of object that’s created. In fact, the
factory method hides it from you to prevent accidental misuse. If you want to use the object
without polymorphism, you must explicitly use RTTI and casting.

But there’s a little problem, especially when you use the more complicated approach (not
shown here) of making the factory method in the base class and overriding it in the derived
classes. What if the information required in the derived class requires more or different
arguments? “Creating more objects” solves this problem. To implement the factory method,
the Trash class gets a new method called factory. To hide the creational data, there’s a new
class called Info that contains all of the necessary information for the factory method to
create the appropriate Trash object. Here’s a simple implementation of Info:

class Info {
  int type;
  // Must change this to add another type:
  static final int MAX_NUM = 4;
  double data;
  Info(int typeNum, double dat) {
    type = typeNum % MAX_NUM;
    data = dat;
  }
}

An Info object’s only job is to hold information for the factory( ) method. Now, if there’s a
situation in which factory( ) needs more or different information to create a new type of
Trash object, the factory( ) interface doesn’t need to be changed. The Info class can be
changed by adding new data and new constructors, or in the more typical object-oriented
fashion of subclassing.

The factory( ) method for this simple example looks like this:

  static Trash factory(Info i) {
    switch(i.type) {
      default: // To quiet the compiler
      case 0:
        return new Aluminum(i.data);
      case 1:
        return new Paper(i.data);
      case 2:
        return new Glass(i.data);
      // Two lines here:
      case 3:
        return new Cardboard(i.data);
    }
  }

Here, the determination of the exact type of object is simple, but you can imagine a more
complicated system in which factory( ) uses an elaborate algorithm. The point is that it’s
now hidden away in one place, and you know to come to this place when you add new
types.

The creation of new objects is now much simpler in main( ):



728 Thinking in Java  www.BruceEckel.com

    for(int i = 0; i < 30; i++)
      bin.addElement(
        Trash.factory(
          new Info(
            (int)(Math.random() * Info.MAX_NUM),
            Math.random() * 100)));

An Info object is created to pass the data into factory( ), which in turn produces some kind
of Trash object on the heap and returns the handle that’s added to the Vector bin. Of course,
if you change the quantity and type of argument, this statement will still need to be
modified, but that can be eliminated if the creation of the Info object is automated. For
example, a Vector of arguments can be passed into the constructor of an Info object (or
directly into a factory( ) call, for that matter). This requires that the arguments be parsed
and checked at runtime, but it does provide the greatest flexibility.

You can see from this code what “vector of change” problem the factory is responsible for
solving: if you add new types to the system (the change), the only code that must be
modified is within the factory, so the factory isolates the effect of that change.

A pattern for prototyping creation
A problem with the design above is that it still requires a central location where all the types
of the objects must be known: inside the factory( ) method. If new types are regularly being
added to the system, the factory( ) method must be changed for each new type. When you
discover something like this, it is useful to try to go one step further and move all of the
information about the type – including its creation – into the class representing that type.
This way, the only thing you need to do to add a new type to the system is to inherit a single
class.

To move the information concerning type creation into each specific type of Trash, the
“prototype” pattern (from the Design Patterns book) will be used. The general idea is that you
have a master sequence of objects, one of each type you’re interested in making. The objects
in this sequence are used only for making new objects, using an operation that’s not unlike
the clone( ) scheme built into Java’s root class Object. In this case, we’ll name the cloning
method tClone( ). When you’re ready to make a new object, presumably you have some
sort of information that establishes the type of object you want to create, then you move
through the master sequence comparing your information with whatever appropriate
information is in the prototype objects in the master sequence. When you find one that
matches your needs, you clone it.

In this scheme there is no hard-coded information for creation. Each object knows how to
expose appropriate information and how to clone itself. Thus, the factory( ) method doesn’t
need to be changed when a new type is added to the system.

One approach to the problem of prototyping is to add a number of methods to support the
creation of new objects. However, in Java 1.1 there’s already support for creating new
objects if you have a handle to the Class object. With Java 1.1 reflection (introduced in
Chapter 11) you can call a constructor even if you have only a handle to the Class object.
This is the perfect solution for the prototyping problem.

The list of prototypes will be represented indirectly by a list of handles to all the Class
objects you want to create. In addition, if the prototyping fails, the factory( ) method will
assume that it’s because a particular Class object wasn’t in the list, and it will attempt to
load it. By loading the prototypes dynamically like this, the Trash class doesn’t need to know



Chapter 16: Design Patterns 729

what types it is working with, so it doesn’t need any modifications when you add new
types. This allows it to be easily reused throughout the rest of the chapter.

//: Trash.java
// Base class for Trash recycling examples
package c16.trash;
import java.util.*;
import java.lang.reflect.*;

public abstract class Trash {
  private double weight;
  Trash(double wt) { weight = wt; }
  Trash() {}
  public abstract double value();
  public double weight() { return weight; }
  // Sums the value of Trash in a bin:
  public static void sumValue(Vector bin) {
    Enumeration e = bin.elements();
    double val = 0.0f;
    while(e.hasMoreElements()) {
      // One kind of RTTI:
      // A dynamically-checked cast
      Trash t = (Trash)e.nextElement();
      val += t.weight() * t.value();
      System.out.println(
        "weight of " +
        // Using RTTI to get type
        // information about the class:
        t.getClass().getName() +
        " = " + t.weight());
    }
    System.out.println("Total value = " + val);
  }
  // Remainder of class provides support for
  // prototyping:
  public static class PrototypeNotFoundException
      extends Exception {}
  public static class CannotCreateTrashException
      extends Exception {}
  private static Vector trashTypes =
    new Vector();
  public static Trash factory(Info info)
      throws PrototypeNotFoundException,
      CannotCreateTrashException {
    for(int i = 0; i < trashTypes.size(); i++) {
      // Somehow determine the new type
      // to create, and create one:
      Class tc =
        (Class)trashTypes.elementAt(i);
      if (tc.getName().indexOf(info.id) != -1) {
        try {
          // Get the dynamic constructor method
          // that takes a double argument:
          Constructor ctor =



730 Thinking in Java  www.BruceEckel.com

            tc.getConstructor(
              new Class[] {double.class});
          // Call the constructor to create a
          // new object:
          return (Trash)ctor.newInstance(
            new Object[]{new Double(info.data)});
        } catch(Exception ex) {
          ex.printStackTrace();
          throw new CannotCreateTrashException();
        }
      }
    }
    // Class was not in the list. Try to load it,
    // but it must be in your class path!
    try {
      System.out.println("Loading " + info.id);
      trashTypes.addElement(
        Class.forName(info.id));
    } catch(Exception e) {
      e.printStackTrace();
      throw new PrototypeNotFoundException();
    }
    // Loaded successfully. Recursive call
    // should work this time:
    return factory(info);
  }
  public static class Info {
    public String id;
    public double data;
    public Info(String name, double data) {
      id = name;
      this.data = data;
    }
  }
} ///:~

The basic Trash class and sumValue( ) remain as before. The rest of the class supports the
prototyping pattern. You first see two inner classes (which are made static, so they are inner
classes only for code organization purposes) describing exceptions that can occur. This is
followed by a Vector trashTypes, which is used to hold the Class handles.

In Trash.factory( ), the String inside the Info object id (a different version of the Info class
than that of the prior discussion) contains the type name of the Trash to be created; this
String is compared to the Class names in the list. If there’s a match, then that’s the object to
create. Of course, there are many ways to determine what object you want to make. This
one is used so that information read in from a file can be turned into objects.

Once you’ve discovered which kind of Trash to create, then the reflection methods come into
play. The getConstructor( ) method takes an argument that’s an array of Class handles.
This array represents the arguments, in their proper order, for the constructor that you’re
looking for. Here, the array is dynamically created using the Java 1.1 array-creation syntax:

new Class[] {double.class}



Chapter 16: Design Patterns 731

This code assumes that every Trash type has a constructor that takes a double (and notice
that double.class is distinct from Double.class). It’s also possible, for a more flexible
solution, to call getConstructors( ), which returns an array of the possible constructors.

What comes back from getConstructor( ) is a handle to a Constructor object (part of
java.lang.reflect). You call the constructor dynamically with the method newInstance( ),
which takes an array of Object containing the actual arguments. This array is again created
using the Java 1.1 syntax:

new Object[]{new Double(info.data)}

In this case, however, the double must be placed inside a wrapper class so that it can be part
of this array of objects. The process of calling newInstance( ) extracts the double, but you
can see it is a bit confusing – an argument might be a double or a Double, but when you
make the call you must always pass in a Double. Fortunately, this issue exists only for the
primitive types.

Once you understand how to do it, the process of creating a new object given only a Class
handle is remarkably simple. Reflection also allows you to call methods in this same
dynamic fashion.

Of course, the appropriate Class handle might not be in the trashTypes list. In this case, the
return in the inner loop is never executed and you’ll drop out at the end. Here, the program
tries to rectify the situation by loading the Class object dynamically and adding it to the
trashTypes list. If it still can’t be found something is really wrong, but if the load is
successful then the factory method is called recursively to try again.

As you’ll see, the beauty of this design is that this code doesn’t need to be changed,
regardless of the different situations it will be used in (assuming that all Trash subclasses
contain a constructor that takes a single double argument).

Trash subclasses
To fit into the prototyping scheme, the only thing that’s required of each new subclass of
Trash is that it contain a constructor that takes a double argument. Java 1.1 reflection
handles everything else.

Here are the different types of Trash, each in their own file but part of the Trash package
(again, to facilitate reuse within the chapter):

//: Aluminum.java
// The Aluminum class with prototyping
package c16.trash;

public class Aluminum extends Trash {
  private static double val = 1.67f;
  public Aluminum(double wt) { super(wt); }
  public double value() { return val; }
  public static void value(double newVal) {
    val = newVal;
  }
} ///:~

//: Paper.java
// The Paper class with prototyping
package c16.trash;



732 Thinking in Java  www.BruceEckel.com

public class Paper extends Trash {
  private static double val = 0.10f;
  public Paper(double wt) { super(wt); }
  public double value() { return val; }
  public static void value(double newVal) {
    val = newVal;
  }
} ///:~

//: Glass.java
// The Glass class with prototyping
package c16.trash;

public class Glass extends Trash {
  private static double val = 0.23f;
  public Glass(double wt) { super(wt); }
  public double value() { return val; }
  public static void value(double newVal) {
    val = newVal;
  }
} ///:~

And here’s a new type of Trash:

//: Cardboard.java
// The Cardboard class with prototyping
package c16.trash;

public class Cardboard extends Trash {
  private static double val = 0.23f;
  public Cardboard(double wt) { super(wt); }
  public double value() { return val; }
  public static void value(double newVal) {
    val = newVal;
  }
} ///:~

You can see that, other than the constructor, there’s nothing special about any of these
classes.

Parsing TTrash from an external file
The information about Trash objects will be read from an outside file. The file has all of the
necessary information about each piece of trash on a single line in the form Trash:weight,
such as:

c16.Trash.Glass:54
c16.Trash.Paper:22
c16.Trash.Paper:11
c16.Trash.Glass:17
c16.Trash.Aluminum:89
c16.Trash.Paper:88
c16.Trash.Aluminum:76
c16.Trash.Cardboard:96



Chapter 16: Design Patterns 733

c16.Trash.Aluminum:25
c16.Trash.Aluminum:34
c16.Trash.Glass:11
c16.Trash.Glass:68
c16.Trash.Glass:43
c16.Trash.Aluminum:27
c16.Trash.Cardboard:44
c16.Trash.Aluminum:18
c16.Trash.Paper:91
c16.Trash.Glass:63
c16.Trash.Glass:50
c16.Trash.Glass:80
c16.Trash.Aluminum:81
c16.Trash.Cardboard:12
c16.Trash.Glass:12
c16.Trash.Glass:54
c16.Trash.Aluminum:36
c16.Trash.Aluminum:93
c16.Trash.Glass:93
c16.Trash.Paper:80
c16.Trash.Glass:36
c16.Trash.Glass:12
c16.Trash.Glass:60
c16.Trash.Paper:66
c16.Trash.Aluminum:36
c16.Trash.Cardboard:22

Note that the class path must be included when giving the class names, otherwise the class
will not be found.

To parse this, the line is read and the String method indexOf( ) produces the index of the ‘:’.
This is first used with the String method substring( ) to extract the name of the trash type,
and next to get the weight that is turned into a double with the static Double.valueOf( )
method. The trim( ) method removes white space at both ends of a string.

The Trash parser is placed in a separate file since it will be reused throughout this chapter:

//: ParseTrash.java
// Open a file and parse its contents into
// Trash objects, placing each into a Vector
package c16.trash;
import java.util.*;
import java.io.*;

public class ParseTrash {
  public static void
  fillBin(String filename, Fillable bin) {
    try {
      BufferedReader data =
        new BufferedReader(
          new FileReader(filename));
      String buf;
      while((buf = data.readLine())!= null) {
        String type = buf.substring(0,



734 Thinking in Java  www.BruceEckel.com

          buf.indexOf(':')).trim();
        double weight = Double.valueOf(
          buf.substring(buf.indexOf(':') + 1)
          .trim()).doubleValue();
        bin.addTrash(
          Trash.factory(
            new Trash.Info(type, weight)));
      }
      data.close();
    } catch(IOException e) {
      e.printStackTrace();
    } catch(Exception e) {
      e.printStackTrace();
    }
  }
  // Special case to handle Vector:
  public static void
  fillBin(String filename, Vector bin) {
    fillBin(filename, new FillableVector(bin));
  }
} ///:~

In RecycleA.java, a Vector was used to hold the Trash objects. However, other types of
collections can be used as well. To allow for this, the first version of fillBin( ) takes a handle
to a Fillable, which is simply an interface that supports a method called addTrash( ):

//: Fillable.java
// Any object that can be filled with Trash
package c16.trash;

public interface Fillable {
  void addTrash(Trash t);
} ///:~

Anything that supports this interface can be used with fillBin. Of course, Vector doesn’t
implement Fillable, so it won’t work. Since Vector is used in most of the examples, it makes
sense to add a second overloaded fillBin( ) method that takes a Vector. The Vector can be
used as a Fillable object using an adapter class:

//: FillableVector.java
// Adapter that makes a Vector Fillable
package c16.trash;
import java.util.*;

public class FillableVector implements Fillable {
  private Vector v;
  public FillableVector(Vector vv) { v = vv; }
  public void addTrash(Trash t) {
    v.addElement(t);
  }
} ///:~

You can see that the only job of this class is to connect Fillable’s addTrash( ) method to
Vector’s addElement( ). With this class in hand, the overloaded fillBin( ) method can be
used with a Vector in ParseTrash.java:



Chapter 16: Design Patterns 735

  public static void
  fillBin(String filename, Vector bin) {
    fillBin(filename, new FillableVector(bin));
  }

This approach works for any collection class that’s used frequently. Alternatively, the
collection class can provide its own adapter that implements Fillable. (You’ll see this later, in
DynaTrash.java.)

Recycling with prototyping
Now you can see the revised version of RecycleA.java using the prototyping technique:

//: RecycleAP.java
// Recycling with RTTI and Prototypes
package c16.recycleap;
import c16.trash.*;
import java.util.*;

public class RecycleAP {
  public static void main(String[] args) {
    Vector bin = new Vector();
    // Fill up the Trash bin:
    ParseTrash.fillBin("Trash.dat", bin);
    Vector
      glassBin = new Vector(),
      paperBin = new Vector(),
      alBin = new Vector();
    Enumeration sorter = bin.elements();
    // Sort the Trash:
    while(sorter.hasMoreElements()) {
      Object t = sorter.nextElement();
      // RTTI to show class membership:
      if(t instanceof Aluminum)
        alBin.addElement(t);
      if(t instanceof Paper)
        paperBin.addElement(t);
      if(t instanceof Glass)
        glassBin.addElement(t);
    }
    Trash.sumValue(alBin);
    Trash.sumValue(paperBin);
    Trash.sumValue(glassBin);
    Trash.sumValue(bin);
  }
} ///:~

All of the Trash objects, as well as the ParseTrash and support classes, are now part of the
package c16.trash so they are simply imported.

The process of opening the data file containing Trash descriptions and the parsing of that file
have been wrapped into the static method ParseTrash.fillBin( ), so now it’s no longer a part
of our design focus. You will see that throughout the rest of the chapter, no matter what
new classes are added, ParseTrash.fillBin( ) will continue to work without change, which
indicates a good design.



736 Thinking in Java  www.BruceEckel.com

In terms of object creation, this design does indeed severely localize the changes you need to
make to add a new type to the system. However, there’s a significant problem in the use of
RTTI that shows up clearly here. The program seems to run fine, and yet it never detects any
cardboard, even though there is cardboard in the list! This happens because of the use of
RTTI, which looks for only the types that you tell it to look for. The clue that RTTI is being
misused is that every type in the system is being tested, rather than a single type or subset of
types. As you will see later, there are ways to use polymorphism instead when you’re testing
for every type. But if you use RTTI a lot in this fashion, and you add a new type to your
system, you can easily forget to make the necessary changes in your program and produce a
difficult-to-find bug. So it’s worth trying to eliminate RTTI in this case, not just for aesthetic
reasons – it produces more maintainable code.

Abstracting usage
With creation out of the way, it’s time to tackle the remainder of the design: where the
classes are used. Since it’s the act of sorting into bins that’s particularly ugly and exposed,
why not take that process and hide it inside a class? This is the principle of “If you must do
something ugly, at least localize the ugliness inside a class.” It looks like this:

The TrashSorter object initialization must now be changed whenever a new type of Trash is
added to the model. You could imagine that the TrashSorter class might look something like
this:

class TrashSorter extends Vector {
  void sort(Trash t) { /* ... */ }
}

That is, TrashSorter is a Vector of handles to Vectors of Trash handles, and with
addElement( ) you can install another one, like so:

TrashSorter ts = new TrashSorter();
ts.addElement(new Vector());

Now, however, sort( ) becomes a problem. How does the statically-coded method deal with
the fact that a new type has been added? To solve this, the type information must be
removed from sort( ) so that all it needs to do is call a generic method that takes care of the
details of type. This, of course, is another way to describe a dynamically-bound method. So
sort( ) will simply move through the sequence and call a dynamically-bound method for
each Vector. Since the job of this method is to grab the pieces of trash it is interested in, it’s
called grab(Trash). The structure now looks like:

Trash Sorter

Vector of
Trash Bins

Aluminum Vector

Paper Vector

Glass Vector



Chapter 16: Design Patterns 737

TrashSorter needs to call each grab( ) method and get a different result depending on what
type of Trash the current Vector is holding. That is, each Vector must be aware of the type
it holds. The classic approach to this problem is to create a base “Trash bin” class and inherit
a new derived class for each different type you want to hold. If Java had a parameterized
type mechanism that would probably be the most straightforward approach. But rather
than hand-coding all the classes that such a mechanism should be building for us, further
observation can produce a better approach.

A basic OOP design principle is “Use data members for variation in state, use polymorphism
for variation in behavior.” Your first thought might be that the grab( ) method certainly
behaves differently for a Vector that holds Paper than for one that holds Glass. But what it
does is strictly dependent on the type, and nothing else. This could be interpreted as a
different state, and since Java has a class to represent type (Class) this can be used to
determine the type of Trash a particular Tbin will hold.

The constructor for this Tbin requires that you hand it the Class of your choice. This tells
the Vector what type it is supposed to hold. Then the grab( ) method uses Class BinType
and RTTI to see if the Trash object you’ve handed it matches the type it’s supposed to grab.

Here is the whole program. The commented numbers (e.g. (*1*) ) mark sections that will be
described following the code.

//: RecycleB.java
// Adding more objects to the recycling problem
package c16.recycleb;
import c16.trash.*;
import java.util.*;

// A vector that admits only the right type:
class Tbin extends Vector {
  Class binType;
  Tbin(Class binType) {
    this.binType = binType;
  }
  boolean grab(Trash t) {
    // Comparing class types:
    if(t.getClass().equals(binType)) {
      addElement(t);
      return true; // Object grabbed
    }

Trash Sorter

Vector of
Trash Bins boolean grab(Trash)

Paper Vector

boolean grab(Trash)

Aluminum Vector

boolean grab(Trash)

Glass Vector

Tbins:



738 Thinking in Java  www.BruceEckel.com

    return false; // Object not grabbed
  }
}

class TbinList extends Vector { //(*1*)
  boolean sort(Trash t) {
    Enumeration e = elements();
    while(e.hasMoreElements()) {
      Tbin bin = (Tbin)e.nextElement();
      if(bin.grab(t)) return true;
    }
    return false; // bin not found for t
  }
  void sortBin(Tbin bin) { // (*2*)
    Enumeration e = bin.elements();
    while(e.hasMoreElements())
      if(!sort((Trash)e.nextElement()))
        System.out.println("Bin not found");
  }
}

public class RecycleB {
  static Tbin bin = new Tbin(Trash.class);
  public static void main(String[] args) {
    // Fill up the Trash bin:
    ParseTrash.fillBin("Trash.dat", bin);

    TbinList trashBins = new TbinList();
    trashBins.addElement(
      new Tbin(Aluminum.class));
    trashBins.addElement(
      new Tbin(Paper.class));
    trashBins.addElement(
      new Tbin(Glass.class));
    // add one line here: (*3*)
    trashBins.addElement(
      new Tbin(Cardboard.class));

    trashBins.sortBin(bin); // (*4*)

    Enumeration e = trashBins.elements();
    while(e.hasMoreElements()) {
      Tbin b = (Tbin)e.nextElement();
      Trash.sumValue(b);
    }
    Trash.sumValue(bin);
  }
} ///:~

1. TbinList holds a set of Tbin handles, so that sort( ) can iterate through the Tbins when
it’s looking for a match for the Trash object you’ve handed it.

2. sortBin( ) allows you to pass an entire Tbin in, and it moves through the Tbin, picks
out each piece of Trash, and sorts it into the appropriate specific Tbin. Notice the



Chapter 16: Design Patterns 739

genericity of this code: it doesn’t change at all if new types are added. If the bulk of your
code doesn’t need changing when a new type is added (or some other change occurs)
then you have an easily-extensible system.

3. Now you can see how easy it is to add a new type. Few lines must be changed to support
the addition. If it’s really important, you can squeeze out even more by further
manipulating the design.

4. One method call causes the contents of bin to be sorted into the respective specifically-
typed bins.

Multiple dispatching
The above design is certainly satisfactory. Adding new types to the system consists of adding
or modifying distinct classes without causing code changes to be propagated throughout the
system. In addition, RTTI is not “misused” as it was in RecycleA.java. However, it’s possible
to go one step further and take a purist viewpoint about RTTI and say that it should be
eliminated altogether from the operation of sorting the trash into bins.

To accomplish this, you must first take the perspective that all type-dependent activities –
such as detecting the type of a piece of trash and putting it into the appropriate bin – should
be controlled through polymorphism and dynamic binding.

The previous examples first sorted by type, then acted on sequences of elements that were all
of a particular type. But whenever you find yourself picking out particular types, stop and
think. The whole idea of polymorphism (dynamically-bound method calls) is to handle type-
specific information for you. So why are you hunting for types?

The answer is something you probably don’t think about: Java performs only single
dispatching. That is, if you are performing an operation on more than one object whose type
is unknown, Java will invoke the dynamic binding mechanism on only one of those types.
This doesn’t solve the problem, so you end up detecting some types manually and effectively
producing your own dynamic binding behavior.

The solution is called multiple dispatching, which means setting up a configuration such that
a single method call produces more than one dynamic method call and thus determines more
than one type in the process. To get this effect, you need to work with more than one type
hierarchy: you’ll need a type hierarchy for each dispatch. The following example works with
two hierarchies: the existing Trash family and a hierarchy of the types of trash bins that the
trash will be placed into. This second hierarchy isn’t always obvious and in this case it
needed to be created in order to produce multiple dispatching (in this case there will be only
two dispatches, which is referred to as double dispatching).

Implementing the double dispatch
Remember that polymorphism can occur only via method calls, so if you want double
dispatching to occur, there must be two method calls: one used to determine the type within
each hierarchy. In the Trash hierarchy there will be a new method called addToBin( ), which
takes an argument of an array of TypedBin. It uses this array to step through and try to
add itself to the appropriate bin, and this is where you’ll see the double dispatch.



740 Thinking in Java  www.BruceEckel.com

The new hierarchy is TypedBin, and it contains its own method called add( ) that is also
used polymorphically. But here’s an additional twist: add( ) is overloaded to take arguments
of the different types of trash. So an essential part of the double dispatching scheme also
involves overloading.

Redesigning the program produces a dilemma: it’s now necessary for the base class Trash to
contain an addToBin( ) method. One approach is to copy all of the code and change the base
class. Another approach, which you can take when you don’t have control of the source
code, is to put the addToBin( ) method into an interface, leave Trash alone, and inherit new
specific types of Aluminum, Paper, Glass, and Cardboard. This is the approach that will be
taken here.

Most of the classes in this design must be public, so they are placed in their own files. Here’s
the interface:

//: TypedBinMember.java
// An interface for adding the double dispatching
// method to the trash hierarchy without
// modifying the original hierarchy.
package c16.doubledispatch;

interface TypedBinMember {
  // The new method:
  boolean addToBin(TypedBin[] tb);
} ///:~

In each particular subtype of Aluminum, Paper, Glass, and Cardboard, the addToBin( )
method in the interface TypedBinMember is implemented,, but it looks like the code is
exactly the same in each case:

Trash

addToBin(TypedBin[])

Aluminum

addToBin()

Paper

addToBin()

Glass

addToBin()

Cardboard

addToBin()

TypedBin

add(Aluminum)
add(Paper)
add(Glass)
add(Cardboard)

AluminumBin

add(Aluminum)

CardboardBin

add(Cardboard)

PaperBin

add(Pa per)

GlassBin

add(Glass)



Chapter 16: Design Patterns 741

//: DDAluminum.java
// Aluminum for double dispatching
package c16.doubledispatch;
import c16.trash.*;

public class DDAluminum extends Aluminum
    implements TypedBinMember {
  public DDAluminum(double wt) { super(wt); }
  public boolean addToBin(TypedBin[] tb) {
    for(int i = 0; i < tb.length; i++)
      if(tb[i].add(this))
        return true;
    return false;
  }
} ///:~

//: DDPaper.java
// Paper for double dispatching
package c16.doubledispatch;
import c16.trash.*;

public class DDPaper extends Paper
    implements TypedBinMember {
  public DDPaper(double wt) { super(wt); }
  public boolean addToBin(TypedBin[] tb) {
    for(int i = 0; i < tb.length; i++)
      if(tb[i].add(this))
        return true;
    return false;
  }
} ///:~

//: DDGlass.java
// Glass for double dispatching
package c16.doubledispatch;
import c16.trash.*;

public class DDGlass extends Glass
    implements TypedBinMember {
  public DDGlass(double wt) { super(wt); }
  public boolean addToBin(TypedBin[] tb) {
    for(int i = 0; i < tb.length; i++)
      if(tb[i].add(this))
        return true;
    return false;
  }
} ///:~

//: DDCardboard.java
// Cardboard for double dispatching
package c16.doubledispatch;
import c16.trash.*;

public class DDCardboard extends Cardboard



742 Thinking in Java  www.BruceEckel.com

    implements TypedBinMember {
  public DDCardboard(double wt) { super(wt); }
  public boolean addToBin(TypedBin[] tb) {
    for(int i = 0; i < tb.length; i++)
      if(tb[i].add(this))
        return true;
    return false;
  }
} ///:~

The code in each addToBin( ) calls add( ) for each TypedBin object in the array. But notice
the argument: this. The type of this is different for each subclass of Trash, so the code is
different. (Although this code will benefit if a parameterized type mechanism is ever added to
Java.) So this is the first part of the double dispatch, because once you’re inside this method
you know you’re Aluminum, or Paper, etc. During the call to add( ), this information is
passed via the type of this. The compiler resolves the call to the proper overloaded version of
add( ). But since tb[i] produces a handle to the base type TypedBin, this call will end up
calling a different method depending on the type of TypedBin that’s currently selected. That
is the second dispatch.

Here’s the base class for TypedBin:

//: TypedBin.java
// Vector that knows how to grab the right type
package c16.doubledispatch;
import c16.trash.*;
import java.util.*;

public abstract class TypedBin {
  Vector v = new Vector();
  protected boolean addIt(Trash t) {
    v.addElement(t);
    return true;
  }
  public Enumeration elements() {
    return v.elements();
  }
  public boolean add(DDAluminum a) {
    return false;
  }
  public boolean add(DDPaper a) {
    return false;
  }
  public boolean add(DDGlass a) {
    return false;
  }
  public boolean add(DDCardboard a) {
    return false;
  }
} ///:~

You can see that the overloaded add( ) methods all return false. If the method is not
overloaded in a derived class, it will continue to return false, and the caller (addToBin( ), in



Chapter 16: Design Patterns 743

this case) will assume that the current Trash object has not been added successfully to a
collection, and continue searching for the right collection.

In each of the subclasses of TypedBin, only one overloaded method is overridden, according
to the type of bin that’s being created. For example, CardboardBin overrides
add(DDCardboard). The overridden method adds the trash object to its collection and
returns true, while all the rest of the add( ) methods in CardboardBin continue to return
false, since they haven’t been overridden. This is another case in which a parameterized type
mechanism in Java would allow automatic generation of code. (With C++ templates, you
wouldn’t have to explicitly write the subclasses or place the addToBin( ) method in Trash.)

Since for this example the trash types have been customized and placed in a different
directory, you’ll need a different trash data file to make it work. Here’s a possible
DDTrash.dat:

c16.DoubleDispatch.DDGlass:54
c16.DoubleDispatch.DDPaper:22
c16.DoubleDispatch.DDPaper:11
c16.DoubleDispatch.DDGlass:17
c16.DoubleDispatch.DDAluminum:89
c16.DoubleDispatch.DDPaper:88
c16.DoubleDispatch.DDAluminum:76
c16.DoubleDispatch.DDCardboard:96
c16.DoubleDispatch.DDAluminum:25
c16.DoubleDispatch.DDAluminum:34
c16.DoubleDispatch.DDGlass:11
c16.DoubleDispatch.DDGlass:68
c16.DoubleDispatch.DDGlass:43
c16.DoubleDispatch.DDAluminum:27
c16.DoubleDispatch.DDCardboard:44
c16.DoubleDispatch.DDAluminum:18
c16.DoubleDispatch.DDPaper:91
c16.DoubleDispatch.DDGlass:63
c16.DoubleDispatch.DDGlass:50
c16.DoubleDispatch.DDGlass:80
c16.DoubleDispatch.DDAluminum:81
c16.DoubleDispatch.DDCardboard:12
c16.DoubleDispatch.DDGlass:12
c16.DoubleDispatch.DDGlass:54
c16.DoubleDispatch.DDAluminum:36
c16.DoubleDispatch.DDAluminum:93
c16.DoubleDispatch.DDGlass:93
c16.DoubleDispatch.DDPaper:80
c16.DoubleDispatch.DDGlass:36
c16.DoubleDispatch.DDGlass:12
c16.DoubleDispatch.DDGlass:60
c16.DoubleDispatch.DDPaper:66
c16.DoubleDispatch.DDAluminum:36
c16.DoubleDispatch.DDCardboard:22

Here’s the rest of the program:

//: DoubleDispatch.java
// Using multiple dispatching to handle more
// than one unknown type during a method call.



744 Thinking in Java  www.BruceEckel.com

package c16.doubledispatch;
import c16.trash.*;
import java.util.*;

class AluminumBin extends TypedBin {
  public boolean add(DDAluminum a) {
    return addIt(a);
  }
}

class PaperBin extends TypedBin {
  public boolean add(DDPaper a) {
    return addIt(a);
  }
}

class GlassBin extends TypedBin {
  public boolean add(DDGlass a) {
    return addIt(a);
  }
}

class CardboardBin extends TypedBin {
  public boolean add(DDCardboard a) {
    return addIt(a);
  }
}

class TrashBinSet {
  private TypedBin[] binSet = {
    new AluminumBin(),
    new PaperBin(),
    new GlassBin(),
    new CardboardBin()
  };
  public void sortIntoBins(Vector bin) {
    Enumeration e = bin.elements();
    while(e.hasMoreElements()) {
      TypedBinMember t =
        (TypedBinMember)e.nextElement();
      if(!t.addToBin(binSet))
        System.err.println("Couldn't add " + t);
    }
  }
  public TypedBin[] binSet() { return binSet; }
}

public class DoubleDispatch {
  public static void main(String[] args) {
    Vector bin = new Vector();
    TrashBinSet bins = new TrashBinSet();
    // ParseTrash still works, without changes:
    ParseTrash.fillBin("DDTrash.dat", bin);
    // Sort from the master bin into the



Chapter 16: Design Patterns 745

    // individually-typed bins:
    bins.sortIntoBins(bin);
    TypedBin[] tb = bins.binSet();
    // Perform sumValue for each bin...
    for(int i = 0; i < tb.length; i++)
      Trash.sumValue(tb[i].v);
    // ... and for the master bin
    Trash.sumValue(bin);
  }
} ///:~

TrashBinSet encapsulates all of the different types of TypedBins, along with the
sortIntoBins( ) method, which is where all the double dispatching takes place. You can see
that once the structure is set up, sorting into the various TypedBins is remarkably easy. In
addition, the efficiency of two dynamic method calls is probably better than any other way
you could sort.

Notice the ease of use of this system in main( ), as well as the complete independence of any
specific type information within main( ). All other methods that talk only to the Trash base-
class interface will be equally invulnerable to changes in Trash types.

The changes necessary to add a new type are relatively isolated: you inherit the new type of
Trash with its addToBin( ) method, then you inherit a new TypedBin (this is really just a
copy and simple edit), and finally you add a new type into the aggregate initialization for
TrashBinSet.

The “visitor” pattern
Now consider applying a design pattern with an entirely different goal to the trash-sorting
problem.

For this pattern, we are no longer concerned with optimizing the addition of new types of
Trash to the system. Indeed, this pattern makes adding a new type of Trash more
complicated. The assumption is that you have a primary class hierarchy that is fixed;
perhaps it’s from another vendor and you can’t make changes to that hierarchy. However,
you’d like to add new polymorphic methods to that hierarchy, which means that normally
you’d have to add something to the base class interface. So the dilemma is that you need to
add methods to the base class, but you can’t touch the base class. How do you get around
this?

The design pattern that solves this kind of problem is called a “visitor” (the final one in the
Design Patterns book), and it builds on the double dispatching scheme shown in the last
section.

The visitor pattern allows you to extend the interface of the primary type by creating a
separate class hierarchy of type Visitor to virtualize the operations performed upon the
primary type. The objects of the primary type simply “accept” the visitor, then call the
visitor’s dynamically-bound method. It looks like this:



746 Thinking in Java  www.BruceEckel.com

Now, if v is a Visitable handle to an Aluminum object, the code:

PriceVisitor pv = new PriceVisitor();
v.accept(pv);

causes two polymorphic method calls: the first one to select Aluminum’s version of
accept( ), and the second one within accept( ) when the specific version of visit( ) is called
dynamically using the base-class Visitor handle v.

This configuration means that new functionality can be added to the system in the form of
new subclasses of Visitor. The Trash hierarchy doesn’t need to be touched. This is the prime
benefit of the visitor pattern: you can add new polymorphic functionality to a class
hierarchy without touching that hierarchy (once the accept( ) methods have been installed).
Note that the benefit is helpful here but not exactly what we started out to accomplish, so at
first blush you might decide that this isn’t the desired solution.

But look at one thing that’s been accomplished: the visitor solution avoids sorting from the
master Trash sequence into individual typed sequences. Thus, you can leave everything in
the single master sequence and simply pass through that sequence using the appropriate
visitor to accomplish the goal. Although this behavior seems to be a side effect of visitor, it
does give us what we want (avoiding RTTI).

The double dispatching in the visitor pattern takes care of determining both the type of
Trash and the type of Visitor. In the following example, there are two implementations of
Visitor: PriceVisitor to both determine and sum the price, and WeightVisitor to keep track
of the weights.

You can see all of this implemented in the new, improved version of the recycling program.
As with DoubleDispatch.java, the Trash class is left alone and a new interface is created to
add the accept( ) method:

//: Visitable.java
// An interface to add visitor functionality to

Trash

acce pt ( Visitor )

Aluminum

accept (Visitor v) {

  v. visit (this);

}

Paper Glass

Visitor

Visit(Aluminum)
Visit(Paper)
Visit(Glass)

PriceVisitor

visit ( Aluminum ) {

  // Perform  Aluminum-

  // specific  work

}
visit (Paper) {

  // Perform Paper-
  // specific  work

}

WeightVisitor etc.



Chapter 16: Design Patterns 747

// the Trash hierarchy without modifying the
// base class.
package c16.trashvisitor;
import c16.trash.*;

interface Visitable {
  // The new method:
  void accept(Visitor v);
} ///:~

The subtypes of Aluminum, Paper, Glass, and Cardboard implement the accept( ) method:

//: VAluminum.java
// Aluminum for the visitor pattern
package c16.trashvisitor;
import c16.trash.*;

public class VAluminum extends Aluminum
    implements Visitable {
  public VAluminum(double wt) { super(wt); }
  public void accept(Visitor v) {
    v.visit(this);
  }
} ///:~

//: VPaper.java
// Paper for the visitor pattern
package c16.trashvisitor;
import c16.trash.*;

public class VPaper extends Paper
    implements Visitable {
  public VPaper(double wt) { super(wt); }
  public void accept(Visitor v) {
    v.visit(this);
  }
} ///:~

//: VGlass.java
// Glass for the visitor pattern
package c16.trashvisitor;
import c16.trash.*;

public class VGlass extends Glass
    implements Visitable {
  public VGlass(double wt) { super(wt); }
  public void accept(Visitor v) {
    v.visit(this);
  }
} ///:~

//: VCardboard.java
// Cardboard for the visitor pattern
package c16.trashvisitor;
import c16.trash.*;



748 Thinking in Java  www.BruceEckel.com

public class VCardboard extends Cardboard
    implements Visitable {
  public VCardboard(double wt) { super(wt); }
  public void accept(Visitor v) {
    v.visit(this);
  }
} ///:~

Since there’s nothing concrete in the Visitor base class, it can be created as an interface:

//: Visitor.java
// The base interface for visitors
package c16.trashvisitor;
import c16.trash.*;

interface Visitor {
  void visit(VAluminum a);
  void visit(VPaper p);
  void visit(VGlass g);
  void visit(VCardboard c);
} ///:~

Once again custom Trash types have been created in a different subdirectory. The new Trash
data file is VTrash.dat and looks like this:

c16.TrashVisitor.VGlass:54
c16.TrashVisitor.VPaper:22
c16.TrashVisitor.VPaper:11
c16.TrashVisitor.VGlass:17
c16.TrashVisitor.VAluminum:89
c16.TrashVisitor.VPaper:88
c16.TrashVisitor.VAluminum:76
c16.TrashVisitor.VCardboard:96
c16.TrashVisitor.VAluminum:25
c16.TrashVisitor.VAluminum:34
c16.TrashVisitor.VGlass:11
c16.TrashVisitor.VGlass:68
c16.TrashVisitor.VGlass:43
c16.TrashVisitor.VAluminum:27
c16.TrashVisitor.VCardboard:44
c16.TrashVisitor.VAluminum:18
c16.TrashVisitor.VPaper:91
c16.TrashVisitor.VGlass:63
c16.TrashVisitor.VGlass:50
c16.TrashVisitor.VGlass:80
c16.TrashVisitor.VAluminum:81
c16.TrashVisitor.VCardboard:12
c16.TrashVisitor.VGlass:12
c16.TrashVisitor.VGlass:54
c16.TrashVisitor.VAluminum:36
c16.TrashVisitor.VAluminum:93
c16.TrashVisitor.VGlass:93
c16.TrashVisitor.VPaper:80



Chapter 16: Design Patterns 749

c16.TrashVisitor.VGlass:36
c16.TrashVisitor.VGlass:12
c16.TrashVisitor.VGlass:60
c16.TrashVisitor.VPaper:66
c16.TrashVisitor.VAluminum:36
c16.TrashVisitor.VCardboard:22

The rest of the program creates specific Visitor types and sends them through a single list of
Trash objects:

//: TrashVisitor.java
// The "visitor" pattern
package c16.trashvisitor;
import c16.trash.*;
import java.util.*;

// Specific group of algorithms packaged
// in each implementation of Visitor:
class PriceVisitor implements Visitor {
  private double alSum; // Aluminum
  private double pSum; // Paper
  private double gSum; // Glass
  private double cSum; // Cardboard
  public void visit(VAluminum al) {
    double v = al.weight() * al.value();
    System.out.println(
      "value of Aluminum= " + v);
    alSum += v;
  }
  public void visit(VPaper p) {
    double v = p.weight() * p.value();
    System.out.println(
      "value of Paper= " + v);
    pSum += v;
  }
  public void visit(VGlass g) {
    double v = g.weight() * g.value();
    System.out.println(
      "value of Glass= " + v);
    gSum += v;
  }
  public void visit(VCardboard c) {
    double v = c.weight() * c.value();
    System.out.println(
      "value of Cardboard = " + v);
    cSum += v;
  }
  void total() {
    System.out.println(
      "Total Aluminum: $" + alSum + "\n" +
      "Total Paper: $" + pSum + "\n" +
      "Total Glass: $" + gSum + "\n" +
      "Total Cardboard: $" + cSum);
  }



750 Thinking in Java  www.BruceEckel.com

}

class WeightVisitor implements Visitor {
  private double alSum; // Aluminum
  private double pSum; // Paper
  private double gSum; // Glass
  private double cSum; // Cardboard
  public void visit(VAluminum al) {
    alSum += al.weight();
    System.out.println("weight of Aluminum = "
        + al.weight());
  }
  public void visit(VPaper p) {
    pSum += p.weight();
    System.out.println("weight of Paper = "
        + p.weight());
  }
  public void visit(VGlass g) {
    gSum += g.weight();
    System.out.println("weight of Glass = "
        + g.weight());
  }
  public void visit(VCardboard c) {
    cSum += c.weight();
    System.out.println("weight of Cardboard = "
        + c.weight());
  }
  void total() {
    System.out.println("Total weight Aluminum:"
        + alSum);
    System.out.println("Total weight Paper:"
        + pSum);
    System.out.println("Total weight Glass:"
        + gSum);
    System.out.println("Total weight Cardboard:"
        + cSum);
  }
}

public class TrashVisitor {
  public static void main(String[] args) {
    Vector bin = new Vector();
    // ParseTrash still works, without changes:
    ParseTrash.fillBin("VTrash.dat", bin);
    // You could even iterate through
    // a list of visitors!
    PriceVisitor pv = new PriceVisitor();
    WeightVisitor wv = new WeightVisitor();
    Enumeration it = bin.elements();
    while(it.hasMoreElements()) {
      Visitable v = (Visitable)it.nextElement();
      v.accept(pv);
      v.accept(wv);
    }



Chapter 16: Design Patterns 751

    pv.total();
    wv.total();
  }
} ///:~

Note that the shape of main( ) has changed again. Now there’s only a single Trash bin. The
two Visitor objects are accepted into every element in the sequence, and they perform their
operations. The visitors keep their own internal data to tally the total weights and prices.

Finally, there’s no run-time type identification other than the inevitable cast to Trash when
pulling things out of the sequence. This, too, could be eliminated with the implementation of
parameterized types in Java.

One way you can distinguish this solution from the double dispatching solution described
previously is to note that, in the double dispatching solution, only one of the overloaded
methods, add( ), was overridden when each subclass was created, while here each one of the
overloaded visit( ) methods is overridden in every subclass of Visitor.

More coupling?
There’s a lot more code here, and there’s definite coupling between the Trash hierarchy and
the Visitor hierarchy. However, there’s also high cohesion within the respective sets of
classes: they each do only one thing (Trash describes Trash, while Visitor describes actions
performed on Trash), which is an indicator of a good design. Of course, in this case it works
well only if you’re adding new Visitors, but it gets in the way when you add new types of
Trash.

Low coupling between classes and high cohesion within a class is definitely an important
design goal. Applied mindlessly, though, it can prevent you from achieving a more elegant
design. It seems that some classes inevitably have a certain intimacy with each other. These
often occur in pairs that could perhaps be called couplets, for example, collections and
iterators (Enumerations). The Trash-Visitor pair above appears to be another such couplet.

RTTI considered harmful?
Various designs in this chapter attempt to remove RTTI, which might give you the
impression that it’s “considered harmful” (the condemnation used for poor, ill-fated goto,
which was thus never put into Java). This isn’t true; it is the misuse of RTTI that is the
problem. The reason our designs removed RTTI is because the misapplication of that feature
prevented extensibility, while the stated goal was to be able to add a new type to the system
with as little impact on surrounding code as possible. Since RTTI is often misused by having
it look for every single type in your system, it causes code to be non-extensible: when you
add a new type, you have to go hunting for all the code in which RTTI is used, and if you
miss any you won’t get help from the compiler.

However, RTTI doesn’t automatically create non-extensible code. Let’s revisit the trash
recycler once more. This time, a new tool will be introduced, which I call a TypeMap. It
contains a Hashtable that holds Vectors, but the interface is simple: you can add( ) a new
object, and you can get( ) a Vector containing all the objects of a particular type. The keys
for the contained Hashtable are the types in the associated Vector. The beauty of this design
(suggested by Larry O’Brien) is that the TypeMap dynamically adds a new pair whenever it
encounters a new type, so whenever you add a new type to the system (even if you add the
new type at run-time), it adapts.



752 Thinking in Java  www.BruceEckel.com

Our example will again build on the structure of the Trash types in package c16.Trash (and
the Trash.dat file used there can be used here without change):

//: DynaTrash.java
// Using a Hashtable of Vectors and RTTI
// to automatically sort trash into
// vectors. This solution, despite the
// use of RTTI, is extensible.
package c16.dynatrash;
import c16.trash.*;
import java.util.*;

// Generic TypeMap works in any situation:
class TypeMap {
  private Hashtable t = new Hashtable();
  public void add(Object o) {
    Class type = o.getClass();
    if(t.containsKey(type))
      ((Vector)t.get(type)).addElement(o);
    else {
      Vector v = new Vector();
      v.addElement(o);
      t.put(type,v);
    }
  }
  public Vector get(Class type) {
    return (Vector)t.get(type);
  }
  public Enumeration keys() { return t.keys(); }
  // Returns handle to adapter class to allow
  // callbacks from ParseTrash.fillBin():
  public Fillable filler() {
    // Anonymous inner class:
    return new Fillable() {
      public void addTrash(Trash t) { add(t); }
    };
  }
}

public class DynaTrash {
  public static void main(String[] args) {
    TypeMap bin = new TypeMap();
    ParseTrash.fillBin("Trash.dat",bin.filler());
    Enumeration keys = bin.keys();
    while(keys.hasMoreElements())
      Trash.sumValue(
        bin.get((Class)keys.nextElement()));
  }
} ///:~

Although powerful, the definition for TypeMap is simple. It contains a Hashtable, and the
add( ) method does most of the work. When you add( ) a new object, the handle for the
Class object for that type is extracted. This is used as a key to determine whether a Vector
holding objects of that type is already present in the Hashtable. If so, that Vector is



Chapter 16: Design Patterns 753

extracted and the object is added to the Vector. If not, the Class object and a new Vector are
added as a key-value pair.

You can get an Enumeration of all the Class objects from keys( ), and use each Class object
to fetch the corresponding Vector with get( ). And that’s all there is to it.

The filler( ) method is interesting because it takes advantage of the design of
ParseTrash.fillBin( ), which doesn’t just try to fill a Vector but instead anything that
implements the Fillable interface with its addTrash( ) method. All filler( ) needs to do is to
return a handle to an interface that implements Fillable, and then this handle can be used
as an argument to fillBin( ) like this:

ParseTrash.fillBin("Trash.dat", bin.filler());

To produce this handle, an anonymous inner class (described in Chapter 7) is used. You never
need a named class to implement Fillable, you just need a handle to an object of that class,
thus this is an appropriate use of anonymous inner classes.

An interesting thing about this design is that even though it wasn’t created to handle the
sorting, fillBin( ) is performing a sort every time it inserts a Trash object into bin.

Much of class DynaTrash should be familiar from the previous examples. This time, instead
of placing the new Trash objects into a bin of type Vector, the bin is of type TypeMap, so
when the trash is thrown into bin it’s immediately sorted by TypeMap’s internal sorting
mechanism. Stepping through the TypeMap and operating on each individual Vector
becomes a simple matter:

    Enumeration keys = bin.keys();
    while(keys.hasMoreElements())
      Trash.sumValue(
        bin.get((Class)keys.nextElement()));

As you can see, adding a new type to the system won’t affect this code at all, nor the code in
TypeMap. This is certainly the smallest solution to the problem, and arguably the most
elegant as well. It does rely heavily on RTTI, but notice that each key-value pair in the
Hashtable is looking for only one type. In addition, there’s no way you can “forget” to add
the proper code to this system when you add a new type, since there isn’t any code you need
to add.

Summary
Coming up with a design such as TrashVisitor.java that contains a larger amount of code
than the earlier designs can seem at first to be counterproductive. It pays to notice what
you’re trying to accomplish with various designs. Design patterns in general strive to
separate the things that change from the things that stay the same. The “things that change”
can refer to many different kinds of changes. Perhaps the change occurs because the
program is placed into a new environment or because something in the current environment
changes (this could be: “The user wants to add a new shape to the diagram currently on the
screen”). Or, as in this case, the change could be the evolution of the code body. While
previous versions of the trash-sorting example emphasized the addition of new types of
Trash to the system, TrashVisitor.java allows you to easily add new functionality without
disturbing the Trash hierarchy. There’s more code in TrashVisitor.java, but adding new
functionality to Visitor is cheap. If this is something that happens a lot, then it’s worth the
extra effort and code to make it happen more easily.



754 Thinking in Java  www.BruceEckel.com

The discovery of the vector of change is no trivial matter; it’s not something that an analyst
can usually detect before the program sees its initial design. The necessary information will
probably not appear until later phases in the project: sometimes only at the design or
implementation phases do you discover a deeper or more subtle need in your system. In the
case of adding new types (which was the focus of most of the “recycle” examples) you might
realize that you need a particular inheritance hierarchy only when you are in the
maintenance phase and you begin extending the system!

One of the most important things that you’ll learn by studying design patterns seems to be
an about-face from what has been promoted so far in this book. That is: “OOP is all about
polymorphism.” This statement can produce the “two-year-old with a hammer” syndrome
(everything looks like a nail). Put another way, it’s hard enough to “get” polymorphism, and
once you do, you try to cast all your designs into that one particular mold.

What design patterns say is that OOP isn’t just about polymorphism. It’s about “separating
the things that change from the things that stay the same.” Polymorphism is an especially
important way to do this, and it turns out to be helpful if the programming language
directly supports polymorphism (so you don’t have to wire it in yourself, which would tend
to make it prohibitively expensive). But design patterns in general show other ways to
accomplish the basic goal, and once your eyes have been opened to this you will begin to
search for more creative designs.

Since the Design Patterns book came out and made such an impact, people have been
searching for other patterns. You can expect to see more of these appear as time goes on.
Here are some sites recommended by Jim Coplien, of C++ fame (http://www.bell-
labs.com/~cope), who is one of the main proponents of the patterns movement:

http://st-www.cs.uiuc.edu/users/patterns
http://c2.com/cgi/wiki
http://c2.com/ppr
http://www.bell-labs.com/people/cope/Patterns/Process/index.html
http://www.bell-labs.com/cgi-user/OrgPatterns/OrgPatterns
http://st-www.cs.uiuc.edu/cgi-bin/wikic/wikic
http://www.cs.wustl.edu/~schmidt/patterns.html
http://www.espinc.com/patterns/overview.html

Also note there has been a yearly conference on design patterns, called PLOP, that produces a
published proceedings, the third of which came out in late 1997 (all published by Addison-
Wesley).

Exercises
 1.  Using SingletonPattern.java as a starting point, create a class that manages a fixed

number of its own objects.

 2.  Add a class Plastic to TrashVisitor.java.

 3.  Add a class Plastic to DynaTrash.java.



755

Q

17: Projects
This chapter includes a set of projects that build on the material
presented in this book or otherwise didn’t fit in earlier chapters.
Most of these projects are significantly more complex than the examples in the rest of the
book, and they often demonstrate new techniques and uses of class libraries.

Text processing
If you come from a C or C++ background, you might be skeptical at first of Java’s power
when it comes to handling text. Indeed, one drawback is that execution speed is slower and
that could hinder some of your efforts. However, the tools (in particular the String class) are
quite powerful, as the examples in this section show (and performance improvements have
been promised for Java).

As you’ll see, these examples were created to solve problems that arose in the creation of this
book. However, they are not restricted to that and the solutions they offer can easily be
adapted to other situations. In addition, they show the power of Java in an area that has not
previously been emphasized in this book.

Extracting code listings
You’ve no doubt noticed that each complete code listing (not code fragment) in this book
begins and ends with special comment tag marks ‘//:’ and ‘///:~’. This meta-information is
included so that the code can be automatically extracted from the book into compilable
source-code files. In my previous book, I had a system that allowed me to automatically
incorporate tested code files into the book. In this book, however, I discovered that it was
often easier to paste the code into the book once it was initially tested and, since it’s hard to
get right the first time, to perform edits to the code within the book. But how to extract it



756 Thinking in Java  www.BruceEckel.com

and test the code? This program is the answer, and it could come in handy when you set out
to solve a text processing problem. It also demonstrates many of the String class features.

I first save the entire book in ASCII text format into a separate file. The CodePackager
program has two modes (which you can see described in usageString): if you use the -p
flag, it expects to see an input file containing the ASCII text from the book. It will go
through this file and use the comment tag marks to extract the code, and it uses the file
name on the first line to determine the name of the file. In addition, it looks for the package
statement in case it needs to put the file into a special directory (chosen via the path
indicated by the package statement).

But that’s not all. It also watches for the change in chapters by keeping track of the package
names. Since all packages for each chapter begin with c02, c03, c04, etc. to indicate the
chapter where they belong (except for those beginning with com, which are ignored for the
purpose of keeping track of chapters), as long as the first listing in each chapter contains a
package statement with the chapter number, the CodePackager program can keep track of
when the chapter changed and put all the subsequent files in the new chapter subdirectory.

As each file is extracted, it is placed into a SourceCodeFile object that is then placed into a
collection. (This process will be more thoroughly described later.) These SourceCodeFile
objects could simply be stored in files, but that brings us to the second use for this project. If
you invoke CodePackager without the -p flag it expects a “packed” file as input, which it
will then extract into separate files. So the -p flag means that the extracted files will be
found “packed” into this single file.

Why bother with the packed file? Because different computer platforms have different ways
of storing text information in files. A big issue is the end-of-line character or characters, but
other issues can also exist. However, Java has a special type of IO stream – the
DataOutputStream – which promises that, regardless of what machine the data is coming
from, the storage of that data will be in a form that can be correctly retrieved by any other
machine by using a DataInputStream. That is, Java handles all of the platform-specific
details, which is a large part of the promise of Java. So the -p flag stores everything into a
single file in a universal format. You download this file and the Java program from the Web,
and when you run CodePackager on this file without the -p flag the files will all be
extracted to appropriate places on your system. (You can specify an alternate subdirectory;
otherwise the subdirectories will just be created in the current directory.) To ensure that no
system-specific formats remain, File objects are used everywhere a path or a file is described.
In addition, there’s a sanity check: an empty file is placed in each subdirectory; the name of
that file indicates how many files you should find in that subdirectory.

Here is the code, which will be described in detail at the end of the listing:

//: CodePackager.java
// "Packs" and "unpacks" the code in "Thinking
// in Java" for cross-platform distribution.
/* Commented so CodePackager sees it and starts
   a new chapter directory, but so you don't
   have to worry about the directory where this
   program lives:
package c17;
*/
import java.util.*;
import java.io.*;

class Pr {



Chapter 17: Projects 757

  static void error(String e) {
    System.err.println("ERROR: " + e);
    System.exit(1);
  }
}

class IO {
  static BufferedReader disOpen(File f) {
    BufferedReader in = null;
    try {
      in = new BufferedReader(
        new FileReader(f));
    } catch(IOException e) {
      Pr.error("could not open " + f);
    }
    return in;
  }
  static BufferedReader disOpen(String fname) {
    return disOpen(new File(fname));
  }
  static DataOutputStream dosOpen(File f) {
    DataOutputStream in = null;
    try {
      in = new DataOutputStream(
        new BufferedOutputStream(
          new FileOutputStream(f)));
    } catch(IOException e) {
      Pr.error("could not open " + f);
    }
    return in;
  }
  static DataOutputStream dosOpen(String fname) {
    return dosOpen(new File(fname));
  }
  static PrintWriter psOpen(File f) {
    PrintWriter in = null;
    try {
      in = new PrintWriter(
        new BufferedWriter(
          new FileWriter(f)));
    } catch(IOException e) {
      Pr.error("could not open " + f);
    }
    return in;
  }
  static PrintWriter psOpen(String fname) {
    return psOpen(new File(fname));
  }
  static void close(Writer os) {
    try {
      os.close();
    } catch(IOException e) {
      Pr.error("closing " + os);
    }



758 Thinking in Java  www.BruceEckel.com

  }
  static void close(DataOutputStream os) {
    try {
      os.close();
    } catch(IOException e) {
      Pr.error("closing " + os);
    }
  }
  static void close(Reader os) {
    try {
      os.close();
    } catch(IOException e) {
      Pr.error("closing " + os);
    }
  }
}

class SourceCodeFile {
  public static final String
    startMarker = "//:", // Start of source file
    endMarker = "} ///:~", // End of source
    endMarker2 = "}; ///:~", // C++ file end
    beginContinue = "} ///:Continued",
    endContinue = "///:Continuing",
    packMarker = "###", // Packed file header tag
    eol = // Line separator on current system
      System.getProperty("line.separator"),
    filesep = // System's file path separator
      System.getProperty("file.separator");
  public static String copyright = "";
  static {
    try {
      BufferedReader cr =
        new BufferedReader(
          new FileReader("Copyright.txt"));
      String crin;
      while((crin = cr.readLine()) != null)
        copyright += crin + "\n";
      cr.close();
    } catch(Exception e) {
      copyright = "";
    }
  }
  private String filename, dirname,
    contents = new String();
  private static String chapter = "c02";
  // The file name separator from the old system:
  public static String oldsep;
  public String toString() {
    return dirname + filesep + filename;
  }
  // Constructor for parsing from document file:
  public SourceCodeFile(String firstLine,
      BufferedReader in) {



Chapter 17: Projects 759

    dirname = chapter;
    // Skip past marker:
    filename = firstLine.substring(
        startMarker.length()).trim();
    // Find space that terminates file name:
    if(filename.indexOf(' ') != -1)
      filename = filename.substring(
          0, filename.indexOf(' '));
    System.out.println("found: " + filename);
    contents = firstLine + eol;
    if(copyright.length() != 0)
      contents += copyright + eol;
    String s;
    boolean foundEndMarker = false;
    try {
      while((s = in.readLine()) != null) {
        if(s.startsWith(startMarker))
          Pr.error("No end of file marker for " +
            filename);
        // For this program, no spaces before
        // the "package" keyword are allowed
        // in the input source code:
        else if(s.startsWith("package")) {
          // Extract package name:
          String pdir = s.substring(
            s.indexOf(' ')).trim();
          pdir = pdir.substring(
            0, pdir.indexOf(';')).trim();
          // Capture the chapter from the package
          // ignoring the 'com' subdirectories:
          if(!pdir.startsWith("com")) {
            int firstDot = pdir.indexOf('.');
            if(firstDot != -1)
              chapter =
                pdir.substring(0,firstDot);
            else
              chapter = pdir;
          }
          // Convert package name to path name:
          pdir = pdir.replace(
            '.', filesep.charAt(0));
          System.out.println("package " + pdir);
          dirname = pdir;
        }
        contents += s + eol;
        // Move past continuations:
        if(s.startsWith(beginContinue))
          while((s = in.readLine()) != null)
            if(s.startsWith(endContinue)) {
              contents += s + eol;
              break;
            }
        // Watch for end of code listing:
        if(s.startsWith(endMarker) ||



760 Thinking in Java  www.BruceEckel.com

           s.startsWith(endMarker2)) {
          foundEndMarker = true;
          break;
        }
      }
      if(!foundEndMarker)
        Pr.error(
          "End marker not found before EOF");
      System.out.println("Chapter: " + chapter);
    } catch(IOException e) {
      Pr.error("Error reading line");
    }
  }
  // For recovering from a packed file:
  public SourceCodeFile(BufferedReader pFile) {
    try {
      String s = pFile.readLine();
      if(s == null) return;
      if(!s.startsWith(packMarker))
        Pr.error("Can't find " + packMarker
          + " in " + s);
      s = s.substring(
        packMarker.length()).trim();
      dirname = s.substring(0, s.indexOf('#'));
      filename = s.substring(s.indexOf('#') + 1);
      dirname = dirname.replace(
        oldsep.charAt(0), filesep.charAt(0));
      filename = filename.replace(
        oldsep.charAt(0), filesep.charAt(0));
      System.out.println("listing: " + dirname
        + filesep + filename);
      while((s = pFile.readLine()) != null) {
        // Watch for end of code listing:
        if(s.startsWith(endMarker) ||
           s.startsWith(endMarker2)) {
          contents += s;
          break;
        }
        contents += s + eol;
      }
    } catch(IOException e) {
      System.err.println("Error reading line");
    }
  }
  public boolean hasFile() {
    return filename != null;
  }
  public String directory() { return dirname; }
  public String filename() { return filename; }
  public String contents() { return contents; }
  // To write to a packed file:
  public void writePacked(DataOutputStream out) {
    try {
      out.writeBytes(



Chapter 17: Projects 761

        packMarker + dirname + "#"
        + filename + eol);
      out.writeBytes(contents);
    } catch(IOException e) {
      Pr.error("writing " + dirname +
        filesep + filename);
    }
  }
  // To generate the actual file:
  public void writeFile(String rootpath) {
    File path = new File(rootpath, dirname);
    path.mkdirs();
    PrintWriter p =
      IO.psOpen(new File(path, filename));
    p.print(contents);
    IO.close(p);
  }
}

class DirMap {
  private Hashtable t = new Hashtable();
  private String rootpath;
  DirMap() {
    rootpath = System.getProperty("user.dir");
  }
  DirMap(String alternateDir) {
    rootpath = alternateDir;
  }
  public void add(SourceCodeFile f){
    String path = f.directory();
    if(!t.containsKey(path))
      t.put(path, new Vector());
    ((Vector)t.get(path)).addElement(f);
  }
  public void writePackedFile(String fname) {
    DataOutputStream packed = IO.dosOpen(fname);
    try {
      packed.writeBytes("###Old Separator:" +
        SourceCodeFile.filesep + "###\n");
    } catch(IOException e) {
      Pr.error("Writing separator to " + fname);
    }
    Enumeration e = t.keys();
    while(e.hasMoreElements()) {
      String dir = (String)e.nextElement();
      System.out.println(
        "Writing directory " + dir);
      Vector v = (Vector)t.get(dir);
      for(int i = 0; i < v.size(); i++) {
        SourceCodeFile f =
          (SourceCodeFile)v.elementAt(i);
        f.writePacked(packed);
      }
    }



762 Thinking in Java  www.BruceEckel.com

    IO.close(packed);
  }
  // Write all the files in their directories:
  public void write() {
    Enumeration e = t.keys();
    while(e.hasMoreElements()) {
      String dir = (String)e.nextElement();
      Vector v = (Vector)t.get(dir);
      for(int i = 0; i < v.size(); i++) {
        SourceCodeFile f =
          (SourceCodeFile)v.elementAt(i);
        f.writeFile(rootpath);
      }
      // Add file indicating file quantity
      // written to this directory as a check:
      IO.close(IO.dosOpen(
        new File(new File(rootpath, dir),
          Integer.toString(v.size())+".files")));
    }
  }
}

public class CodePackager {
  private static final String usageString =
  "usage: java CodePackager packedFileName" +
  "\nExtracts source code files from packed \n" +
  "version of Tjava.doc sources into " +
  "directories off current directory\n" +
  "java CodePackager packedFileName newDir\n" +
  "Extracts into directories off newDir\n" +
  "java CodePackager -p source.txt packedFile" +
  "\nCreates packed version of source files" +
  "\nfrom text version of Tjava.doc";
  private static void usage() {
    System.err.println(usageString);
    System.exit(1);
  }
  public static void main(String[] args) {
    if(args.length == 0) usage();
    if(args[0].equals("-p")) {
      if(args.length != 3)
        usage();
      createPackedFile(args);
    }
    else {
      if(args.length > 2)
        usage();
      extractPackedFile(args);
    }
  }
  private static String currentLine;
  private static BufferedReader in;
  private static DirMap dm;
  private static void



Chapter 17: Projects 763

  createPackedFile(String[] args) {
    dm = new DirMap();
    in = IO.disOpen(args[1]);
    try {
      while((currentLine = in.readLine())
          != null) {
        if(currentLine.startsWith(
            SourceCodeFile.startMarker)) {
          dm.add(new SourceCodeFile(
                   currentLine, in));
        }
        else if(currentLine.startsWith(
            SourceCodeFile.endMarker))
          Pr.error("file has no start marker");
        // Else ignore the input line
      }
    } catch(IOException e) {
      Pr.error("Error reading " + args[1]);
    }
    IO.close(in);
    dm.writePackedFile(args[2]);
  }
  private static void
  extractPackedFile(String[] args) {
    if(args.length == 2) // Alternate directory
      dm = new DirMap(args[1]);
    else // Current directory
      dm = new DirMap();
    in = IO.disOpen(args[0]);
    String s = null;
    try {
       s = in.readLine();
    } catch(IOException e) {
      Pr.error("Cannot read from " + in);
    }
    // Capture the separator used in the system
    // that packed the file:
    if(s.indexOf("###Old Separator:") != -1 ) {
      String oldsep = s.substring(
        "###Old Separator:".length());
      oldsep = oldsep.substring(
        0, oldsep. indexOf('#'));
      SourceCodeFile.oldsep = oldsep;
    }
    SourceCodeFile sf = new SourceCodeFile(in);
    while(sf.hasFile()) {
      dm.add(sf);
      sf = new SourceCodeFile(in);
    }
    dm.write();
  }
} ///:~



764 Thinking in Java  www.BruceEckel.com

You’ll first notice the package statement that is commented out. Since this is the first
program in the chapter, the package statement is necessary to tell CodePackager that the
chapter has changed, but putting it in a package would be a problem. When you create a
package, you tie the resulting program to a particular directory structure, which is fine for
most of the examples in this book. Here, however, the CodePackager program must be
compiled and run from an arbitrary directory, so the package statement is commented out.
It will still look like an ordinary package statement to CodePackager, though, since the
program isn’t sophisticated enough to detect multi-line comments. (It has no need for such
sophistication, a fact that comes in handy here.)

The first two classes are support/utility classes designed to make the rest of the program
more consistent to write and easier to read. The first, Pr, is similar to the ANSI C library
perror, since it prints an error message (but also exits the program). The second class
encapsulates the creation of files, a process that was shown in Chapter 10 as one that
rapidly becomes verbose and annoying. In Chapter 10, the proposed solution created new
classes, but here static method calls are used. Within those methods the appropriate
exceptions are caught and dealt with. These methods make the rest of the code much cleaner
to read.

The first class that helps solve the problem is SourceCodeFile, which represents all the
information (including the contents, file name, and directory) for one source code file in the
book. It also contains a set of String constants representing the markers that start and end a
file, a marker used inside the packed file, the current system’s end-of-line separator and file
path separator (notice the use of System.getProperty( ) to get the local version), and a
copyright notice, which is extracted from the following file Copyright.txt.

//////////////////////////////////////////////////

// Copyright (c) Bruce Eckel, 1998

// Source code file from the book "Thinking in Java"

// All rights reserved EXCEPT as allowed by the

// following statements: You may freely use this file

// for your own work (personal or commercial),

// including modifications and distribution in

// executable form only. Permission is granted to use

// this file in classroom situations, including its

// use in presentation materials, as long as the book

// "Thinking in Java" is cited as the source.

// Except in classroom situations, you may not copy

// and distribute this code; instead, the sole

// distribution point is http://www.BruceEckel.com

// (and official mirror sites) where it is

// freely available. You may not remove this

// copyright and notice. You may not distribute

// modified versions of the source code in this

// package. You may not use this file in printed

// media without the express permission of the

// author. Bruce Eckel makes no representation about

// the suitability of this software for any purpose.

// It is provided "as is" without express or implied

// warranty of any kind, including any implied

// warranty of merchantability, fitness for a

// particular purpose or non-infringement. The entire

// risk as to the quality and performance of the

// software is with you. Bruce Eckel and the



Chapter 17: Projects 765

// publisher shall not be liable for any damages

// suffered by you or any third party as a result of

// using or distributing software. In no event will

// Bruce Eckel or the publisher be liable for any

// lost revenue, profit, or data, or for direct,

// indirect, special, consequential, incidental, or

// punitive damages, however caused and regardless of

// the theory of liability, arising out of the use of

// or inability to use software, even if Bruce Eckel

// and the publisher have been advised of the

// possibility of such damages. Should the software

// prove defective, you assume the cost of all

// necessary servicing, repair, or correction. If you

// think you've found an error, please email all

// modified files with clearly commented changes to:

// Bruce@EckelObjects.com. (please use the same

// address for non-code errors found in the book).

//////////////////////////////////////////////////

When extracting files from a packed file, the file separator of the system that packed the file
is also noted, so it can be replaced with the correct one for the local system.

The subdirectory name for the current chapter is kept in the field chapter, which is
initialized to c02. (You’ll notice that the listing in Chapter 2 doesn’t contain a package
statement.) The only time that the chapter field changes is when a package statement is
discovered in the current file.

Building a packed file
The first constructor is used to extract a file from the ASCII text version of this book. The
calling code (which appears further down in the listing) reads each line in until it finds one
that matches the beginning of a listing. At that point, it creates a new SourceCodeFile
object, passing it the first line (which has already been read by the calling code) and the
BufferedReader object from which to extract the rest of the source code listing.

At this point, you begin to see heavy use of the String methods. To extract the file name, the
overloaded version of substring( ) is called that takes the starting offset and goes to the end
of the String. This starting index is produced by finding the length( ) of the startMarker.
trim( ) removes white space from both ends of the String. The first line can also have words
after the name of the file; these are detected using indexOf( ), which returns -1 if it cannot
find the character you’re looking for and the value where the first instance of that character
is found if it does. Notice there is also an overloaded version of indexOf( ) that takes a String
instead of a character.

Once the file name is parsed and stored, the first line is placed into the contents String
(which is used to hold the entire text of the source code listing). At this point, the rest of the
lines are read and concatenated into the contents String. It’s not quite that simple, since
certain situations require special handling. One case is error checking: if you run into a
startMarker, it means that no end marker was placed at the end of the listing that’s
currently being collected. This is an error condition that aborts the program.

The second special case is the package keyword. Although Java is a free-form language, this
program requires that the package keyword be at the beginning of the line. When the
package keyword is seen, the package name is extracted by looking for the space at the
beginning and the semicolon at the end. (Note that this could also have been performed in a



766 Thinking in Java  www.BruceEckel.com

single operation by using the overloaded substring( ) that takes both the starting and ending
indexes.) Then the dots in the package name are replaced by the file separator, although an
assumption is made here that the file separator is only one character long. This is probably
true on all systems, but it’s a place to look if there are problems.

The default behavior is to concatenate each line to contents, along with the end-of-line
string, until the endMarker is discovered, which indicates that the constructor should
terminate. If the end of the file is encountered before the endMarker is seen, that’s an error.

Extracting from a packed file
The second constructor is used to recover the source code files from a packed file. Here, the
calling method doesn’t have to worry about skipping over the intermediate text. The file
contains all the source-code files, placed end-to-end. All you need to hand to this constructor
is the BufferedReader where the information is coming from, and the constructor takes it
from there. There is some meta-information, however, at the beginning of each listing, and
this is denoted by the packMarker. If the packMarker isn’t there, it means the caller is
mistakenly trying to use this constructor where it isn’t appropriate.

Once the packMarker is found, it is stripped off and the directory name (terminated by a
‘#’) and the file name (which goes to the end of the line) are extracted. In both cases, the old
separator character is replaced by the one that is current to this machine using the String
replace( ) method. The old separator is placed at the beginning of the packed file, and you’ll
see how that is extracted later in the listing.

The rest of the constructor is quite simple. It reads and concatenates each line to the
contents until the endMarker is found.

Accessing and writing the listings
The next set of methods are simple accessors: directory( ), filename( ) (notice the method
can have the same spelling and capitalization as the field) and contents( ), and hasFile( ) to
indicate whether this object contains a file or not. (The need for this will be seen later.)

The final three methods are concerned with writing this code listing into a file, either a
packed file via writePacked( ) or a Java source file via writeFile( ). All writePacked( ) needs
is the DataOutputStream, which was opened elsewhere, and represents the file that’s being
written. It puts the header information on the first line and then calls writeBytes( ) to write
contents in a “universal” format.

When writing the Java source file, the file must be created. This is done via IO.psOpen( ),
handing it a File object that contains not only the file name but also the path. But the
question now is: does this path exist? The user has the option of placing all the source code
directories into a completely different subdirectory, which might not even exist. So before
each file is written, File.mkdirs( ) is called with the path that you want to write the file into.
This will make the entire path all at once.

Containing the entire collection of listings
It’s convenient to organize the listings as subdirectories while the whole collection is being
built in memory. One reason is another sanity check: as each subdirectory of listings is
created, an additional file is added whose name contains the number of files in that directory.

The DirMap class produces this effect and demonstrates the concept of a “multimap.” This is
implemented using a Hashtable whose keys are the subdirectories being created and whose



Chapter 17: Projects 767

values are Vector objects containing the SourceCodeFile objects in that particular directory.
Thus, instead of mapping a key to a single value, the “multimap” maps a key to a set of
values via the associated Vector. Although this sounds complex, it’s remarkably
straightforward to implement. You’ll see that most of the size of the DirMap class is due to
the portions that write to files, not to the “multimap” implementation.

There are two ways you can make a DirMap: the default constructor assumes that you
want the directories to branch off of the current one, and the second constructor lets you
specify an alternate absolute path for the starting directory.

The add( ) method is where quite a bit of dense action occurs. First, the directory( ) is
extracted from the SourceCodeFile you want to add, and then the Hashtable is examined to
see if it contains that key already. If not, a new Vector is added to the Hashtable and
associated with that key. At this point, the Vector is there, one way or another, and it is
extracted so the SourceCodeFile can be added. Because Vectors can be easily combined with
Hashtables like this, the power of both is amplified.

Writing a packed file involves opening the file to write (as a DataOutputStream so the data
is universally recoverable) and writing the header information about the old separator on
the first line. Next, an Enumeration of the Hashtable keys is produced and stepped through
to select each directory and to fetch the Vector associated with that directory so each
SourceCodeFile in that Vector can be written to the packed file.

Writing the Java source files to their directories in write( ) is almost identical to
writePackedFile( ) since both methods simply call the appropriate method in
SourceCodeFile. Here, however, the root path is passed into SourceCodeFile.writeFile( )
and when all the files have been written the additional file with the name containing the
number of files is also written.

The main program
The previously described classes are used within CodePackager. First you see the usage
string that gets printed whenever the end user invokes the program incorrectly, along with
the usage( ) method that calls it and exits the program. All main( ) does is determine
whether you want to create a packed file or extract from one, then it ensures the arguments
are correct and calls the appropriate method.

When a packed file is created, it’s assumed to be made in the current directory, so the
DirMap is created using the default constructor. After the file is opened each line is read and
examined for particular conditions:

1. If the line starts with the starting marker for a source code listing, a new
SourceCodeFile object is created. The constructor reads in the rest of the source listing.
The handle that results is directly added to the DirMap.

2. If the line starts with the end marker for a source code listing, something has gone
wrong, since end markers should be found only by the SourceCodeFile constructor.

When extracting a packed file, the extraction can be into the current directory or into an
alternate directory, so the DirMap object is created accordingly. The file is opened and the
first line is read. The old file path separator information is extracted from this line. Then the
input is used to create the first SourceCodeFile object, which is added to the DirMap. New
SourceCodeFile objects are created and added as long as they contain a file. (The last one
created will simply return when it runs out of input and then hasFile( ) will return false.)



768 Thinking in Java  www.BruceEckel.com

Checking capitalization style
Although the previous example can come in handy as a guide for some project of your own
that involves text processing, this project will be directly useful because it performs a style
check to make sure that your capitalization conforms to the de-facto Java style. It opens
each .java file in the current directory and extracts all the class names and identifiers, then
shows you if any of them don’t meet the Java style.

For the program to operate correctly, you must first build a class name repository to hold all
the class names in the standard Java library. You do this by moving into all the source code
subdirectories for the standard Java library and running ClassScanner in each subdirectory.
Provide as arguments the name of the repository file (using the same path and name each
time) and the -a command-line option to indicate that the class names should be added to
the repository.

To use the program to check your code, run it and hand it the path and name of the
repository to use. It will check all the classes and identifiers in the current directory and tell
you which ones don’t follow the typical Java capitalization style.

You should be aware that the program isn’t perfect; there a few times when it will point out
what it thinks is a problem but on looking at the code you’ll see that nothing needs to be
changed. This is a little annoying, but it’s still much easier than trying to find all these cases
by staring at your code.

The explanation immediately follows the listing:

//: ClassScanner.java
// Scans all files in directory for classes
// and identifiers, to check capitalization.
// Assumes properly compiling code listings.
// Doesn't do everything right, but is a very
// useful aid.
import java.io.*;
import java.util.*;

class MultiStringMap extends Hashtable {
  public void add(String key, String value) {
    if(!containsKey(key))
      put(key, new Vector());
    ((Vector)get(key)).addElement(value);
  }
  public Vector getVector(String key) {
    if(!containsKey(key)) {
      System.err.println(
        "ERROR: can't find key: " + key);
      System.exit(1);
    }
    return (Vector)get(key);
  }
  public void printValues(PrintStream p) {
    Enumeration k = keys();
    while(k.hasMoreElements()) {
      String oneKey = (String)k.nextElement();
      Vector val = getVector(oneKey);



Chapter 17: Projects 769

      for(int i = 0; i < val.size(); i++)
        p.println((String)val.elementAt(i));
    }
  }
}

public class ClassScanner {
  private File path;
  private String[] fileList;
  private Properties classes = new Properties();
  private MultiStringMap
    classMap = new MultiStringMap(),
    identMap = new MultiStringMap();
  private StreamTokenizer in;
  public ClassScanner() {
    path = new File(".");
    fileList = path.list(new JavaFilter());
    for(int i = 0; i < fileList.length; i++) {
      System.out.println(fileList[i]);
      scanListing(fileList[i]);
    }
  }
  void scanListing(String fname) {
    try {
      in = new StreamTokenizer(
          new BufferedReader(
            new FileReader(fname)));
      // Doesn't seem to work:
      // in.slashStarComments(true);
      // in.slashSlashComments(true);
      in.ordinaryChar('/');
      in.ordinaryChar('.');
      in.wordChars('_', '_');
      in.eolIsSignificant(true);
      while(in.nextToken() !=
            StreamTokenizer.TT_EOF) {
        if(in.ttype == '/')
          eatComments();
        else if(in.ttype ==
                StreamTokenizer.TT_WORD) {
          if(in.sval.equals("class") ||
             in.sval.equals("interface")) {
            // Get class name:
               while(in.nextToken() !=
                     StreamTokenizer.TT_EOF
                     && in.ttype !=
                     StreamTokenizer.TT_WORD)
                 ;
               classes.put(in.sval, in.sval);
               classMap.add(fname, in.sval);
          }
          if(in.sval.equals("import") ||
             in.sval.equals("package"))
            discardLine();



770 Thinking in Java  www.BruceEckel.com

          else // It's an identifier or keyword
            identMap.add(fname, in.sval);
        }
      }
    } catch(IOException e) {
      e.printStackTrace();
    }
  }
  void discardLine() {
    try {
      while(in.nextToken() !=
            StreamTokenizer.TT_EOF
            && in.ttype !=
            StreamTokenizer.TT_EOL)
        ; // Throw away tokens to end of line
    } catch(IOException e) {
      e.printStackTrace();
    }
  }
  // StreamTokenizer's comment removal seemed
  // to be broken. This extracts them:
  void eatComments() {
    try {
      if(in.nextToken() !=
         StreamTokenizer.TT_EOF) {
        if(in.ttype == '/')
          discardLine();
        else if(in.ttype != '*')
          in.pushBack();
        else
          while(true) {
            if(in.nextToken() ==
              StreamTokenizer.TT_EOF)
              break;
            if(in.ttype == '*')
              if(in.nextToken() !=
                StreamTokenizer.TT_EOF
                && in.ttype == '/')
                break;
          }
      }
    } catch(IOException e) {
      e.printStackTrace();
    }
  }
  public String[] classNames() {
    String[] result = new String[classes.size()];
    Enumeration e = classes.keys();
    int i = 0;
    while(e.hasMoreElements())
      result[i++] = (String)e.nextElement();
    return result;
  }
  public void checkClassNames() {



Chapter 17: Projects 771

    Enumeration files = classMap.keys();
    while(files.hasMoreElements()) {
      String file = (String)files.nextElement();
      Vector cls = classMap.getVector(file);
      for(int i = 0; i < cls.size(); i++) {
        String className =
          (String)cls.elementAt(i);
        if(Character.isLowerCase(
             className.charAt(0)))
          System.out.println(
            "class capitalization error, file: "
            + file + ", class: "
            + className);
      }
    }
  }
  public void checkIdentNames() {
    Enumeration files = identMap.keys();
    Vector reportSet = new Vector();
    while(files.hasMoreElements()) {
      String file = (String)files.nextElement();
      Vector ids = identMap.getVector(file);
      for(int i = 0; i < ids.size(); i++) {
        String id =
          (String)ids.elementAt(i);
        if(!classes.contains(id)) {
          // Ignore identifiers of length 3 or
          // longer that are all uppercase
          // (probably static final values):
          if(id.length() >= 3 &&
             id.equals(
               id.toUpperCase()))
            continue;
          // Check to see if first char is upper:
          if(Character.isUpperCase(id.charAt(0))){
            if(reportSet.indexOf(file + id)
                == -1){ // Not reported yet
              reportSet.addElement(file + id);
              System.out.println(
                "Ident capitalization error in:"
                + file + ", ident: " + id);
            }
          }
        }
      }
    }
  }
  static final String usage =
    "Usage: \n" +
    "ClassScanner classnames -a\n" +
    "\tAdds all the class names in this \n" +
    "\tdirectory to the repository file \n" +
    "\tcalled 'classnames'\n" +
    "ClassScanner classnames\n" +



772 Thinking in Java  www.BruceEckel.com

    "\tChecks all the java files in this \n" +
    "\tdirectory for capitalization errors, \n" +
    "\tusing the repository file 'classnames'";
  private static void usage() {
    System.err.println(usage);
    System.exit(1);
  }
  public static void main(String[] args) {
    if(args.length < 1 || args.length > 2)
      usage();
    ClassScanner c = new ClassScanner();
    File old = new File(args[0]);
    if(old.exists()) {
      try {
        // Try to open an existing
        // properties file:
        InputStream oldlist =
          new BufferedInputStream(
            new FileInputStream(old));
        c.classes.load(oldlist);
        oldlist.close();
      } catch(IOException e) {
        System.err.println("Could not open "
          + old + " for reading");
        System.exit(1);
      }
    }
    if(args.length == 1) {
      c.checkClassNames();
      c.checkIdentNames();
    }
    // Write the class names to a repository:
    if(args.length == 2) {
      if(!args[1].equals("-a"))
        usage();
      try {
        BufferedOutputStream out =
          new BufferedOutputStream(
            new FileOutputStream(args[0]));
        c.classes.save(out,
          "Classes found by ClassScanner.java");
        out.close();
      } catch(IOException e) {
        System.err.println(
          "Could not write " + args[0]);
        System.exit(1);
      }
    }
  }
}

class JavaFilter implements FilenameFilter {
  public boolean accept(File dir, String name) {
    // Strip path information:



Chapter 17: Projects 773

    String f = new File(name).getName();
    return f.trim().endsWith(".java");
  }
} ///:~

The class MultiStringMap is a tool that allows you to map a group of strings onto each key
entry. As in the previous example, it uses a Hashtable (this time with inheritance) with the
key as the single string that’s mapped onto the Vector value. The add( ) method simply
checks to see if there’s a key already in the Hashtable, and if not it puts one there. The
getVector( ) method produces a Vector for a particular key, and printValues( ), which is
primarily useful for debugging, prints out all the values Vector by Vector.

To keep life simple, the class names from the standard Java libraries are all put into a
Properties object (from the standard Java library). Remember that a Properties object is a
Hashtable that holds only String objects for both the key and value entries. However, it can
be saved to disk and restored from disk in one method call, so it’s ideal for the repository of
names. Actually, we need only a list of names, and a Hashtable can’t accept null for either
its key or its value entry. So the same object will be used for both the key and the value.

For the classes and identifiers that are discovered for the files in a particular directory, two
MultiStringMaps are used: classMap and identMap. Also, when the program starts up it
loads the standard class name repository into the Properties object called classes, and when
a new class name is found in the local directory that is also added to classes as well as to
classMap. This way, classMap can be used to step through all the classes in the local
directory, and classes can be used to see if the current token is a class name (which indicates
a definition of an object or method is beginning, so grab the next tokens – until a semicolon
– and put them into identMap).

The default constructor for ClassScanner creates a list of file names (using the JavaFilter
implementation of FilenameFilter, as described in Chapter 10). Then it calls scanListing( )
for each file name.

Inside scanListing( ) the source code file is opened and turned into a StreamTokenizer. In
the documentation, passing true to slashStarComments( ) and slashSlashComments( ) is
supposed to strip those comments out, but this seems to be a bit flawed (it doesn’t quite
work in Java 1.0). Instead, those lines are commented out and the comments are extracted
by another method. To do this, the ‘/’ must be captured as an ordinary character rather than
letting the StreamTokenizer absorb it as part of a comment, and the ordinaryChar( )
method tells the StreamTokenizer to do this. This is also true for dots (‘.’), since we want to
have the method calls pulled apart into individual identifiers. However, the underscore,
which is ordinarily treated by StreamTokenizer as an individual character, should be left as
part of identifiers since it appears in such static final values as TT_EOF etc., used in this
very program. The wordChars( ) method takes a range of characters you want to add to
those that are left inside a token that is being parsed as a word. Finally, when parsing for
one-line comments or discarding a line we need to know when an end-of-line occurs, so by
calling eolIsSignificant(true) the eol will show up rather than being absorbed by the
StreamTokenizer.

The rest of scanListing( ) reads and reacts to tokens until the end of the file, signified when
nextToken( ) returns the final static value StreamTokenizer.TT_EOF.

If the token is a ‘/’ it is potentially a comment, so eatComments( ) is called to deal with it.
The only other situation we’re interested in here is if it’s a word, of which there are some
special cases.



774 Thinking in Java  www.BruceEckel.com

If the word is class or interface then the next token represents a class or interface name,
and it is put into classes and classMap. If the word is import or package, then we don’t
want the rest of the line. Anything else must be an identifier (which we’re interested in) or a
keyword (which we’re not, but they’re all lowercase anyway so it won’t spoil things to put
those in). These are added to identMap.

The discardLine( ) method is a simple tool that looks for the end of a line. Note that any
time you get a new token, you must check for the end of the file.

The eatComments( ) method is called whenever a forward slash is encountered in the main
parsing loop. However, that doesn’t necessarily mean a comment has been found, so the next
token must be extracted to see if it’s another forward slash (in which case the line is
discarded) or an asterisk. But if it’s neither of those, it means the token you’ve just pulled
out is needed back in the main parsing loop! Fortunately, the pushBack( ) method allows
you to “push back” the current token onto the input stream so that when the main parsing
loop calls nextToken( ) it will get the one you just pushed back.

For convenience, the classNames( ) method produces an array of all the names in the
classes collection. This method is not used in the program but is helpful for debugging.

The next two methods are the ones in which the actual checking takes place. In
checkClassNames( ), the class names are extracted from the classMap (which, remember,
contains only the names in this directory, organized by file name so the file name can be
printed along with the errant class name). This is accomplished by pulling each associated
Vector and stepping through that, looking to see if the first character is lower case. If so, the
appropriate error message is printed.

In checkIdentNames( ), a similar approach is taken: each identifier name is extracted from
identMap. If the name is not in the classes list, it’s assumed to be an identifier or keyword.
A special case is checked: if the identifier length is 3 or more and all the characters are
uppercase, this identifier is ignored because it’s probably a static final value such as
TT_EOF. Of course, this is not a perfect algorithm, but it assumes that you’ll eventually
notice any all-uppercase identifiers that are out of place.

Instead of reporting every identifier that starts with an uppercase character, this method
keeps track of which ones have already been reported in a Vector called reportSet( ). This
treats the Vector as a “set” that tells you whether an item is already in the set. The item is
produced by concatenating the file name and identifier. If the element isn’t in the set, it’s
added and then the report is made.

The rest of the listing is comprised of main( ), which busies itself by handling the command
line arguments and figuring out whether you’re building a repository of class names from
the standard Java library or checking the validity of code you’ve written. In both cases it
makes a ClassScanner object.

Whether you’re building a repository or using one, you must try to open the existing
repository. By making a File object and testing for existence, you can decide whether to open
the file and load( ) the Properties list classes inside ClassScanner. (The classes from the
repository add to, rather than overwrite, the classes found by the ClassScanner
constructor.) If you provide only one command-line argument it means that you want to
perform a check of the class names and identifier names, but if you provide two arguments
(the second being “-a”) you’re building a class name repository. In this case, an output file is
opened and the method Properties.save( ) is used to write the list into a file, along with a
string that provides header file information.



Chapter 17: Projects 775

A method lookup tool
Chapter 11 introduced the Java 1.1 concept of reflection and used that feature to look up
methods for a particular class – either the entire list of methods or a subset of those whose
names match a keyword you provide. The magic of this is that it can automatically show
you all the methods for a class without forcing you to walk up the inheritance hierarchy
examining the base classes at each level. Thus, it provides a valuable timesaving tool for
programming: because the names of most Java method names are made nicely verbose and
descriptive, you can search for the method names that contain a particular word of interest.
When you find what you think you’re looking for, check the online documentation.

However, by Chapter 11 you hadn’t seen the AWT, so that tool was developed as a
command-line application. Here is the more useful GUI version, which dynamically updates
the output as you type and also allows you to cut and paste from the output:

//: DisplayMethods.java
// Display the methods of any class inside
// a window. Dynamically narrows your search.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
import java.lang.reflect.*;
import java.io.*;

public class DisplayMethods extends Applet {
  Class cl;
  Method[] m;
  Constructor[] ctor;
  String[] n = new String[0];
  TextField
    name = new TextField(40),
    searchFor = new TextField(30);
  Checkbox strip =
    new Checkbox("Strip Qualifiers");
  TextArea results = new TextArea(40, 65);
  public void init() {
    strip.setState(true);
    name.addTextListener(new NameL());
    searchFor.addTextListener(new SearchForL());
    strip.addItemListener(new StripL());
    Panel
      top = new Panel(),
      lower = new Panel(),
      p = new Panel();
    top.add(new Label("Qualified class name:"));
    top.add(name);
    lower.add(
      new Label("String to search for:"));
    lower.add(searchFor);
    lower.add(strip);
    p.setLayout(new BorderLayout());
    p.add(top, BorderLayout.NORTH);
    p.add(lower, BorderLayout.SOUTH);



776 Thinking in Java  www.BruceEckel.com

    setLayout(new BorderLayout());
    add(p, BorderLayout.NORTH);
    add(results, BorderLayout.CENTER);
  }
  class NameL implements TextListener {
    public void textValueChanged(TextEvent e) {
      String nm = name.getText().trim();
      if(nm.length() == 0) {
        results.setText("No match");
        n = new String[0];
        return;
      }
      try {
        cl = Class.forName(nm);
      } catch (ClassNotFoundException ex) {
        results.setText("No match");
        return;
      }
      m = cl.getMethods();
      ctor = cl.getConstructors();
      // Convert to an array of Strings:
      n = new String[m.length + ctor.length];
      for(int i = 0; i < m.length; i++)
        n[i] = m[i].toString();
      for(int i = 0; i < ctor.length; i++)
        n[i + m.length] = ctor[i].toString();
      reDisplay();
    }
  }
  void reDisplay() {
    // Create the result set:
    String[] rs = new String[n.length];
    String find = searchFor.getText();
    int j = 0;
    // Select from the list if find exists:
    for (int i = 0; i < n.length; i++) {
      if(find == null)
        rs[j++] = n[i];
      else if(n[i].indexOf(find) != -1)
          rs[j++] = n[i];
    }
    results.setText("");
    if(strip.getState() == true)
      for (int i = 0; i < j; i++)
        results.append(
          StripQualifiers.strip(rs[i]) + "\n");
    else // Leave qualifiers on
      for (int i = 0; i < j; i++)
        results.append(rs[i] + "\n");
  }
  class StripL implements ItemListener {
    public void itemStateChanged(ItemEvent e) {
      reDisplay();
    }



Chapter 17: Projects 777

  }
  class SearchForL implements TextListener {
    public void textValueChanged(TextEvent e) {
      reDisplay();
    }
  }
  public static void main(String[] args) {
    DisplayMethods applet = new DisplayMethods();
    Frame aFrame = new Frame("Display Methods");
    aFrame.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e) {
          System.exit(0);
        }
      });
    aFrame.add(applet, BorderLayout.CENTER);
    aFrame.setSize(500,750);
    applet.init();
    applet.start();
    aFrame.setVisible(true);
  }
}

class StripQualifiers {
  private StreamTokenizer st;
  public StripQualifiers(String qualified) {
      st = new StreamTokenizer(
        new StringReader(qualified));
      st.ordinaryChar(' ');
  }
  public String getNext() {
    String s = null;
    try {
      if(st.nextToken() !=
            StreamTokenizer.TT_EOF) {
        switch(st.ttype) {
          case StreamTokenizer.TT_EOL:
            s = null;
            break;
          case StreamTokenizer.TT_NUMBER:
            s = Double.toString(st.nval);
            break;
          case StreamTokenizer.TT_WORD:
            s = new String(st.sval);
            break;
          default: // single character in ttype
            s = String.valueOf((char)st.ttype);
        }
      }
    } catch(IOException e) {
      System.out.println(e);
    }
    return s;
  }



778 Thinking in Java  www.BruceEckel.com

  public static String strip(String qualified) {
    StripQualifiers sq =
      new StripQualifiers(qualified);
    String s = "", si;
    while((si = sq.getNext()) != null) {
      int lastDot = si.lastIndexOf('.');
      if(lastDot != -1)
        si = si.substring(lastDot + 1);
      s += si;
    }
    return s;
  }
} ///:~

Some things you’ve seen before. As with many of the GUI programs in this book, this is
created to perform both as an application and as an applet. Also, the StripQualifiers class is
exactly the same as it was in Chapter 11.

The GUI contains a TextField name in which you can enter the fully-qualified class name
you want to look up, and another one, searchFor, in which you can enter the optional text
to search for within the list of methods. The Checkbox allows you to say whether you want
to use the fully-qualified names in the output or if you want the qualification stripped off.
Finally, the results are displayed in a TextArea.

You’ll notice that there are no buttons or other components by which to indicate that you
want the search to start. That’s because both of the TextFields and the Checkbox are
monitored by their listener objects. Whenever you make a change, the list is immediately
updated. If you change the text within the name field, the new text is captured in class
NameL. If the text isn’t empty, it is used inside Class.forName( ) to try to look up the class.
As you’re typing, of course, the name will be incomplete and Class.forName( ) will fail,
which means that it throws an exception. This is trapped and the TextArea is set to “No
match”. But as soon as you type in a correct name (capitalization counts), Class.forName( )
is successful and getMethods( ) and getConstructors( ) will return arrays of Method and
Constructor objects, respectively. Each of the objects in these arrays is turned into a String
via toString( ) (this produces the complete method or constructor signature) and both lists
are combined into n, a single String array. The array n is a member of class
DisplayMethods and is used in updating the display whenever reDisplay( ) is called.

If you change the Checkbox or searchFor components, their listeners simply call
reDisplay( ). reDisplay( ) creates a temporary array of String called rs (for “result set”).
The result set is either copied directly from n if there is no find word, or conditionally copied
from the Strings in n that contain the find word. Finally, the strip Checkbox is interrogated
to see if the user wants the names to be stripped (the default is “yes”). If so,
StripQualifiers.strip( ) does the job; if not, the list is simply displayed.

In init( ), you might think that there’s a lot of busy work involved in setting up the layout.
In fact, it is possible to lay out the components with less work, but the advantage of using
BorderLayouts this way is that it allows the user to resize the window and make – in
particular – the TextArea larger, which means you can resize to allow you to see longer
names without scrolling.

You might find that you’ll keep this tool running while you’re programming, since it
provides one of the best “first lines of attack” when you’re trying to figure out what method
to call.



Chapter 17: Projects 779

Complexity theory
This program was modified from code originally created by Larry O’Brien, and is based on
the “Boids” program created by Craig Reynolds in 1986 to demonstrate an aspect of
complexity theory called “emergence.”

The goal here is to produce a reasonably lifelike reproduction of flocking or herding behavior
in animals by establishing a small set of simple rules for each animal. Each animal can look
at the entire scene and all the other animals in the scene, but it reacts only to a set of nearby
“flockmates.” The animal moves according to three simple steering behaviors:

1. Separation: Avoid crowding local flockmates.

2. Alignment: Follow the average heading of local flockmates.

3. Cohesion: Move toward the center of the group of local flockmates.

More elaborate models can include obstacles and the ability for the animals to predict
collisions and avoid them, so the animals can flow around fixed objects in the environment.
In addition, the animals might also be given a goal, which can cause the herd to follow a
desired path. For simplicity, obstacle avoidance and goal-seeking is not included in the model
presented here.

Emergence means that, despite the limited nature of computers and the simplicity of the
steering rules, the result seems realistic. That is, remarkably lifelike behavior “emerges” from
this simple model.

The program is presented as a combined application/applet:

//: FieldOBeasts.java
// Demonstration of complexity theory; simulates
// herding behavior in animals. Adapted from
// a program by Larry O'Brien lobrien@msn.com
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
import java.util.*;

class Beast {
  int
    x, y,            // Screen position
    currentSpeed;    // Pixels per second
  float currentDirection;  // Radians
  Color color;      // Fill color
  FieldOBeasts field; // Where the Beast roams
  static final int GSIZE = 10; // Graphic size

  public Beast(FieldOBeasts f, int x, int y,
      float cD, int cS, Color c) {
    field = f;
    this.x = x;
    this.y = y;
    currentDirection = cD;
    currentSpeed = cS;



780 Thinking in Java  www.BruceEckel.com

    color = c;
  }
  public void step() {
    // You move based on those within your sight:
    Vector seen = field.beastListInSector(this);
    // If you're not out in front
    if(seen.size() > 0) {
      // Gather data on those you see
      int totalSpeed = 0;
      float totalBearing = 0.0f;
      float distanceToNearest = 100000.0f;
      Beast nearestBeast =
        (Beast)seen.elementAt(0);
      Enumeration e = seen.elements();
      while(e.hasMoreElements()) {
        Beast aBeast = (Beast) e.nextElement();
        totalSpeed += aBeast.currentSpeed;
        float bearing =
          aBeast.bearingFromPointAlongAxis(
            x, y, currentDirection);
        totalBearing += bearing;
        float distanceToBeast =
          aBeast.distanceFromPoint(x, y);
        if(distanceToBeast < distanceToNearest) {
          nearestBeast = aBeast;
          distanceToNearest = distanceToBeast;
        }
      }
      // Rule 1: Match average speed of those
      // in the list:
      currentSpeed = totalSpeed / seen.size();
      // Rule 2: Move towards the perceived
      // center of gravity of the herd:
      currentDirection =
        totalBearing / seen.size();
      // Rule 3: Maintain a minimum distance
      // from those around you:
      if(distanceToNearest <=
         field.minimumDistance) {
        currentDirection =
          nearestBeast.currentDirection;
        currentSpeed = nearestBeast.currentSpeed;
        if(currentSpeed > field.maxSpeed) {
          currentSpeed = field.maxSpeed;
        }
      }
    }
    else {  // You are in front, so slow down
      currentSpeed =
        (int)(currentSpeed * field.decayRate);
    }
    // Make the beast move:
    x += (int)(Math.cos(currentDirection)
               * currentSpeed);



Chapter 17: Projects 781

    y += (int)(Math.sin(currentDirection)
               * currentSpeed);
    x %= field.xExtent;
    y %= field.yExtent;
    if(x < 0)
      x += field.xExtent;
    if(y < 0)
      y += field.yExtent;
  }
  public float bearingFromPointAlongAxis (
      int originX, int originY, float axis) {
    // Returns bearing angle of the current Beast
    // in the world coordiante system
    try {
      double bearingInRadians =
        Math.atan(
          (this.y - originY) /
          (this.x - originX));
      // Inverse tan has two solutions, so you
      // have to correct for other quarters:
      if(x < originX) {
        if(y < originY) {
          bearingInRadians += - (float)Math.PI;
        }
        else {
          bearingInRadians =
            (float)Math.PI - bearingInRadians;
        }
      }
      // Just subtract the axis (in radians):
      return (float) (axis - bearingInRadians);
    } catch(ArithmeticException aE) {
      // Divide by 0 error possible on this
      if(x > originX) {
          return 0;
      }
      else
        return (float) Math.PI;
    }
  }
  public float distanceFromPoint(int x1, int y1){
    return (float) Math.sqrt(
      Math.pow(x1 - x, 2) +
      Math.pow(y1 - y, 2));
  }
  public Point position() {
    return new Point(x, y);
  }
  // Beasts know how to draw themselves:
  public void draw(Graphics g) {
    g.setColor(color);
    int directionInDegrees = (int)(
      (currentDirection * 360) / (2 * Math.PI));
    int startAngle = directionInDegrees -



782 Thinking in Java  www.BruceEckel.com

      FieldOBeasts.halfFieldOfView;
    int endAngle = 90;
    g.fillArc(x, y, GSIZE, GSIZE,
      startAngle, endAngle);
  }
}

public class FieldOBeasts extends Applet
    implements Runnable {
  private Vector beasts;
  static float
    fieldOfView =
      (float) (Math.PI / 4), // In radians
    // Deceleration % per second:
    decayRate = 1.0f,
    minimumDistance = 10f; // In pixels
  static int
    halfFieldOfView = (int)(
      (fieldOfView * 360) / (2 * Math.PI)),
    xExtent = 0,
    yExtent = 0,
    numBeasts = 50,
    maxSpeed = 20; // Pixels/second
  boolean uniqueColors = true;
  Thread thisThread;
  int delay = 25;
  public void init() {
    if (xExtent == 0 && yExtent == 0) {
      xExtent = Integer.parseInt(
        getParameter("xExtent"));
      yExtent = Integer.parseInt(
        getParameter("yExtent"));
    }
    beasts =
      makeBeastVector(numBeasts, uniqueColors);
    // Now start the beasts a-rovin':
    thisThread = new Thread(this);
    thisThread.start();
  }
  public void run() {
    while(true) {
      for(int i = 0; i < beasts.size(); i++){
        Beast b = (Beast) beasts.elementAt(i);
        b.step();
      }
      try {
        thisThread.sleep(delay);
      } catch(InterruptedException ex){}
      repaint(); // Otherwise it won't update
    }
  }
  Vector makeBeastVector(
      int quantity, boolean uniqueColors) {
    Vector newBeasts = new Vector();



Chapter 17: Projects 783

    Random generator = new Random();
    // Used only if uniqueColors is on:
    double cubeRootOfBeastNumber =
      Math.pow((double)numBeasts, 1.0 / 3.0);
    float colorCubeStepSize =
      (float) (1.0 / cubeRootOfBeastNumber);
    float r = 0.0f;
    float g = 0.0f;
    float b = 0.0f;
    for(int i = 0; i < quantity; i++) {
      int x =
        (int) (generator.nextFloat() * xExtent);
      if(x > xExtent - Beast.GSIZE)
        x -= Beast.GSIZE;
      int y =
        (int) (generator.nextFloat() * yExtent);
      if(y > yExtent - Beast.GSIZE)
        y -= Beast.GSIZE;
      float direction = (float)(
        generator.nextFloat() * 2 * Math.PI);
      int speed = (int)(
        generator.nextFloat() * (float)maxSpeed);
      if(uniqueColors) {
        r += colorCubeStepSize;
        if(r > 1.0) {
          r -= 1.0f;
          g += colorCubeStepSize;
          if( g > 1.0) {
            g -= 1.0f;
            b += colorCubeStepSize;
            if(b > 1.0)
              b -= 1.0f;
          }
        }
      }
      newBeasts.addElement(
        new Beast(this, x, y, direction, speed,
          new Color(r,g,b)));
    }
    return newBeasts;
  }
  public Vector beastListInSector(Beast viewer) {
    Vector output = new Vector();
    Enumeration e = beasts.elements();
    Beast aBeast = (Beast)beasts.elementAt(0);
    int counter = 0;
    while(e.hasMoreElements()) {
      aBeast = (Beast) e.nextElement();
      if(aBeast != viewer) {
        Point p = aBeast.position();
        Point v = viewer.position();
        float bearing =
          aBeast.bearingFromPointAlongAxis(
            v.x, v.y, viewer.currentDirection);



784 Thinking in Java  www.BruceEckel.com

        if(Math.abs(bearing) < fieldOfView / 2)
         output.addElement(aBeast);
      }
    }
    return output;
  }
  public void paint(Graphics g)  {
    Enumeration e = beasts.elements();
    while(e.hasMoreElements()) {
      ((Beast)e.nextElement()).draw(g);
    }
  }
  public static void main(String[] args)   {
    FieldOBeasts field = new FieldOBeasts();
    field.xExtent = 640;
    field.yExtent = 480;
    Frame frame = new Frame("Field 'O Beasts");
    // Optionally use a command-line argument
    // for the sleep time:
    if(args.length >= 1)
      field.delay = Integer.parseInt(args[0]);
    frame.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e) {
          System.exit(0);
        }
      });
    frame.add(field, BorderLayout.CENTER);
    frame.setSize(640,480);
    field.init();
    field.start();
    frame.setVisible(true);
  }
} ///:~

Although this isn’t a perfect reproduction of the behavior in Craig Reynold’s “Boids”
example, it exhibits its own fascinating characteristics, which you can modify by adjusting
the numbers. You can find out more about the modeling of flocking behavior and see a
spectacular 3-D version of Boids at Craig Reynold’s page
http://www.hmt.com/cwr/boids.html.

To run this program as an applet, put the following applet tag in an HTML file:

<applet
code=FieldOBeasts
width=640
height=480>
<param name=xExtent value = "640">
<param name=yExtent value = "480">
</applet>



Chapter 17: Projects 785

Summary
This chapter shows some of the more sophisticated things that you can do with Java. It also
makes the point that while Java must certainly have its limits, those limits are primarily
relegated to performance. (When the text-processing programs were written, for example,
C++ versions were much faster – this might be due partly to an inefficient implementation
of the IO library, which should change in time.) The limits of Java do not seem to be in the
area of expressiveness. Not only does it seem possible to express just about everything you
can imagine, but Java seems oriented toward making that expression easy to write and read.
Therefore you don’t run into the wall of complexity that often occurs with languages that
are more trivial to use than Java (at least they seem that way, at first). And with Java 1.2’s
JFC/Swing library, even the expressiveness and ease of use of the AWT is improving
dramatically.

Exercises
 1.  (Challenging) Rewrite FieldOBeasts.java so that its state can be persistent. Implement

buttons to allow you to save and recall different state files and continue running them
where they left off. Use CADState.java from Chapter 10 as an example of how to do this.

 2.  (Term project) Taking FieldOBeasts.java as a starting point, build an automobile traffic
simulation system.

 3.  (Term project) Using ClassScanner.java as a starting point, build a tool that points out
methods and fields that are defined but never used.

 4.  (Term project) Using JDBC, build a contact management program using a flat-file database
containing names, addresses, telephone numbers, email addresses, etc. You should be able
to easily add new names to the database. When typing in the name to be looked up, use
automatic name completion as shown in VLookup.java in Chapter 15.



787

)

A: Using non-Java
code

This appendix was contributed by and used with the permission of
Andrea Provaglio (www.AndreaProvaglio.com).
The Java language and its standard API are rich enough to write full-fledged applications.
But in some cases you must call non-Java code; for example, if you want to access
operating-system-specific features, interface with special hardware devices, reuse a pre-
existing, non-Java code base, or implement time-critical sections of code. Interfacing with
non-Java code requires dedicated support in the compiler and in the Virtual Machine, and
additional tools to map the Java code to the non-Java code. (There’s also a simple approach:
in Chapter 15, the section titled “a Web application” contains an example of connecting to
non-Java code using standard input and output.) Currently, different vendors offer different
solutions: Java 1.1 has the Java Native Interface (JNI), Netscape has proposed its Java
Runtime Interface, and Microsoft offers J/Direct, Raw Native Interface (RNI), and Java/COM
integration.

This fragmentation among different vendors implies serious drawbacks for the programmer.
If a Java application must call native methods, the programmer might need to implement
different versions of the native methods depending on the platform the application will run
on. The programmer might actually need different versions of the Java code as well as
different Java virtual machines.

Another solution is CORBA (Common Object Request Broker Architecture), an integration
technology developed by the OMG (Object Management Group, a non-profit consortium of
companies). CORBA is not part of any language, but is a specification for implementing a
common communication bus and services that allow interoperability among objects
implemented in different languages. This communication bus, called an ORB (Object Request



788 Thinking in Java  www.BruceEckel.com

Broker), is a product implemented by third-party vendors, but it is not part of the Java
language specification.

This appendix gives an overview of JNI, J/Direct, RNI, Java/COM integration, and CORBA.
This is not an in-depth treatment, and in some cases you’re assumed to have partial
knowledge of the related concepts and techniques. But in the end, you should be able to
compare the different approaches and choose the one that is most appropriate to the
problem you want to solve.

The Java Native Interface
JNI is a fairly rich programming interface that allows you to call native methods from a
Java application. It was added in Java 1.1, maintaining a certain degree of compatibility
with its Java 1.0 equivalent, the native method interface (NMI). NMI has design
characteristics that make it unsuitable for adoption in all virtual machines. For this reason,
future versions of the language might no longer support NMI, and it will not be covered
here.

Currently, JNI is designed to interface with native methods written only in C or C++. Using
JNI, your native methods can:

� Create, inspect, and update Java objects (including arrays and Strings)

� Call Java methods

� Catch and throw exceptions

� Load classes and obtain class information

� Perform runtime type checking

Thus, virtually everything you can do with classes and objects in ordinary Java you can also
do in native methods.

Calling a native method
We’ll start with a simple example: a Java program that calls a native method, which in turn
calls the Win32 MessageBox( ) API function to display a graphical text box. This example
will also be used later with J/Direct. If your platform is not Win32, just replace the C header
include:

#include <windows.h>

with

#include <stdio.h>

and replace the call to MessageBox( ) with a call to printf( ).

The first step is to write the Java code declaring a native method and its arguments:

class ShowMsgBox {
  public static void main(String [] args) {
    ShowMsgBox app = new ShowMsgBox();
    app.ShowMessage("Generated with JNI");



Appendix A: Using Non-Java Code 789

  }
  private native void ShowMessage(String msg);
  static {
    System.loadLibrary("MsgImpl");
  }
}

The native method declaration is followed by a static block that calls System.loadLibrary( )
(which you could call at any time, but this style is more appropriate).
System.loadLibrary( ) loads a DLL in memory and links to it. The DLL must be in your
system path or in the directory containing the Java class file. The file name extension is
automatically added by the JVM depending on the platform.

The C header file generator: javah
Now compile your Java source file and run javah on the resulting .class file. Javah was
present in version 1.0, but since you are using Java 1.1 JNI you must specify the –jni
switch:

javah –jni ShowMsgBox

Javah reads the Java class file and for each native method declaration it generates a function
prototype in a C or C++ header file. Here’s the output: the ShowMsgBox.h source file
(edited slightly to fit into the book):

/* DO NOT EDIT THIS FILE
   - it is machine generated */
#include <jni.h>
/* Header for class ShowMsgBox */

#ifndef _Included_ShowMsgBox
#define _Included_ShowMsgBox
#ifdef __cplusplus
extern "C" {
#endif
/*
 * Class:     ShowMsgBox
 * Method:    ShowMessage
 * Signature: (Ljava/lang/String;)V
 */
JNIEXPORT void JNICALL
Java_ShowMsgBox_ShowMessage
  (JNIEnv *, jobject, jstring);

#ifdef __cplusplus
}
#endif
#endif

As you can see by the #ifdef __cplusplus preprocessor directive, this file can be compiled
either by a C or a C++ compiler. The first #include directive includes jni.h, a header file
that, among other things, defines the types that you can see used in the rest of the file.
JNIEXPORT and JNICALL are macros that expand to match platform-specific directives;
JNIEnv, jobject and jstring are JNI data type definitions.



790 Thinking in Java  www.BruceEckel.com

Name mangling and function signatures
JNI imposes a naming convention (called name mangling) on native methods; this is
important, since it’s part of the mechanism by which the virtual machine links Java calls to
native methods. Basically, all native methods start with the word “Java,” followed by the
name of the class in which the Java native declaration appears, followed by the name of the
Java method; the underscore character is used as a separator. If the Java native method is
overloaded, then the function signature is appended to the name as well; you can see the
native signature in the comments preceding the prototype. For more information about
name mangling and native method signatures, please refer to the JNI documentation.

Implementing your DLL
At this point, all you have to do is write a C or C++ source file that includes the javah-
generated header file and implements the native method, then compile it and generate a
dynamic link library. This part is platform-dependent, and I’ll assume that you know how
to create a DLL. The code below implements the native method by calling a Win32 API. It is
then compiled and linked into a file called MsgImpl.dll (for “Message Implementation”).

#include <windows.h>
#include "ShowMsgBox.h"

BOOL APIENTRY DllMain(HANDLE hModule,
  DWORD dwReason, void** lpReserved) {
  return TRUE;
}

JNIEXPORT void JNICALL
Java_ShowMsgBox_ShowMessage(JNIEnv * jEnv,
  jobject this, jstring jMsg) {
  const char * msg;
  msg = (*jEnv)->GetStringUTFChars(jEnv, jMsg,0);
  MessageBox(HWND_DESKTOP, msg,
    "Thinking in Java: JNI",
    MB_OK | MB_ICONEXCLAMATION);
  (*jEnv)->ReleaseStringUTFChars(jEnv, jMsg,msg);
}

If you have no interest in Win32, just skip the MessageBox( ) call; the interesting part is the
surrounding code. The arguments that are passed into the native method are the gateway
back into Java. The first, of type JNIEnv, contains all the hooks that allow you to call back
into the JVM. (We’ll look at this in the next section.) The second argument has a different
meaning depending on the type of method. For non-static methods like the example above
(also called instance methods), the second argument is the equivalent of the “this” pointer in
C++ and similar to this in Java: it’s a reference to the object that called the native method.
For static methods, it’s a reference to the Class object where the method is implemented.

The remaining arguments represent the Java objects passed into the native method call.
Primitives are also passed in this way, but they come in by value.

In the following sections we’ll explain this code by looking at how to access and control the
JVM from inside a native method.



Appendix A: Using Non-Java Code 791

Accessing JNI functions:
The JJNIEnv argument

JNI functions are those that the programmer uses to interact with the JVM from inside a
native method. As you can see in the example above, every JNI native method receives a
special argument as its first parameter: the JNIEnv argument, which is a pointer to a special
JNI data structure of type JNIEnv_. One element of the JNI data structure is a pointer to an
array generated by the JVM; each element of this array is a pointer to a JNI function. The
JNI functions can be called from the native method by dereferencing these pointers (it’s
simpler than it sounds). Every JVM provides its own implementation of the JNI functions,
but their addresses will always be at predefined offsets.

Through the JNIEnv argument, the programmer has access to a large set of functions. These
functions can be grouped into the following categories:

� Obtaining version information

� Performing class and object operations

� Handling global and local references to Java objects

� Accessing instance fields and static fields

� Calling instance methods and static methods

� Performing string and array operations

� Generating and handling Java exceptions

The number of JNI functions is quite large and won’t be covered here. Instead, I’ll show the
rationale behind the use of these functions. For more detailed information, consult your
compiler’s JNI documentation.

If you take a look at the jni.h header file, you’ll see that inside the #ifdef __cplusplus
preprocessor conditional, the JNIEnv_ structure is defined as a class when compiled by a
C++ compiler. This class contains a number of inline functions that let you access the JNI
functions with an easy and familiar syntax. For example, the line in the preceding example

(*jEnv)->ReleaseStringUTFChars(jEnv, jMsg,msg);

can be rewritten as follows in C++:

jEnv->ReleaseStringUTFChars(jMsg,msg);

You’ll notice that you no longer need the double dereferencing of the jEnv pointer, and that
the same pointer is no longer passed as the first parameter to the JNI function call. In the
rest of these examples, I’ll use the C++ style.

Accessing Java Strings
As an example of accessing a JNI function, consider the code shown above. Here, the JNIEnv
argument jEnv is used to access a Java String. Java Strings are in Unicode format, so if you
receive one and want to pass it to a non-Unicode function (printf( ), for example), you must
first convert it into ASCII characters with the JNI function GetStringUTFChars( ). This
function takes a Java String and converts it to UTF-8 characters. (These are 8 bits wide to



792 Thinking in Java  www.BruceEckel.com

hold ASCII values or 16 bits wide to hold Unicode. If the content of the original string was
composed only of ASCII, the resulting string will be ASCII as well.)

GetStringUTFChars is the name of one of the fields in the structure that JNIEnv is
indirectly pointing to, and this field in turn is a pointer to a function. To access the JNI
function, we use the traditional C syntax for calling a function though a pointer. You use the
form above to access all of the JNI functions.

Passing and using Java objects
In the previous example we passed a String to the native method. You can also pass Java
objects of your own creation to a native method. Inside your native method, you can access
the fields and methods of the object that was received.

To pass objects, use the ordinary Java syntax when declaring the native method. In the
example below, MyJavaClass has one public field and one public method. The class
UseObjects declares a native method that takes an object of class MyJavaClass. To see if the
native method manipulates its argument, the public field of the argument is set, the native
method is called, and then the value of the public field is printed.

class MyJavaClass {
  public void divByTwo() { aValue /= 2; }
  public int aValue;
}

public class UseObjects {
  public static void main(String [] args) {
    UseObjects app = new UseObjects();
    MyJavaClass anObj = new MyJavaClass();
    anObj.aValue = 2;
    app.changeObject(anObj);
    System.out.println("Java: " + anObj.aValue);
  }
  private native void
  changeObject(MyJavaClass obj);
  static {
    System.loadLibrary("UseObjImpl");
  }
}

After compiling the code and handing the .class file to javah, you can implement the native
method. In the example below, once the field and method ID are obtained, they are accessed
through JNI functions.

JNIEXPORT void JNICALL
Java_UseObjects_changeObject(
  JNIEnv * env, jobject jThis, jobject obj) {
  jclass cls;
  jfieldID fid;
  jmethodID mid;
  int value;
  cls = env->GetObjectClass(obj);
  fid = env->GetFieldID(cls,
        "aValue", "I");



Appendix A: Using Non-Java Code 793

  mid = env->GetMethodID(cls,
        "divByTwo", "()V");
  value = env->GetIntField(obj, fid);
  printf("Native: %d\n", value);
  env->SetIntField(obj, fid, 6);
  env->CallVoidMethod(obj, mid);
  value = env->GetIntField(obj, fid);
  printf("Native: %d\n", value);
}

The first argument aside, the C++ function receives a jobject, which is the native side of the
Java object reference we pass from the Java code. We simply read aValue, print it out,
change the value, call the object’s divByTwo( ) method, and print the value out again.

To access a field or method, you must first obtain its identifier. Appropriate JNI functions
take the class object, the element name, and the signature. These functions return an
identifier that you use to access the element. This approach might seem convoluted, but
your native method has no knowledge of the internal layout of the Java object. Instead, it
must access fields and methods through indexes returned by the JVM. This allows different
JVMs to implement different internal object layouts with no impact on your native methods.

If you run the Java program, you’ll see that the object that’s passed from the Java side is
manipulated by your native method. But what exactly is passed? A pointer or a Java
reference? And what is the garbage collector doing during native method calls?

The garbage collector continues to operate during native method execution, but it’s
guaranteed that your objects will not be garbage collected during a native method call. To
ensure this, local references are created before, and destroyed right after, the native method
call. Since their lifetime wraps the call, you know that the objects will be valid throughout
the native method call.

Since these references are created and subsequently destroyed every time the function is
called, you cannot make local copies in your native methods, in static variables. If you want
a reference that lasts across function invocations, you need a global reference. Global
references are not created by the JVM, but the programmer can make a global reference out
of a local one by calling specific JNI functions. When you create a global reference, you
become responsible for the lifetime of the referenced object. The global reference (and the
object it refers to) will be in memory until the programmer explicitly frees the reference with
the appropriate JNI function. It’s similar to malloc( ) and free( ) in C.

JNI and Java exceptions
With JNI, Java exceptions can be thrown, caught, printed, and rethrown just as they are
inside a Java program. But it’s up to the programmer to call dedicated JNI functions to deal
with exceptions. Here are the JNI functions for exception handling:

� Throw( )
Throws an existing exception object. Used in native methods to rethrow an exception.

� ThrowNew( )
Generates a new exception object and throws it.

� ExceptionOccurred( )
Determines if an exception was thrown and not yet cleared.



794 Thinking in Java  www.BruceEckel.com

� ExceptionDescribe( )
Prints an exception and the stack trace.

� ExceptionClear( )
Clears a pending exception.

� FatalError( )
Raises a fatal error. Does not return.

Among these, you can’t ignore ExceptionOccurred( ) and ExceptionClear( ). Most JNI
functions can generate exceptions, and there is no language feature that you can use in place
of a Java try block, so you must call ExceptionOccurred( ) after each JNI function call to
see if an exception was thrown. If you detect an exception, you may choose to handle it (and
possibly rethrow it). You must make certain, however, that the exception is eventually
cleared. This can be done in your function using ExceptionClear( ) or in some other
function if the exception is rethrown, but it must be done.

You must ensure that the exception is cleared, because otherwise the results will be
unpredictable if you call a JNI function while an exception is pending. There are few JNI
functions that are safe to call during an exception; among these, of course, are all the
exception handling functions.

JNI and threading
Since Java is a multithreaded language, several threads can call a native method
concurrently. (The native method might be suspended in the middle of its operation when a
second thread calls it.) It’s entirely up to the programmer to guarantee that the native call is
thread-safe, i.e. it does not modify shared data in an unmonitored way. Basically, you have
two options: declare the native method as synchronized or implement some other strategy
within the native method to ensure correct, concurrent data manipulation.

Also, you should never pass the JNIEnv pointer across threads, since the internal structure it
points to is allocated on a per-thread basis and contains information that makes sense only
in that particular thread.

Using a pre-existing code base
The easiest way to implement JNI native methods is to start writing native method
prototypes in a Java class, compile that class, and run the .class file through javah. But
what if you have a large, pre-existing code base that you want to call from Java? Renaming
all the functions in your DLLs to match the JNI name mangling convention is not a viable
solution. The best approach is to write a wrapper DLL “outside” your original code base. The
Java code calls functions in this new DLL, which in turn calls your original DLL functions.
This solution is not just a work-around; in most cases you must do this anyway because
you must call JNI functions on the object references before you can use them.

The Microsoft way
At the time of this writing, Microsoft does not support JNI, but provides proprietary support
to call non-Java code. This support is built into the compiler, the Microsoft JVM, and
external tools. The features described in this section will work only if your program was
compiled using the Microsoft Java compiler and run on the Microsoft Java Virtual Machine.



Appendix A: Using Non-Java Code 795

If you plan to distribute your application on the Internet, or if your Intranet is built on
different platforms, this can be a serious issue.

The Microsoft interface to Win32 code provides three ways to connect to Win32:

1. J/Direct: A way to easily call Win32 DLL functions, with some limitations.

2. Raw Native Interface (RNI): You can call Win32 DLL functions, but you must then
handle garbage collection.

3. Java/COM integration: You can expose or call COM services directly from Java.

I’ll cover all three techniques in the following sections.

At the time of writing, these features were tested on the Microsoft SDK for Java 2.0 beta 2,
which was downloaded (with a painful process they call “Active Setup”) from the Microsoft
Web site. The Java SDK is a set of command-line tools, but the compilation engine can be
easily plugged into the Developer Studio environment, allowing you to use Visual J++ 1.1
to compile Java 1.1 code.

J/Direct
J/Direct is the simplest way to call functions in a Win32 DLL. It was designed primarily to
interface with the Win32 API, but you can use it to call any other APIs. The ease of use of
this feature is counterbalanced by some limitations and reduced performance (compared to
RNI). But J/Direct has distinct advantages. First, there is no need to write additional non-
Java code, except the code in the DLL you want to call. In other words, you do not need a
wrapper or proxy/stub DLL. Second, function arguments are automatically converted to and
from standard data types. (If you must pass user-defined data types, J/Direct might not be
the way to go.) Third, it’s simple and straightforward, as the example below shows. In just a
few lines, this example calls the Win32 API function MessageBox( ), which pops up a little
modal window with a title, a message, an optional icon, and a few buttons.

public class ShowMsgBox {
  public static void main(String args[])
  throws UnsatisfiedLinkError   {
    MessageBox(0,
      "Created by the MessageBox() Win32 func",
      "Thinking in Java", 0);
  }
  /** @dll.import("USER32") */
  private static native int
  MessageBox(int hwndOwner, String text,
    String title, int fuStyle);
}

Amazingly, this code is all you need to call a function in a Win32 DLL using J/Direct. The
key is the @dll.import directive before the MessageBox( ) declaration, at the bottom of the
example code. It looks like a comment, but it’s not: it tells the compiler that the function
below the directive is implemented in the USER32 DLL, and should be called accordingly. All
you must do is supply a prototype that matches the function implementation in the DLL and
call the function. But instead of typing in the Java version of each Win32 API function that
you need, a Microsoft Java package does this for you (I’ll describe this shortly). For this
example to work, the function must be exported by name by the DLL, but the @dll.import



796 Thinking in Java  www.BruceEckel.com

directive can be used to link by ordinal as well, i.e., you can specify the entry position of the
function in the DLL. I’ll cover the features of the @dll.import directive later.

An important issue in the process of linking with non-Java code is the automatic marshaling
of the function parameters. As you can see, the Java declaration of MessageBox( ) takes two
String arguments, but the original C implementation takes two char pointers. The compiler
automatically converts the standard data types for you, following the rules described in a
later section.

Finally, you might have noticed the UnsatisfiedLinkError exception in the declaration of
main( ). This exception occurs when the linker is unable to resolve the symbol for the non-
Java function at run-time. This happens for a number of reasons: the .dll file was not
found, it is not a valid DLL, or J/Direct is not supported by your virtual machine. For the
DLL to be found, it must be in the Windows or Windows\System directory, in one of the
directories listed in your PATH environment variable, or in the directory where the .class file
is located. J/Direct is supported in the Microsoft Java compiler version 1.02.4213 or above,
and in the Microsoft JVM version 4.79.2164 or above. To get the compiler version number,
run JVC from the command line with no parameters. To get the JVM version number, locate
the icon for msjava.dll, and using the context menu look at its properties.

The @@dll.import directive
The @dll.import directive, your one and only way to J/Direct, is quite flexible. It has a
number of modifiers that you can use to customize the way you link to the non-Java code.
It can also be applied to some methods within a class or to a whole class, meaning that all of
the methods you declare in that class are implemented in the same DLL. Let’s look at these
features.

Aliasing and linking by ordinal
For the @dll.import directive to work as shown above, the function in the DLL must be
exported by name. However, you might want to use a different name than the original one
in the DLL (aliasing), or the function might be exported by number (i.e. by ordinal) instead
of by name. The example below declares FinestraDiMessaggio( ) (the Italian equivalent of
“MessageBox”) as an alias to MessageBox( ). As you can see, the syntax is pretty simple.

public class Aliasing {
  public static void main(String args[])
  throws UnsatisfiedLinkError   {
    FinestraDiMessaggio(0,
      "Created by the MessageBox() Win32 func",
      "Thinking in Java", 0);
  }
  /** @dll.import("USER32",
  entrypoint="MessageBox") */
  private static native int
  FinestraDiMessaggio(int hwndOwner, String text,
    String title, int fuStyle);
}

The next example shows how to link to a function in a DLL that is not exported by name,
but by its position inside of the DLL. The example assumes that there is a DLL named
MYMATH somewhere along your path, and that this DLL contains at position 3 a function
that takes two integers and gives you back the sum.



Appendix A: Using Non-Java Code 797

public class ByOrdinal {
  public static void main(String args[])
  throws UnsatisfiedLinkError {
    int j=3, k=9;
    System.out.println("Result of DLL function:"
      + Add(j,k));
  }
  /** @dll.import("MYMATH", entrypoint = "#3") */
  private static native int Add(int op1,int op2);
}

You can see the only difference is the form of the entrypoint argument.

Applying @@dll.import to the entire class
The @dll.import directive can be applied to an entire class, meaning that all of the methods
in that class are implemented in the same DLL and with the same linkage attributes. The
directive is not inherited by subclasses; for this reason, and since functions in a DLL are by
nature static functions, a better design approach is to encapsulate the API functions in a
separate class, as shown here:

/** @dll.import("USER32") */
class MyUser32Access {
  public static native int
  MessageBox(int hwndOwner, String text,
    String title, int fuStyle);
  public native static boolean
  MessageBeep(int uType);
}

public class WholeClass {
  public static void main(String args[])
  throws UnsatisfiedLinkError {
    MyUser32Access.MessageBeep(4);
    MyUser32Access.MessageBox(0,
      "Created by the MessageBox() Win32 func",
      "Thinking in Java", 0);
  }
}

Since the MessageBeep( ) and MessageBox( ) functions are now declared as static in a
different class, you must call them specifying their scope. You might think that you must
use the approach above to map all of the Win32 API (functions, constants, and data types)
to Java classes. Fortunately, you don’t have to.

The com.ms.win32 package
The Win32 API is fairly big – on the order of a thousand functions, constants, and data
types. Of course, you do not want to write the Java equivalent of every single Win32 API
function. Microsoft took care of this, distributing a Java package that maps the Win32 API
to Java classes using J/Direct. This package, named com.ms.win32, is installed in your
classpath during the installation of the Java SDK 2.0 if you select it in the setup options. The
package is made up of large number of Java classes that reproduce the constants, data
structures, and functions of the Win32 API. The three richest classes are User32.class,



798 Thinking in Java  www.BruceEckel.com

Kernel32.class, and Gdi32.class. These contain the core of the Win32 API. To use them, just
import them in your Java code. The ShowMsgBox example above can be rewritten using
com.ms.win32 as follows (I also took care of the UnsatisfiedLinkError in a more civilized
way):

import com.ms.win32.*;

public class UseWin32Package {
  public static void main(String args[]) {
    try {
      User32.MessageBeep(
        winm.MB_ICONEXCLAMATION);
      User32.MessageBox(0,
        "Created by the MessageBox() Win32 func",
        "Thinking in Java",
        winm.MB_OKCANCEL |
        winm.MB_ICONEXCLAMATION);
    } catch(UnsatisfiedLinkError e) {
      System.out.println("Can’t link Win32 API");
      System.out.println(e);
    }
  }
}

The package is imported in the first line. The MessageBeep( ) and MessageBox( ) functions
can now be called with no other declarations. In MessageBeep( ) you can see that importing
the package has also declared the Win32 constants. These constants are defined in a number
of Java interfaces, all named winx (x is the first letter of the constant you want to use).

At the time of this writing, the classes in the com.ms.win32 package are still under
development, but usable nonetheless.

Marshaling
Marshaling means converting a function argument from its native binary representation into
some language-independent format, and then converting this generic representation into a
binary format that is appropriate to the called function. In the example above, we called the
MessageBox( ) function and passed it a couple of Strings. MessageBox( ) is a C function, and
the binary layout of Java Strings is not the same as C strings, but the arguments are
nonetheless correctly passed. That’s because J/Direct takes care of converting a Java String into
a C string before calling the C code. This happens with all standard Java types. Below is a table
of the implicit conversions for simple data types:

Java C
byte BYTE or CHAR
short SHORT or WORD
int INT, UINT, LONG, ULONG, or

DWORD
char TCHAR
long __int64

float Float
double Double
boolean BOOL



Appendix A: Using Non-Java Code 799

String LPCTSTR (Allowed as return value
only in ole mode)

byte[] BYTE *
short[] WORD *
char[] TCHAR *
int[] DWORD *

The list continues, but this gives you the idea. In most cases, you do not need to worry
about converting to and from simple data types, but things are different when you must
pass arguments of user-defined data types. For example, you might need to pass the address
of a structured, user-defined data type, or you might need to pass a pointer to a raw
memory area. For these situations, there are special compiler directives to mark a Java class
so that it can be passed as a pointer to a structure (the @dll.struct directive). For details on
the use of these keywords, please refer to the product documentation.

Writing callback functions
Some Win32 API functions require a function pointer as one of the parameters. The
Windows API function may then call the argument function, possibly at a later time when
some event occurs. This technique is called a callback function. Examples include window
procedures and the callbacks you set up during a print operation (you give the print spooler
the address of your callback function so it can update the status and possibly interrupt
printing).

Another example is the EnumWindows( ) API function that enumerates all top-level
windows currently present in the system. EnumWindows( ) takes a function pointer, then
traverses a list maintained internally by Windows. For every window in the list, it calls the
callback function, passing the window handle as an argument to the callback.

To do the same thing in Java, you must use the Callback class in the com.ms.dll package.
You inherit from Callback and override callback( ). This method will accept only int
parameters and will return int or void. The method signature and implementation depends
on the Windows API function that’s using this callback.

Now all we need to do is create an instance of this Callback-derived class and pass it as the
function pointer argument to the API function. J/Direct will take care of the rest.

The example below calls the EnumWindows( ) Win32 API; the callback( ) method in the
EnumWindowsProc class gets the window handle for each top-level window, obtains the
caption text, and prints it to the console window.

import com.ms.dll.*;
import com.ms.win32.*;

class EnumWindowsProc extends Callback {
  public boolean callback(int hwnd, int lparam) {
    StringBuffer text = new StringBuffer(50);
    User32.GetWindowText(
      hwnd, text, text.capacity()+1);
    if(text.length() != 0)
      System.out.println(text);
    return true;  // to continue enumeration.
  }
}



800 Thinking in Java  www.BruceEckel.com

public class ShowCallback {
  public static void main(String args[])
  throws InterruptedException {
    boolean ok = User32.EnumWindows(
      new EnumWindowsProc(), 0);
    if(!ok)
      System.err.println("EnumWindows failed.");
    Thread.currentThread().sleep(3000);
  }
}

The call to sleep( ) allows the windows procedure to complete before main( ) exits.

Other J/Direct features
There are two more J/Direct features you can get using modifiers in the @dll.import
directive. The first is simplified access to OLE functions, and the second is the selection of the
ANSI versus Unicode version of API functions. Here is a short description of the two.

By convention, all OLE functions return a value of type HRESULT, which is a structured
integer value defined by COM. If you program at the COM level and you want something
different returned from an OLE function, you must pass it a pointer to a memory area that
the function will fill with data. But in Java we don’t have pointers; also, this style is not
exactly elegant. With J/Direct, you can easily call OLE functions using the ole modifier in
the @dll.import directive. A native method marked as an ole function is automatically
translated from a Java-style method signature, which is where you decide the return type,
into a COM-style function.

The second feature selects between ANSI and Unicode string handling. Most Win32 API
functions that handle strings come in two versions. For example, if you look at the symbols
exported by the USER32 DLL, you will not find a MessageBox( ) function, but instead
MessageBoxA( ) and MessageBoxW( ) functions, which are the ANSI and Unicode version,
respectively. If you do not specify which version you want to call in the @dll.import
directive, the JVM will try to figure it out. But this operation takes some time during
program execution time that you can save with the ansi, unicode, or auto modifiers.

For a more detailed discussion of these features, consult the Microsoft documentation.

Raw Native Interface (RNI)
Compared to J/Direct, RNI is a fairly complex interface to non-Java code, but it’s much
more powerful. RNI is closer to the JVM than J/Direct, and this lets you write much more
efficient code, manipulate Java objects in your native methods, and in general gives you a
much higher degree of integration with the JVM internal operations.

RNI is conceptually similar to Sun’s JNI. Because of this, and because the product is not yet
completed, I’ll just point out the major differences. For further information, please refer to
Microsoft’s documentation.

There are several notable differences between JNI and RNI. Below is the C header file
generated by msjavah, the Microsoft equivalent of Sun’s javah, applied to the
ShowMsgBox Java class file used previously for the JNI example.



Appendix A: Using Non-Java Code 801

/*  DO NOT EDIT -
automatically generated by msjavah  */
#include <native.h>
#pragma warning(disable:4510)
#pragma warning(disable:4512)
#pragma warning(disable:4610)

struct Classjava_lang_String;
#define Hjava_lang_String Classjava_lang_String

/*  Header for class ShowMsgBox  */

#ifndef _Included_ShowMsgBox
#define _Included_ShowMsgBox

#define HShowMsgBox ClassShowMsgBox
typedef struct ClassShowMsgBox {
#include <pshpack4.h>
  long MSReserved;
#include <poppack.h>
} ClassShowMsgBox;

#ifdef __cplusplus
extern "C" {
#endif
__declspec(dllexport) void __cdecl
ShowMsgBox_ShowMessage (struct HShowMsgBox *,
  struct Hjava_lang_String *);
#ifdef __cplusplus
}
#endif

#endif  /* _Included_ShowMsgBox */

#pragma warning(default:4510)
#pragma warning(default:4512)
#pragma warning(default:4610)

Apart from being less readable, there are more technical issues disguised in the code, which
we’ll examine.

In RNI, the native method programmer knows the binary layout of the objects. This allows
you to directly access the information you want; you don’t need to get a field or method
identifier as in JNI. But since not all virtual machines necessarily use the same binary layout
for their objects, the native method above is guaranteed to run only under the Microsoft
JVM.

In JNI, the JNIEnv argument gives access to a large number of functions to interact with the
JVM. In RNI, the functions for controlling JVM operations are directly available. Some of
them, like the one for handling exceptions, are similar to their JNI counterparts, but most of
the RNI functions have different names and purposes from those in JNI.

One of the most remarkable differences between JNI and RNI is the garbage collection model.
In JNI, the GC basically follows the same rules during native method execution that it



802 Thinking in Java  www.BruceEckel.com

follows for the Java code execution. In RNI, the programmer is responsible for starting and
stopping the Garbage Collector during native method activity. By default, the GC is disabled
upon entering the native method; doing so, the programmer can assume that the objects
being used will not be garbage collected during that time. But if the native method, let’s say,
is going to take a long time, the programmer is free to enable the GC, calling the
GCEnable( ) RNI function.

There is also something similar to the global handles features – something the programmer
can use to be sure that specific objects will not be garbage collected when the CG is enabled.
The concept is similar but the name is different: in RNI these guys are called GCFrames.

RNI Summary
The fact that RNI is tightly integrated with the Microsoft JVM is both its strength and its
weakness. RNI is more complex than JNI, but it also gives you a high degree of control of the
internal activities of the JVM, including garbage collection. Also, it is clearly designed for
speed, adopting compromises and techniques that C programmers are familiar with. But it’s
not suitable for JVMs other than Microsoft’s.

Java/COM integration
COM (formerly known as OLE) is the Microsoft Component Object Model, the foundation of
all ActiveX technologies. These include ActiveX Controls, Automation, and ActiveX
Documents. But COM is much more; it’s a specification (and a partial implementation) for
developing component objects that can interoperate using dedicated features of the operating
system. In practice, all of the new software developed for Win32 systems has some
relationship with COM – the operating system exposes some of its features via COM objects.
Third-party components can be COM, and you can create and register your own COM
components. In one way or another, if you want to write Win32 code, you’ll have to deal
with COM. Here, I’ll just recap the fundamentals of COM programming, and I’ll assume that
you are familiar with the concept of a COM server (any COM object that can expose services
to COM clients) and a COM client (a COM object that uses the services provided by a COM
server). This section kept things simple; the tools are actually much more powerful, and you
can use them in a more sophisticated way. But this requires a deep knowledge of COM,
which is beyond the scope of this appendix. If you’re interested in this powerful but
platform-dependent feature, you should investigate COM and the Microsoft documentation
on Java/COM integration. For more information, Dale Rogerson’s “Inside COM” (Microsoft
Press, 1997) is an excellent book.

Since COM is the architectural heart of all the new Win32 applications, being able to use, or
to expose, COM services from Java code can be important. The Java/COM integration is no
doubt one of the most interesting features of the Microsoft Java compiler and virtual
machine. Java and COM are so similar in their models that the integration is conceptually
straightforward and technically seamless – there’s almost no special code to write in order to
access COM. Most the details are handled by the compiler and/or by the virtual machine.
The effect is that the COM objects are seen as ordinary Java objects by the Java programmer,
and COM clients can use COM servers implemented in Java just like any other COM server.
Again, I use the generic term COM, but by extension this means that you can implement an
ActiveX Automation server in Java, or you can use an ActiveX Control in your Java
programs.



Appendix A: Using Non-Java Code 803

The most notable similarities between Java and COM revolve around the relationship
between COM interfaces and the Java interface keyword. This is a near-perfect match
because:

� A COM object exposes interfaces (and only interfaces).

� A COM interface has no implementation; the COM object exposing an interface is
responsible for its implementation.

� A COM interface is a description of a group of functions semantically related; no data is
exposed.

� A COM class groups together COM interfaces. A Java class can implement an arbitrary
number of Java interfaces

� COM has a reference object model; the programmer never “has” an object, just references
to one or more of its interfaces. Java has a reference object model as well – a reference to
an object can be cast to a reference to one of its interfaces.

� The lifetime in memory of a COM object is determined by the number of clients using the
object; when this count goes to zero, the object deletes itself from memory. In Java, the
lifetime of an object is also determined by the number of clients. When there are no more
references to that object, the object is a candidate to be released by the garbage collector.

This tight mapping between Java and COM not only allows the Java programmer to easily
access COM features, but it also makes Java an interesting language for writing COM code.
COM is language-independent, but the de facto languages for COM development are C++
and Visual Basic. Compared to Java, C++ is much more powerful for COM development and
generates much more efficient code, but it’s hard to use. Visual Basic is much easier than
Java, but it’s too far from the underlying operating system, and its object model does not
map very well to COM. Java is an excellent compromise between the two.

Let’s take a look at some of the keys points of COM development that you need to know to
write Java/COM clients and servers.

COM Fundamentals
COM is a binary specification for implementing interoperable objects. For example, COM
describes the binary layout an object should have to be able to call services in another COM
object. Since it’s a description of a binary layout, COM objects can be implemented in any
language that’s able to produce such a layout. Usually the programmer is freed from these
low level details, since the compiler takes care of generating the correct layout. For example,
if you program in C++, most compilers generate a virtual function table that is COM-
compliant. With languages that do not produce executable code, such as VB and Java, the
runtime takes care of hooking into COM.

The COM Library also supplies a few basic functions, such as the ones for creating an object
or locating a COM class registered in your system.

The main goals of a component object model are:

� Let objects call services into other objects.

� Allow new types of objects, or upgrades to existing ones, to be seamlessly plugged into
the environment.



804 Thinking in Java  www.BruceEckel.com

The first point is exactly what object-oriented programming is about: you have a client
object that makes requests to a server object. In this case, the terms “client” and “server” are
used in a generic way, and not to refer to some particular hardware configuration. With any
object-oriented language, the first goal is easy to achieve if your application is a monolithic
piece of code that implements both the server object code and the client object code. If you
make changes to the way client and the server objects interface with each other, you simply
compile and link again. When you restart your application, it uses a new version of the
components.

The situation is completely different when your application is made up of component objects
that are not under your control – you don’t control their source code and they can evolve
separately from your application. This is exactly the case, for example, when you use a
third-party ActiveX Control in your application. The control is installed in your system, and
your application is able, at runtime, to locate the server code, activate the object, link to it,
and use it. Later, you can install a newer version of the control, and your application should
still be able to run; in the worst case, it should gracefully report an error condition, such as
“Control not found,” without hanging up.

In these scenarios, your components are implemented in separate executable code files: DLLs
or EXEs. If the server object is implemented in a separate executable code file, you need a
standard, operating system supplied method to activate these objects. Of course, in your code
you do not want to use the physical name and location of the DLL or EXE, because these
might change; you want some identifier maintained by the operating system. Also, your
application needs a description of the services exposed by the server. This is exactly what I’ll
cover in the next two sections.

GUIDs and the Registry
COM uses structured integer numbers, 128 bits long, to unequivocally identify COM entities
registered in the system. These numbers, called GUIDs (Globally Unique IDentifiers) can be
generated by specific utilities, and are guaranteed to be unique “in space and in time,” to
quote Kraig Brockschmidt. In space, because the number is generator reads the id of your
network card, and in time because the system date and time are used as well. A GUID can be
used to identify a COM class (in which case it’s called a CLSID) or a COM interface (IID). The
names are different but the concept and the binary structure are the same. GUIDs are also
used in other situations that I will not cover here.

GUIDs, along with their associated information, are stored in the Windows Registry, or
Registration Database. It’s a hierarchical database, built into the operating system, which
holds a great amount of information about the hardware and software configuration of
your system. For COM, the Registry keeps track of the components installed in your system,
such as their CLSIDs, the name and location of the executable file that implement them, and
a lot of other details. One of these details is the ProgID of the component; a ProgID is
conceptually similar to a GUID in the sense that it identifies a COM component. The
difference is that a GUID is a binary, algorithmically-generated value, whereas a ProgID is a
programmer-defined string value. A ProgID is associated with a CLSID.

A COM component is said to be registered in the system when at least its CLSID and its
executable file location are present in the Registry (the ProgID is usually present as well).
Registering and using COM components is exactly what we’ll do in the following examples.

One of the effects of the Registry is as a decoupling layer between the client and server
objects. The client activates the server using some information that is stored in the Registry;
one piece of information is the physical location of the server executables. If the location
changes, the information in the Registry is updated accordingly, but this is transparent to



Appendix A: Using Non-Java Code 805

the client, which just uses ProgIDs or CLSIDs. In other words, the Registry allows for
location transparency of the server code. With the introduction of DCOM (Distributed COM),
a server that was running on a local machine can even be moved to a remote machine on the
network, without the client even noticing it (well, almost…).

Type Libraries
Because of COM’s dynamic linking and the independent evolution of client and server code,
the client always needs to dynamically detect the services that are exposed by the server.
These services are described in a binary, language-independent way (as interfaces and
method signatures) in the type library. This can be a separate file (usually with the .TLB
extension), or a Win32 resource linked into the executable. At runtime, the client uses the
information in the type library to call functions in the server.

You can generate a type library by writing a Microsoft Interface Definition Language (MIDL)
source file and compiling it with the MIDL compiler to generate a .TLB file. MIDL is a
language that describes COM classes, interfaces, and methods. It resembles the OMG/CORBA
IDL in name, syntax, and purpose. The Java programmer has no need to use MIDL, though.
A different Microsoft tool, described later, reads a Java class file and generates a type library.

Function return codes in COM: HRESULT
COM functions exposed by a server return a value of the predefined type HRESULT. An
HRESULT is an integer containing three fields. This allows for multiple failure and success
codes, along with additional information. Because a COM function returns an HRESULT, you
cannot use the return value to hand back ordinary data from the function call. If you must
return data, you pass a pointer to a memory area that the function will fill. This is known
as an out parameter. You don’t need to worry about this as a Java/COM programmer since
the virtual machine takes care of it for you. This is described in the following sections.

MS Java/COM Integration
The Microsoft Java compiler, Virtual Machine, and tools make life a lot easier for the
Java/COM programmer than it is for the C++/COM programmer. The compiler has special
directives and packages for treating Java classes as COM classes, but in most cases, you’ll
just rely on the Microsoft JVM support for COM, and on a couple of external tools.

The Microsoft Java Virtual Machine acts as a bridge between COM and Java objects. If you
create a Java object as a COM server, your object will still be running inside the JVM. The
Microsoft JVM is implemented as a DLL, which exposes COM interfaces to the operating
system. Internally, the JVM maps function calls to these COM interfaces to method calls in
your Java objects. Of course, the JVM must know which Java class file corresponds to the
server executable; it can discover this information because you previously registered the class
file in the Windows Registry using Javareg, a utility in the Microsoft Java SDK. Javareg
reads a Java class file, generates a corresponding type library and a GUID, and registers the
class in the system. Javareg can be used to register remote servers as well, for example,
servers that run on a different physical machine.

If you want to write a Java/COM client, you must go through a different process. A
Java/COM client is Java code that wants to activate and use one of the COM servers
registered on your system. Again, the virtual machine interfaces with the COM server and
exposes its services as methods in a Java class. Another Microsoft tool, jactivex, reads a type
library and generates Java source files that contain special compiler directives. The generated



806 Thinking in Java  www.BruceEckel.com

source files are part of a package named after the type library you specified. The next step is
to import that package in your COM client Java source files.

Let’s look at a couple of examples.

Developing COM servers in Java
This section shows the process you will apply to the development of ActiveX Controls,
Automation Servers, or any other COM-compliant server. The following example implements
a simple Automation server that adds integer numbers. You set the value of the addend with
the setAddend( ) method, and each time you call the sum( ) method the addend is added to
the current result. You retrieve the result with getResult( ) and reset the values with
clear( ). The Java class that implements this behavior is straightforward:

public class Adder {
  private int addend;
  private int result;
  public void setAddend(int a) { addend = a; }
  public int getAddend() { return addend; }
  public int getResult() { return result; }
  public void sum() { result += addend;  }
  public void clear() {
    result = 0;
    addend = 0;
  }
}

To use this Java class as a COM object, the Javareg tool is applied to the compiled
Adder.class file. This tool has a number of options; in this case we specify the Java class file
name (“Adder”), the ProgID we want to put in the Registry for this server
(“JavaAdder.Adder.1”), and the name we want for the type library that will be generated
(”JavaAdder.tlb”). Since no CLSID is given, Javareg will generate one; if we call Javareg
again on the same server, the existing CLSID will be used.

javareg /register
/class:Adder /progid:JavaAdder.Adder.1

/typelib:JavaAdder.tlb

Javareg also registers the new server in the Windows Registry. At this point, you must
remember to copy your Adder.class file into the Windows\Java\trustlib directory. For
security reasons, related mostly to the use of COM services by applets, your COM server will
be activated only if it is installed in the trustlib directory.

You now have a new Automation server installed on your system. To test it, you need an
Automation controller, and “the” Automation Controller is Visual Basic (VB). Below, you can
see a few lines of VB code. On the VB form, I put a text box to input the value of the addend,
a label to show the result, and two push buttons to invoke the sum( ) and clear( ) methods.
At the beginning, an object variable named Adder is declared. In the Form_Load subroutine,
executed when the form is first displayed, a new instance of the Adder automation server is
instantiated and the text fields on the form are initialized. When the user presses the “Sum”
or “Clear” buttons, appropriate methods in the server are invoked.

Dim Adder As Object

Private Sub Form_Load()



Appendix A: Using Non-Java Code 807

    Set Adder = CreateObject("JavaAdder.Adder.1")
    Addend.Text = Adder.getAddend
    Result.Caption = Adder.getResult
End Sub

Private Sub SumBtn_Click()
    Adder.setAddend (Addend.Text)
    Adder.Sum
    Result.Caption = Adder.getResult
End Sub

Private Sub ClearBtn_Click()
    Adder.Clear
    Addend.Text = Adder.getAddend
    Result.Caption = Adder.getResult
End Sub

Note that this code has no knowledge that the server was implemented in Java.

When you run this program and the CreateObject( ) function is called, the Windows
Registry is searched for the specified ProgID. Among the information related to the ProgID is
the name of the Java class file, so in response the Java Virtual Machine is started, and the
Java object instantiated inside the JVM. From then on, the JVM takes care of the interaction
between the client and server code.

Developing COM clients in Java
Now let’s jump to the other side and develop a COM client in Java. This program will call
services in a COM server that’s installed on your system. The example is a client for the
server we implemented in the previous example. While the code will look familiar to a Java
programmer, what happens behind the scenes is quite unusual. This example uses a server
that happens to be written in Java but applies to any ActiveX Control, ActiveX Automation
server, or ActiveX component installed in your system for which you have a type library.

First, the Jactivex tool is applied to the server’s type library. Jactivex has a number of
options and switches, but in its basic form it reads a type library and generates Java source
files, which it stores in your windows/Java/trustlib directory. In the example line below, it
is applied to the type library that was generated for out COM Automation server.

jactivex /javatlb JavaAdder.tlb

If, after Jactivex has finished, you take a look at your windows/Java/trustlib directory,
you’ll find a new subdirectory called javaadder that contains the source files for a new
package. This is the Java equivalent of the type library. These files use compiler directives
specific to the Microsoft compiler: the @com directives. The reason jactivex generated more
than one file is that COM uses more than one entity to describe a COM server (and also
because I did not fine-tune the use of MIDL files and the Java/COM tools).

The file named Adder.java is the equivalent of a coclass directive in a MIDL file: it’s the
declaration of a COM class. The other files are the Java equivalent of the COM interfaces
exposed by the server. These interfaces, such as Adder_DispatchDefault.java, are dispatch
interfaces, part of the mechanism of interaction between an Automation controller and an
Automation server. The Java/COM integration feature also supports the implementation and
use of dual interfaces. IDispatch and dual interfaces are beyond the scope of this appendix.



808 Thinking in Java  www.BruceEckel.com

Below, you can see the client code. The first line just imports the package generated by
jactivex. Then an instance of the COM Automation server is created and used, as if it was an
ordinary Java class. Notice the typecast on the line where the COM object is instantiated.
This is consistent with the COM object model. In COM, the programmer never has a
reference to the whole object; instead, the programmer can only have references to one or
more of the interfaces implemented in the class.

Instantiating a Java object of the Adder class tells COM to activate the server and to create an
instance of this COM object. But then we must specify which interface we want to use,
choosing among the ones implemented by the server. This is exactly what the typecast does.
The interface used here is the default dispatch interface, the standard interface that an
Automation controller uses to communicate with an Automation server (for details, see
Inside COM, ibid.). Notice how simple it is to activate the server and select a COM interface:

import javaadder.*;

public class JavaClient {
  public static void main(String [] args) {
    Adder_DispatchDefault iAdder =
         (Adder_DispatchDefault) new Adder();
    iAdder.setAddend(3);
    iAdder.sum();
    iAdder.sum();
    iAdder.sum();
    System.out.println(iAdder.getResult());
  }
}

Now you can compile and run the code.

The com.ms.com package
The com.ms.com package defines a number of classes for COM development. It supports the
use of GUIDs – the Variant and SafeArray Automation types – interfacing with ActiveX
Controls at a deeper level and handling COM exceptions.

I cannot cover all of these topics here, but I want to point out something about COM
exceptions. By convention, virtually all COM functions return an HRESULT value that tells
you if the function invocation succeeded or not and why. But if you look at the Java method
signature in our server and client code, there no HRESULT. Instead, we use the function
return value to get data back from some functions. The virtual machine is translating Java-
style function calls into COM-style function calls, even for the return parameter. But what
happens inside the virtual machine if one of the functions you call in the server fails at the
COM level? In this case, the JVM sees that the HRESULT value indicates a failure and
generates a native Java exception of class com.ms.com.ComFailException. In this way, you
can handle COM errors using Java exception handling instead of checking function return
values.

To learn more about the classes in this package, please refer to the Microsoft documentation.

ActiveX/Beans integration
An interesting result of Java/COM integration is the ActiveX/Beans integration, by which a
Java Bean can be hosted by an ActiveX container such as VB or any Microsoft Office



Appendix A: Using Non-Java Code 809

product, and an ActiveX Control can be hosted by a Beans container such as Sun’s BeanBox.
The Microsoft JVM takes care of the details. An ActiveX Control is just a COM server
exposing predefined, required interfaces. A Bean is just a Java class that is compliant with a
specific programming style. At the time this was written, however, the integration was not
perfect. For example, the virtual machine is not able to map the JavaBeans event model to
the COM event model. If you want to handle events from a Bean inside an ActiveX container,
the Bean must intercept system events such as mouse actions via low-level techniques, not
the standard JavaBeans delegation event model.

Apart from this, the ActiveX/Beans integration is extremely interesting. The concept and
tools are exactly the same as discussed above, so please consult Microsoft’s documentation
for more details.

A note about native methods and applets
Native methods face the security issue. When your Java code calls a native method, you pass
control outside of the virtual machine “sandbox.” The native method has complete access to
the operating system. Of course, this is exactly what you want if you write native methods,
but it is not acceptable for applets, at least not implicitly. You don’t want an applet,
downloaded from a remote Internet server, to be free to play with the file system and other
critical areas of your machine unless you allow it to do so. To prevent this situation with
J/Direct, RNI, and COM integration, only trusted Java code has permission to make native
method calls. Different conditions must be met depending on the feature the applet is trying
to use. For example, an applet that uses J/Direct must be digitally signed to indicate full
trust. At the time of this writing, not all of these security mechanisms are implemented (in
the Microsoft SDK for Java, beta 2), so keep an eye on the documentation as new versions
become available.

CORBA
In large, distributed applications, your needs might not be satisfied by the preceding
approaches. For example, you might want to interface with legacy datastores, or you might
need services from a server object regardless of its physical location. These situations require
some form of Remote Procedure Call (RPC), and possibly language independence. This is
where CORBA can help.

CORBA is not a language feature; it’s an integration technology. It’s a specification that
vendors can follow to implement CORBA-compliant integration products. CORBA is part of
the OMG’s effort to define a standard framework for distributed, language-independent
object interoperability.

CORBA supplies the ability to make remote procedure calls into Java objects and non-Java
objects, and to interface with legacy systems in a location-transparent way. Java adds
networking support and a nice object-oriented language for building graphical and non-
graphical applications. The Java and OMG object model map nicely to each other; for
example, both Java and CORBA implement the interface concept and a reference object
model.

CORBA Fundamentals
The object interoperability specification developed by the OMG is commonly referred to as
the Object Management Architecture (OMA). The OMA defines two components: the Core



810 Thinking in Java  www.BruceEckel.com

Object Model and the OMA Reference Architecture. The Core Object Model states the basic
concepts of object, interface, operation, and so on. (CORBA is a refinement of the Core Object
Model.) The OMA Reference Architecture defines an underlying infrastructure of services and
mechanisms that allow objects to interoperate. The OMA Reference Architecture includes the
Object Request Broker (ORB), Object Services (also known as CORBAservices), and common
facilities.

The ORB is the communication bus by which objects can request services from other objects,
regardless of their physical location. This means that what looks like a method call in the
client code is actually a complex operation. First, a connection with the server object must
exist, and to create a connection the ORB must know where the server implementation code
resides. Once the connection is established, the method arguments must be marshaled, i.e.
converted in a binary stream to be sent across a network. Other information that must be
sent are the server machine name, the server process, and the identity of the server object
inside that process. Finally, this information is sent through a low-level wire protocol, the
information is decoded on the server side, and the call is executed. The ORB hides all of this
complexity from the programmer and makes the operation almost as simple as calling a
method on local object.

There is no specification for how an ORB Core should be implemented, but to provide a basic
compatibility among different vendors’ ORBs, the OMG defines a set of services that are
accessible through standard interfaces.

CORBA Interface Definition Language (IDL)
CORBA is designed for language transparency: a client object can call methods on a server
object of different class, regardless of the language they are implemented with. Of course, the
client object must know the names and signatures of methods that the server object exposes.
This is where IDL comes in. The CORBA IDL is a language-neutral way to specify data types,
attributes, operations, interfaces, and more. The IDL syntax is similar to the C++ or Java
syntax. The following table shows the correspondence between some of the concepts
common to three languages that can be specified through CORBA IDL:

CORBA IDL Java C++
Module Package Namespace
Interface Interface Pure abstract class
Method Method Member function

The inheritance concept is supported as well, using the colon operator as in C++. The
programmer writes an IDL description of the attributes, methods, and interfaces that will be
implemented and used by the server and clients. The IDL is then compiled by a vendor-
provided IDL/Java compiler, which reads the IDL source and generates Java code.

The IDL compiler is an extremely useful tool: it doesn’t just generate a Java source
equivalent of the IDL, it also generates the code that will be used to marshal method
arguments and to make remote calls. This code, called the stub and skeleton code, is
organized in multiple Java source files and is usually part of the same Java package.

The naming service
The naming service is one of the fundamental CORBA services. A CORBA object is accessed
through a reference, a piece of information that’s not meaningful for the human reader. But
references can be assigned programmer-defined, string names. This operation is known as
stringifying the reference, and one of the OMA components, the Naming Service, is devoted to
performing string-to-object and object-to-string conversion and mapping. Since the Naming



Appendix A: Using Non-Java Code 811

Service acts as a telephone directory that both servers and clients can consult and
manipulate, it runs as a separate process. Creating an object-to-string mapping is called
binding an object, and removing the mapping is called unbinding. Getting an object reference
passing a string is called resolving the name.

For example, on startup, a server application could create a server object, bind the object into
the name service, and then wait for clients to make requests. A client first obtains a server
object reference, resolving the string name, and then can make calls into the server using the
reference.

Again, the Naming Service specification is part of CORBA, but the application that
implements it is provided by the ORB vendor. The way you get access to the Naming Service
functionality can vary from vendor to vendor.

An example
The code shown here will not be elaborate because different ORBs have different ways to
access CORBA services, so examples are vendor specific. (The example below uses JavaIDL, a
free product from Sun that comes with a light-weight ORB, a naming service, and a IDL-to-
Java compiler.) In addition, since Java is young and still evolving, not all CORBA features are
present in the various Java/CORBA products.

We want to implement a server, running on some machine, that can be queried for the exact
time. We also want to implement a client that asks for the exact time. In this case we’ll be
implementing both programs in Java, but we could also use two different languages (which
often happens in real situations).

Writing the IDL source
The first step is to write an IDL description of the services provided. This is usually done by
the server programmer, who is then free to implement the server in any language in which a
CORBA IDL compiler exists. The IDL file is distributed to the client side programmer and
becomes the bridge between languages.

The example below shows the IDL description of our exact time server:

module RemoteTime {
   interface ExactTime {
      string getTime();
   };
};

This is a declaration of the ExactTime interface inside the RemoteTime namespace. The
interface is made up of one single method the gives back the current time in string format.

Creating stubs and skeletons
The second step is to compile the IDL to create the Java stub and skeleton code that we’ll use
for implementing the client and the server. The tool that comes with the JavaIDL product is
idltojava:

idltojava –fserver –fclient RemoteTime.idl

The two flags tell idltojava to generate code for both the stub and the skeleton. Idltojava
generates a Java package named after the IDL module, RemoteTime, and the generated Java



812 Thinking in Java  www.BruceEckel.com

files are put in the RemoteTime subdirectory. _ExactTimeImplBase.java is the skeleton
that we’ll use to implement the server object, and _ExactTimeStub.java will be used for the
client. There are Java representations of the IDL interface in ExactTime.java and a couple of
other support files used, for example, to facilitate access to the naming service operations.

Implementing the server and the client
Below you can see the code for the server side. The server object implementation is in the
ExactTimeServer class. The RemoteTimeServer is the application that creates a server
object, registers it with the ORB, gives a name to the object reference, and then sits quietly
waiting for client requests.

import RemoteTime.*;

import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;

import java.util.*;
import java.text.*;

// Server object implementation
class ExactTimeServer extends _ExactTimeImplBase{
  public String getTime(){
    return DateFormat.
        getTimeInstance(DateFormat.FULL).
          format(new Date(
              System.currentTimeMillis()));
  }
}

// Remote application implementation
public class RemoteTimeServer {
  public static void main(String args[])  {
    try {
      // ORB creation and initialization:
      ORB orb = ORB.init(args, null);
      // Create the server object and register it:
      ExactTimeServer timeServerObjRef =
        new ExactTimeServer();
      orb.connect(timeServerObjRef);
      // Get the root naming context:
      org.omg.CORBA.Object objRef =
        orb.resolve_initial_references(
          "NameService");
      NamingContext ncRef =
        NamingContextHelper.narrow(objRef);
      // Assign a string name to the
      // object reference (binding):
      NameComponent nc =
        new NameComponent("ExactTime", "");
      NameComponent path[] = {nc};
      ncRef.rebind(path, timeServerObjRef);
      // Wait for client requests:



Appendix A: Using Non-Java Code 813

      java.lang.Object sync =
        new java.lang.Object();
      synchronized(sync){
        sync.wait();
      }
    }
    catch (Exception e)  {
      System.out.println(
         "Remote Time server error: " + e);
      e.printStackTrace(System.out);
    }
  }
}

As you can see, implementing the server object is simple; it’s a regular Java class that
inherits from the skeleton code generated by the IDL compiler. Things get a bit more
complicated when it comes to interacting with the ORB and other CORBA services.

Some CORBA services
This is a short description of what the JavaIDL-related code is doing (primarily ignoring the
part of the CORBA code that is vendor dependent). The first line in main( ) starts up the
ORB, and of course, this is because our server object will need to interact with it. Right after
the ORB initialization, a server object is created. Actually, the right term would be a transient
servant object: an object that receives requests from clients, and whose lifetime is the same as
the process that creates it. Once the transient servant object is created, it is registered with
the ORB, which means that the ORB knows of its existence and can now forward requests to
it.

Up to this point, all we have is timeServerObjRef, an object reference that is known only
inside the current server process. The next step will be to assign a stringified name to this
servant object; clients will use that name to locate the servant object. We accomplish this
operation using the Naming Service. First, we need an object reference to the Naming
Service; the call to resolve_initial_references( ) takes the stringified object reference of the
Naming Service that is “NameService,” in JavaIDL, and returns an object reference. This is
cast to a specific NamingContext reference using the narrow( ) method. We can use now
the naming services.

To bind the servant object with a stringified object reference, we first create a
NameComponent object, initialized with “ExactTime,” the name string we want to bind to
the servant object. Then, using the rebind( ) method, the stringified reference is bound to the
object reference. We use rebind( ) to assign a reference, even if it already exists, whereas
bind( ) raises an exception if the reference already exists. A name is made up in CORBA by a
sequence of NameContexts – that’s why we use an array to bind the name to the object
reference.

The servant object is finally ready for use by clients. At this point, the server process enters a
wait state. Again, this is because it is a transient servant, so its lifetime is confined to the
server process. JavaIDL does not currently support persistent objects – objects that survive
the execution of the process that creates them.

Now that we have an idea of what the server code is doing, let’s look at the client code:

import RemoteTime.*;
import org.omg.CosNaming.*;



814 Thinking in Java  www.BruceEckel.com

import org.omg.CORBA.*;

public class RemoteTimeClient {
  public static void main(String args[]) {
    try {
      // ORB creation and initialization:
      ORB orb = ORB.init(args, null);
      // Get the root naming context:
      org.omg.CORBA.Object objRef =
        orb.resolve_initial_references(
          "NameService");
      NamingContext ncRef =
        NamingContextHelper.narrow(objRef);
      // Get (resolve) the stringified object
      // reference for the time server:
      NameComponent nc =
        new NameComponent("ExactTime", "");
      NameComponent path[] = {nc};
      ExactTime timeObjRef =
        ExactTimeHelper.narrow(
          ncRef.resolve(path));
      // Make requests to the server object:
      String exactTime = timeObjRef.getTime();
      System.out.println(exactTime);
    } catch (Exception e) {
      System.out.println(
         "Remote Time server error: " + e);
      e.printStackTrace(System.out);
    }
  }
}

The first few lines do the same as they do in the server process: the ORB is initialized and a
reference to the naming service server is resolved. Next, we need an object reference for the
servant object, so we pass the stringified object reference to the resolve( ) method, and we
cast the result into an ExactTime interface reference using the narrow( ) method. Finally,
we call getTime( ).

Activating the name service process
Finally we have a server and a client application ready to interoperate. You’ve seen that both
need the naming service to bind and resolve stringified object references. You must start the
naming service process before running either the server or the client. In JavaIDL, the naming
service is a Java application that comes with the product package, but it can be different
with other products. The JavaIDL naming service runs inside an instance of the JVM and
listens by default to network port 900.

Activating the server and the client
Now you are ready to start your server and client application (in this order, since our server
is transient). If everything is set up correctly, what you’ll get is a single output line on the
client console window, giving you the current time. Of course, this might be not very
exciting by itself, but you should take one thing into account: even if they are on the same
physical machine, the client and the server application are running inside different virtual



Appendix A: Using Non-Java Code 815

machines and they can communicate via an underlying integration layer, the ORB and the
Naming Service.

This is a simple example, designed to work without a network, but an ORB is usually
configured for location transparency. When the server and the client are on different
machines, the ORB can resolve remote stringified references using a component known as
the Implementation Repository. Although the Implementation Repository is part of CORBA,
there is almost no specification, so it differs from vendor to vendor.

As you can see, there is much more to CORBA than what has been covered here, but you
should get the basic idea. If you want more information about CORBA, the place to start is
the OMG Web site, at http://www.omg.org. There you’ll find documentation, white papers,
proceedings, and references to other CORBA sources and products.

Java Applets and CORBA
Java applets can act as CORBA clients. This way, an applet can access remote information
and services exposed as CORBA objects. But an applet can connect only with the server from
which it was downloaded, so all the CORBA objects the applet interacts with must be on that
server. This is the opposite of what CORBA tries to do: give you complete location
transparency.

This is an issue of network security. If you’re on an Intranet, one solution is to loosen the
security restrictions on the browser. Or, set up a firewall policy for connecting with external
servers.

Some Java ORB products offer proprietary solutions to this problem. For example, some
implement what is called HTTP Tunneling, while others have their special firewall features.

This is too complex a topic to be covered in an appendix, but it is definitely something you
should be aware of.

CORBA vs. RMI
You saw that one of the main CORBA features is RPC support, which allows your local
objects to call methods in remote objects. Of course, there already is a native Java feature
that does exactly the same thing: RMI (see Chapter 15). While RMI makes RPC possible
between Java objects, CORBA makes RPC possible between objects implemented in any
language. It’s a big difference.

However, RMI can be used to call services on remote, non-Java code. All you need is some
kind of wrapper Java object around the non-Java code on the server side. The wrapper object
connects externally to Java clients via RMI, and internally connects to the non-Java code
using one of the techniques shown above, such as JNI or J/Direct.

This approach requires you to write a kind of integration layer, which is exactly what
CORBA does for you, but then you don’t need a third-party ORB.

Summary
What you’ve seen in this appendix are the most common techniques to call non-Java code
from a Java application. Each technique has its pros and cons, but currently the major
problem is that not all of these features are available on all JVMs, so a Java program that



816 Thinking in Java  www.BruceEckel.com

calls native methods on a specific platform might not work on a different platform with a
different JVM.

Sun’s JNI is flexible, reasonably simple (although it requires a lot of control over the JVM
internals), powerful, and it’s available on most JVMs, but not all. Microsoft, at the time of
this writing, does not support JNI, but offers J/Direct, a simple way to call Win32 DLL
functions, and RNI, which is designed for high-performance code but requires a good
understanding of the JVM internals. Microsoft also offers its proprietary Java/COM
integration feature, which is powerful and makes Java an interesting language for writing
COM servers and clients. J/Direct, RNI, and Java/COM integration are supported only by the
Microsoft compiler and JVM.

Finally, we took a look at CORBA, which allows your Java objects to talk to other objects
regardless of their physical location and implementation language. CORBA is different from
the techniques above because it is not integrated with the Java language, but instead uses
third-party integration technology and requires that you buy a third-party ORB. CORBA is
an interesting and general solution, but it might not be the best approach if you just want to
make calls into the operating system.



817

# $

B: Comparing C++
and Java

As a C++ programmer, you already have the basic idea of object-
oriented programming, and the syntax of Java no doubt looks familiar to
you. This makes sense since Java was derived from C++.
However, there are a surprising number of differences between C++ and Java. These
differences are intended to be significant improvements, and if you understand the
differences you’ll see why Java is such a beneficial programming language. This appendix
takes you through the important features that distinguish Java from C++.

1. The biggest potential stumbling block is speed: interpreted Java runs in the range of 20
times slower than C. Nothing prevents the Java language from being compiled and there
are just-in-time compilers appearing at this writing that offer significant speed-ups. It is
not inconceivable that full native compilers will appear for the more popular platforms,
but without those there are classes of problems that will be insoluble with Java because
of the speed issue.

2. Java has both kinds of comments like C++ does.

3. Everything must be in a class. There are no global functions or global data. If you want
the equivalent of globals, make static methods and static data within a class. There are
no structs or enumerations or unions, only classes.

4.  All method definitions are defined in the body of the class. Thus, in C++ it would look
like all the functions are inlined, but they’re not (inlines are noted later).



818 Thinking in Java  www.BruceEckel.com

5. Class definitions are roughly the same form in Java as in C++, but there’s no closing
semicolon. There are no class declarations of the form class foo, only class definitions.
class aType {
  void aMethod( ) { /* method body */ }
}

6. There’s no scope resolution operator :: in Java. Java uses the dot for everything, but can
get away with it since you can define elements only within a class. Even the method
definitions must always occur within a class, so there is no need for scope resolution
there either. One place where you’ll notice the difference is in the calling of static
methods: you say ClassName.methodName( );. In addition, package names are
established using the dot, and to perform a kind of C++ #include you use the import
keyword. For example: import java.awt.*;. (#include does not directly map to import,
but it has a similar feel to it).

7. Java, like C++, has primitive types for efficient access. In Java, these are boolean, char,
byte, short, int, long, float, and double. All the primitive types have specified sizes that
are machine independent for portability. (This must have some impact on performance,
varying with the machine.) Type-checking and type requirements are much tighter in
Java. For example:
1. Conditional expressions can be only boolean, not integral.
2. The result of an expression like X + Y must be used; you can’t just say “X + Y” for the
side effect.

8. The char type uses the international 16-bit Unicode character set, so it can
automatically represent most national characters.

9. Static quoted strings are automatically converted into String objects. There is no
independent static character array string like there is in C and C++.

10. Java adds the triple right shift >>> to act as a “logical” right shift by inserting zeroes at
the top end; the >> inserts the sign bit as it shifts (an “arithmetic” shift).

11. Although they look similar, arrays have a very different structure and behavior in Java
than they do in C++. There’s a read-only length member that tells you how big the
array is, and run-time checking throws an exception if you go out of bounds. All arrays
are created on the heap, and you can assign one array to another (the array handle is
simply copied). The array identifier is a first-class object, with all of the methods
commonly available to all other objects.

12. All objects of non-primitive types can be created only via new. There’s no equivalent to
creating non-primitive objects “on the stack” as in C++. All primitive types can be
created only on the stack, without new. There are wrapper classes for all primitive
classes so that you can create equivalent heap-based objects via new. (Arrays of
primitives are a special case: they can be allocated via aggregate initialization as in C++,
or by using new.)

13. No forward declarations are necessary in Java. If you want to use a class or a method
before it is defined, you simply use it – the compiler ensures that the appropriate
definition exists. Thus you don’t have any of the forward referencing issues that you do
in C++.

14. Java has no preprocessor. If you want to use classes in another library, you say import
and the name of the library. There are no preprocessor-like macros.



Appendix B: Comparing C++ and Java 819

15. Java uses packages in place of namespaces. The name issue is taken care of by putting
everything into a class and by using a facility called “packages” that performs the
equivalent namespace breakup for class names. Packages also collect library components
under a single library name. You simply import a package and the compiler takes care of
the rest.

16. Object handles defined as class members are automatically initialized to null.
Initialization of primitive class data members is guaranteed in Java; if you don’t
explicitly initialize them they get a default value (a zero or equivalent). You can initialize
them explicitly, either when you define them in the class or in the constructor. The
syntax makes more sense than that for C++, and is consistent for static and non-static
members alike. You don’t need to externally define storage for static members like you
do in C++.

17. There are no Java pointers in the sense of C and C++. When you create an object with
new, you get back a reference (which I’ve been calling a handle in this book). For
example:
String s = new String(“howdy”);
However, unlike C++ references that must be initialized when created and cannot be
rebound to a different location, Java references don’t have to be bound at the point of
creation. They can also be rebound at will, which eliminates part of the need for
pointers. The other reason for pointers in C and C++ is to be able to point at any place
in memory whatsoever (which makes them unsafe, which is why Java doesn’t support
them). Pointers are often seen as an efficient way to move through an array of primitive
variables; Java arrays allow you to do that in a safer fashion. The ultimate solution for
pointer problems is native methods (discussed in Appendix A). Passing pointers to
methods isn’t a problem since there are no global functions, only classes, and you can
pass references to objects.
The Java language promoters initially said “No pointers!”, but when many programmers
questioned how you can work without pointers, the promoters began saying “Restricted
pointers.” You can make up your mind whether it’s “really” a pointer or not. In any
event, there’s no pointer arithmetic.

18. Java has constructors that are similar to constructors in C++. You get a default
constructor if you don’t define one, and if you define a non-default constructor, there’s
no automatic default constructor defined for you, just like in C++. There are no copy
constructors, since all arguments are passed by reference.

19. There are no destructors in Java. There is no “scope” of a variable per se, to indicate
when the object’s lifetime is ended – the lifetime of an object is determined instead by the
garbage collector. There is a finalize( ) method that’s a member of each class, something
like a C++ destructor, but finalize( ) is called by the garbage collector and is supposed to
be responsible only for releasing "resources" (such as open files, sockets, ports, URLs, etc).
If you need something done at a specific point, you must create a special method and call
it, not rely upon finalize( ). Put another way, all objects in C++ will be (or rather,
should be) destroyed, but not all objects in Java are garbage collected. Because Java
doesn’t support destructors, you must be careful to create a cleanup method if it’s
necessary and to explicitly call all the cleanup methods for the base class and member
objects in your class.

20. Java has method overloading that works virtually identically to C++ function
overloading.

21. Java does not support default arguments.



820 Thinking in Java  www.BruceEckel.com

22. There’s no goto in Java. The one unconditional jump mechanism is the break label or
continue label, which is used to jump out of the middle of multiply-nested loops.

23. Java uses a singly-rooted hierarchy, so all objects are ultimately inherited from the root
class Object. In C++, you can start a new inheritance tree anywhere, so you end up
with a forest of trees. In Java you get a single ultimate hierarchy. This can seem
restrictive, but it gives a great deal of power since you know that every object is
guaranteed to have at least the Object interface. C++ appears to be the only OO
language that does not impose a singly rooted hierarchy.

24. Java has no templates or other implementation of parameterized types. There is a set of
collections: Vector, Stack, and Hashtable that hold Object references, and through
which you can satisfy your collection needs, but these collections are not designed for
efficiency like the C++ Standard Template Library (STL). The new collections in Java 1.2
are more complete, but still don’t have the same kind of efficiency as template
implementations would allow.

25. Garbage collection means memory leaks are much harder to cause in Java, but not
impossible. (If you make native method calls that allocate storage, these are typically not
tracked by the garbage collector.) However, many memory leaks and resouce leaks can be
tracked to a badly written finalize( ) or to not releasing a resource at the end of the
block where it is allocated (a place where a destructor would certainly come in handy).
The garbage collector is a huge improvement over C++, and makes a lot of
programming problems simply vanish. It might make Java unsuitable for solving a
small subset of problems that cannot tolerate a garbage collector, but the advantage of a
garbage collector seems to greatly outweigh this potential drawback.

26. Java has built-in multithreading support. There’s a Thread class that you inherit to
create a new thread (you override the run( ) method). Mutual exclusion occurs at the
level of objects using the synchronized keyword as a type qualifier for methods. Only
one thread may use a synchronized method of a particular object at any one time. Put
another way, when a synchronized method is entered, it first “locks” the object against
any other synchronized method using that object and “unlocks” the object only upon
exiting the method. There are no explicit locks; they happen automatically. You’re still
responsible for implementing more sophisticated synchronization between threads by
creating your own “monitor” class. Recursive synchronized methods work correctly.
Time slicing is not guaranteed between equal priority threads.

27. Instead of controlling blocks of declarations like C++ does, the access specifiers (public,
private, and protected) are placed on each definition for each member of a class.
Without an explicit access specifier, an element defaults to “friendly,” which means that
it is accessible to other elements in the same package (equivalent to them all being C++
friends) but inaccessible outside the package. The class, and each method within the
class, has an access specifier to determine whether it’s visible outside the file. Sometimes
the private keyword is used less in Java because “friendly” access is often more useful
than excluding access from other classes in the same package. (However, with
multithreading the proper use of private is essential.) The Java protected keyword
means “accessible to inheritors and to others in this package.” There is no equivalent to
the C++ protected keyword that means “accessible to inheritors only” (private
protected used to do this, but the use of that keyword pair was removed).

28.  Nested classes. In C++, nesting a class is an aid to name hiding and code organization
(but C++ namespaces eliminate the need for name hiding). Java packaging provides the
equivalence of namespaces, so that isn’t an issue. Java 1.1 has inner classes that look just
like nested classes. However, an object of an inner class secretly keeps a handle to the



Appendix B: Comparing C++ and Java 821

object of the outer class that was involved in the creation of the inner class object. This
means that the inner class object may access members of the outer class object without
qualification, as if those members belonged directly to the inner class object. This
provides a much more elegant solution to the problem of callbacks, solved with pointers
to members in C++.

29.  Because of inner classes described in the previous point, there are no pointers to members
in Java.

30. No inline methods. The Java compiler might decide on its own to inline a method, but
you don’t have much control over this. You can suggest inlining in Java by using the
final keyword for a method. However, inline functions are only suggestions to the C++
compiler as well.

31.  Inheritance in Java has the same effect as in C++, but the syntax is different. Java uses
the extends keyword to indicate inheritance from a base class and the super keyword to
specify methods to be called in the base class that have the same name as the method
you’re in. (However, the super keyword in Java allows you to access methods only in
the parent class, one level up in the hierarchy.) Base-class scoping in C++ allows you to
access methods that are deeper in the hierarchy). The base-class constructor is also called
using the super keyword. As mentioned before, all classes are ultimately automatically
inherited from Object. There’s no explicit constructor initializer list like in C++, but the
compiler forces you to perform all base-class initialization at the beginning of the
constructor body and it won’t let you perform these later in the body. Member
initialization is guaranteed through a combination of automatic initialization and
exceptions for uninitialized object handles.
public class Foo extends Bar {
  public Foo(String msg) {
    super(msg); // Calls base constructor
  }
  public baz(int i) { // Override
    super.baz(i); // Calls base method
  }
}

32. Inheritance in Java doesn’t change the protection level of the members in the base class.
You cannot specify public, private, or protected inheritance in Java, as you can in
C++. Also, overridden methods in a derived class cannot reduce the access of the method
in the base class. For example, if a method is public in the base class and you override it,
your overridden method must also be public (the compiler checks for this).

33. Java provides the interface keyword, which creates the equivalent of an abstract base
class filled with abstract methods and with no data members. This makes a clear
distinction between something designed to be just an interface and an extension of
existing functionality via the extends keyword. It’s worth noting that the abstract
keyword produces a similar effect in that you can’t create an object of that class. An
abstract class may contain abstract methods (although it isn’t required to contain any),
but it is also able to contain implementations, so it is restricted to single inheritance.
Together with interfaces, this scheme prevents the need for some mechanism like virtual
base classes in C++.
To create a version of the interface that can be instantiated, use the implements
keyword, whose syntax looks like inheritance:
public interface Face {
  public void smile();
}



822 Thinking in Java  www.BruceEckel.com

public class Baz extends Bar implements Face {
  public void smile( ) {
    System.out.println("a warm smile");
  }
}

34. There’s no virtual keyword in Java because all non-static methods always use dynamic
binding. In Java, the programmer doesn’t have to decide whether to use dynamic
binding. The reason virtual exists in C++ is so you can leave it off for a slight increase
in efficiency when you’re tuning for performance (or, put another way, “If you don’t use
it, you don’t pay for it”), which often results in confusion and unpleasant surprises. The
final keyword provides some latitude for efficiency tuning – it tells the compiler that this
method cannot be overridden, and thus that it may be statically bound (and made inline,
thus using the equivalent of a C++ non-virtual call). These optimizations are up to the
compiler.

35. Java doesn’t provide multiple inheritance (MI), at least not in the same sense that C++
does. Like protected, MI seems like a good idea but you know you need it only when
you are face to face with a certain design problem. Since Java uses a singly-rooted
hierarchy, you’ll probably run into fewer situations in which MI is necessary. The
interface keyword takes care of combining multiple interfaces.

36. Run-time type identification functionality is quite similar to that in C++. To get
information about handle X, you can say, for example:
X.getClass().getName();
To perform a type-safe downcast you say:
derived d = (derived)base;
just like an old-style C cast. The compiler automatically invokes the dynamic casting
mechanism without requiring extra syntax. Although this doesn’t have the benefit of
easy location of casts as in C++ “new casts,” Java checks usage and throws exceptions
so it won’t allow bad casts like C++ does.

37. Exception handling in Java is different because there are no destructors. A finally clause
can be added to force execution of statements that perform necessary cleanup. All
exceptions in Java are inherited from the base class Throwable, so you’re guaranteed a
common interface.
public void f(Obj b) throws IOException {
  myresource mr = b.createResource();
  try {
    mr.UseResource();
  } catch (MyException e) {
    // handle my exception
  } catch (Throwable e) {
    // handle all other exceptions
  } finally {
    mr.dispose(); // special cleanup
  }
}

38. Exception specifications in Java are vastly superior to those in C++. Instead of the C++
approach of calling a function at run-time when the wrong exception is thrown, Java
exception specifications are checked and enforced at compile-time. In addition, overridden
methods must conform to the exception specification of the base-class version of that
method: they can throw the specified exceptions or exceptions derived from those. This
provides much more robust exception-handling code.



Appendix B: Comparing C++ and Java 823

39. Java has method overloading, but no operator overloading. The String class does use the
+ and += operators to concatenate strings and String expressions use automatic type
conversion, but that’s a special built-in case.

40.  The const issues in C++ are avoided in Java by convention. You pass only handles to
objects and local copies are never made for you automatically. If you want the equivalent
of C++’s pass-by-value, you call clone( ) to produce a local copy of the argument
(although the clone( ) mechanism is somewhat poorly designed – see Chapter 12).
There’s no copy-constructor that’s automatically called.
To create a compile-time constant value, you say, for example:
static final int SIZE = 255;
static final int BSIZE = 8 * SIZE;

41. Because of security issues, programming an “application” is quite different from
programming an “applet.” A significant issue is that an applet won’t let you write to
disk, because that would allow a program downloaded from an unknown machine to
trash your disk. This changes somewhat with Java 1.1 digital signing, which allows you
to unequivocally know everyone that wrote all the programs that have special access to
your system (one of which might have trashed your disk; you still have to figure out
which one and what to do about it.). Java 1.2 also promises more power for applets

42. Since Java can be too restrictive in some cases, you could be prevented from doing
important tasks such as directly accessing hardware. Java solves this with native methods
that allow you to call a function written in another language (currently only C and C++
are supported). Thus, you can always solve a platform-specific problem (in a relatively
non-portable fashion, but then that code is isolated). Applets cannot call native methods,
only applications.

43. Java has built-in support for comment documentation, so the source code file can also
contain its own documentation, which is stripped out and reformatted into HTML via a
separate program. This is a boon for documentation maintenance and use.

44. Java contains standard libraries for solving specific tasks. C++ relies on non-standard
third-party libraries. These tasks include (or will soon include):
– Networking
– Database Connection (via JDBC)
– Multithreading
– Distributed Objects (via RMI and CORBA)
– Compression
– Commerce
The availability and standard nature of these libraries allow for more rapid application
development.

45. Java 1.1 includes the Java Beans standard, which is a way to create components that can
be used in visual programming environments. This promotes visual components that
can be used under all vendor’s development environments. Since you aren’t tied to a
particular vendor’s design for visual components, this should result in greater selection
and availability of components. In addition, the design for Java Beans is simpler for
programmers to understand; vendor-specific component frameworks tend to involve a
steeper learning curve.

46. If the access to a Java handle fails, an exception is thrown. This test doesn’t have to
occur right before the use of a handle; the Java specification just says that the exception
must somehow be thrown. Many C++ runtime systems can also throw exceptions for
bad pointers.



824 Thinking in Java  www.BruceEckel.com

47. Generally, Java is more robust, via:
– Object handles initialized to null (a keyword)
– Handles are always checked and exceptions are thrown for failures
– All array accesses are checked for bounds violations
– Automatic garbage collection prevents memory leaks
– Clean, relatively fool-proof exception handling
– Simple language support for multithreading
– Bytecode verification of network applets



825

K

C: Java programming
guidelines

This appendix contains suggestions to help guide you while performing
low-level program design, and also while writing code.
1. Capitalize the first letter of class names. The first letter of fields, methods, and objects

(handles) should be lowercase. All identifiers should run their words together, and
capitalize the first letter of all intermediate words. For example:
ThisIsAClassName
thisIsAMethodOrFieldName
Capitalize all the letters of static final primitive identifiers that have constant initializers
in their definitions. This indicates they are compile-time constants.
Packages are a special case: they are all lowercase letters, even for intermediate words.
The domain extension (com, org, net, edu, etc.) should also be lowercase. (This was a
change between Java 1.1 and Java 1.2.)

2. When creating a class for general-purpose use, follow a “canonical form” and include
definitions for equals( ), hashCode( ), toString( ), clone( ) (implement Cloneable), and
implement Serializable.

3. For each class you create, consider including a main( ) that contains code to test that
class. You don’t need to remove the test code to use the class in a project, and if you
make any changes you can easily re-run the tests. This code also provides examples of
how to use your class.

4. Methods should be kept to brief, functional units that describe and implement a discrete
part of a class interface. Ideally, methods should be concise; if they are long you might
want to search for a way to break them up into several shorter methods. This will also



826 Thinking in Java  www.BruceEckel.com

foster reuse within your class. (Sometimes methods must be large, but they should still
do just one thing.)

5. When you design a class, think about the client programmer’s perspective (the class
should be fairly obvious to use) and the perspective of the person maintaining the code
(anticipate the kind of changes that will be made, to make them easy).

6. Try to keep classes small and focused. Clues to suggest redesign of a class are:
1) A complicated switch statement: consider using polymorphism
2) A large number of methods that cover broadly different types of operations: consider
using several classes
3) A large number of member variables that concern broadly different characteristics:
consider using several classes

7. Keep things as “private as possible.” Once you publicize an aspect of your library (a
method, a class, a field), you can never take it out. If you do, you’ll wreck somebody’s
existing code, forcing them to rewrite and redesign. If you publicize only what you
must, you can change everything else with impunity, and since designs tend to evolve
this is an important freedom. Privacy is especially important when dealing with
multithreading – only private fields can be protected against un-synchronized use.

8. Watch out for “giant object syndrome.” This is often an affliction of procedural
programmers who are new to OOP and who end up writing a procedural program and
sticking it inside one or two giant objects. With the exception of application frameworks,
objects represent concepts in your application, not the application.

9. If you must do something ugly, at least localize the ugliness inside a class.

10. Anytime you notice classes that appear to have high coupling with each other, consider
the coding and maintenance improvements you might get by using inner classes (see
“Improving the code with an inner class” on page 605).

11. Use comments liberally, and use the javadoc comment-documentation syntax to
produce your program documentation.

12. Avoid using “magic numbers,” which are numbers hard-wired into code. These are a
nightmare if you need to change them, since you never know if “100” means “the array
size” or “something else entirely.” Instead, create a constant with a descriptive name and
use the constant identifier throughout your program. This makes the program easier to
understand and much easier to maintain.

13. In terms of constructors and exceptions, you’ll generally want to re-throw any
exceptions that you catch while in a constructor if it causes failure of the creation of that
object, so the caller doesn’t continue blindly, thinking that the object was created
correctly.

14. If your class requires any cleanup when the client programmer is finished with the
object, place the cleanup code in a single, well- defined method with a name like
cleanup( ) that clearly suggests its purpose. In addition, place a boolean flag in the class
to indicate whether the object has been cleaned up. In the finalize( ) method for the
class, check to make sure that the object has been cleaned up and throw a class derived
from RuntimeException if it hasn’t, to indicate a programming error. Before relying on
such a scheme, ensure that finalize( ) works on your system. (You might need to call
System.runFinalizersOnExit(true) to ensure this behavior.)



Appendix C: Java Programming Guidelines 827

15. If an object must be cleaned up (other than by garbage collection) within a particular
scope, use the following approach: Initialize the object and, if successful, immediately
enter a try block with a finally clause that performs the cleanup.

16. When overriding finalize( ) during inheritance, remember to call super.finalize( ) (this
is not necessary if Object is your immediate superclass). You should call
super.finalize( ) as the final act of your overridden finalize( ) rather than the first, to
ensure that base-class components are still valid if you need them.

17. When you are creating a fixed-size collection of objects, transfer them to an array
(especially if you’re returning this collection from a method). This way you get the
benefit of the array’s compile-time type checking, and the recipient of the array might
not need to cast the objects in the array in order to use them.

18. Choose interfaces over abstract classes. If you know something is going to be a base
class, your first choice should be to make it an interface, and only if you’re forced to
have method definitions or member variables should you change it to an abstract class.
An interface talks about what the client wants to do, while a class tends to focus on (or
allow) implementation details.

19. Inside constructors, do only what is necessary to set the object into the proper state.
Actively avoid calling other methods (except for final methods) since those methods can
be overridden by someone else to produce unexpected results during construction. (See
Chapter 7 for details.)

20. Objects should not simply hold some data; they should also have well-defined behaviors.

21. Choose composition first when creating new classes from existing classes. You should
only used inheritance if it is required by your design. If you use inheritance where
composition will work, your designs will become needlessly complicated.

22. Use inheritance and method overriding to express differences in behavior, and fields to
express variations in state. An extreme example of what not to do is inheriting different
classes to represent colors instead of using a “color” field.

23. To avoid a highly frustrating experience, make sure that there’s only one class of each
name anywhere in your classpath. Otherwise, the compiler can find the identically-
named other class first, and report error messages that make no sense. If you suspect
that you are having a classpath problem, try looking for .class files with the same
names at each of the starting points in your classpath.

24. When using the event “adapters” in the Java 1.1 AWT, there’s a particularly easy pitfall
you can encounter. If you override one of the adapter methods and you don’t quite get
the spelling right, you’ll end up adding a new method rather than overriding an existing
method. However, this is perfectly legal, so you won’t get any error message from the
compiler or run-time system – your code simply won’t work correctly.

25. Use design patterns to eliminate “naked functionality.” That is, if only one object of your
class should be created, don’t bolt ahead to the application and write a comment “Make
only one of these.” Wrap it in a singleton. If you have a lot of messy code in your main
program that creates your objects, look for a creational pattern like a factory method in
which you can encapsulate that creation. Eliminating “naked functionality” will not only
make your code much easier to understand and maintain, it will also make it more
bulletproof against the well-intentioned maintainers that come after you.



828 Thinking in Java  www.BruceEckel.com

26. Watch out for “analysis paralysis.” Remember that you must usually move forward in a
project before you know everything, and that often the best and fastest way to learn
about some of your unknown factors is to go to the next step rather than trying to
figure it out in your head.

27. Watch out for premature optimization. First make it work, then make it fast – but only
if you must, and only if it’s proven that there is a performance bottleneck in a particular
section of your code. Unless you have used a profiler to discover a bottleneck, you will
probably be wasting your time. The hidden cost of performance tweaks is that your code
becomes less understandable and maintainable.

28. Remember that code is read much more than it is written. Clean designs make for easy-
to-understand programs, but comments, detailed explanations, and examples are
invaluable. They will help both you and everyone who comes after you. If nothing else,
the frustration of trying to ferret out useful information from the online Java
documentation should convince you.

29. When you think you’ve got a good analysis, design, or implementation, do a
walkthrough. Bring someone in from outside your group – this doesn’t have to be a
consultant, but can be someone from another group within your company. Reviewing
your work with a pair of fresh eyes can reveal problems at a stage where it’s much
easier to fix them and more than pays for the time and money “lost” to the walkthrough
process.

30. Elegance always pays off. In the short term it might seem like it takes much longer to
come up with a truly graceful solution to a problem, but when it works the first time
and easily adapts to new situations instead of requiring hours, days, or months of
struggle, you’ll see the rewards (even if no one can measure them). And there’s nothing
that matches the feeling that comes from knowing you’ve got an amazing design. Resist
the urge to hurry; it will only slow you down.

31. You can find other programming guidelines on the Web. A good set of links can be found
at
http://www.ulb.ac.be/esp/ip-Links/Java/joodcs/mm-WebBiblio.html



829

8

D: Performance
This appendix was contributed by and used with the permission of Joe
Sharp, consultant (SharpJoe@aol.com).
The Java language emphasizes accurate, reliable behavior at the expense of performance.
This is reflected in features such as automatic garbage collection, rigorous runtime checking,
complete byte code checking, and conservative runtime synchronization. Availability on a
wide choice of platforms leads, at present, to an interpreted virtual machine that further
handicaps performance. About performance, Steve McConnell [16] quoted: “Complete it first,
and then perfect it. The part that needs to be perfect is usually small.” This appendix will aid
you in locating and optimizing that “part that needs to be perfect.”

Basic approach
You should address performance only after you have a correct and fully tested program:

1. Measure the program’s performance under realistic conditions. If it meets your
requirements, you are finished. If not, go to the next step.

2. Find the most critical performance bottleneck. This might require considerable ingenuity,
but the effort will pay off. If you simply guess where the bottleneck is and try to
optimize there, you’ll waste your time.

3. Apply the speed improvement techniques discussed in this appendix, then return to Step
1.

Finding the critical bottleneck is the key to cost-effective effort – Donald Knuth [9] improved
a program where 50 percent of the time was spent in less than 4 percent of the code. He
changed a few lines in an hour of work and doubled the program speed. Working on the rest



830 Thinking in Java  www.BruceEckel.com

of the program would have dissipated his valuable time and effort. To quote Knuth,
“Premature optimization is the root of all evil.” It is wise to restrain your impulses to
optimize early because you may forgo many useful programming techniques, resulting in
code that’s harder to understand, riskier, and requires more effort to maintain.

Locating the bottleneck
Three approaches to locating the performance-critical part of a program are:

1. Install your own instrumentation
“Profile” code by inserting explicit timing:

long start = System.currentTimeMillis();
   // Operation to be timed goes here
long time = System.currentTimeMillis() - start;

Have an infrequently-used method print cumulative times out to the console window with
System.out.println( ). Since the compiler will ignore it when false, a static final boolean
switch can turn the timing on and off so the code can efficiently be left in place in released
code, ready for emergency use at any time. Even when more sophisticated profiling is
available, this is a convenient way to time a specific task or operation.

System.currentTimeMillis( ) returns time in 1/1000ths of a second. However, some
systems with time resolution less than a millisecond (such as a Windows PC) need to repeat
an operation n times and divide the total time by n to get accurate estimates.

2. JDK profiling [2]
The JDK comes with a built-in profiler that keeps track of the time spent in each routine and
writes the information to a file. Unfortunately, the JDK profilers have uneven performance.
JDK 1.1.1 works, but subsequent releases have had various instabilities.

To run the profiler, use the -prof option when invoking the unoptimized versions of the Java
interpreter, for example:

java_g -prof myClass

Or with an applet:

java_g -prof sun.applet.AppletViewer applet.html

The profiler output is not particularly easy to decipher. In fact, in JDK 1.0 it truncates the
method names to 30 characters, so it might not be possible to distinguish between some
methods. However, if your platform does support the -prof option, either Vladimir Bulatov’s
HyperProf [3] or Greg White’s ProfileViewer [4] will help interpret the results.

3. Special tools
The best way to keep up with the exploding field of performance optimization tools is
through a Web site such as Jonathan Hardwick’s Tools for Optimizing Java [5] at
http://www.cs.cmu.edu/~jch/java/tools.html.



Appendix D: Performance 831

Tips for measuring performance
� Since profiling uses clock time, make every effort to remove other processes during the

measurement.

� Always time the code before and after making changes to verify that, at least on the test
platform, your changes improved the program. (Jon Bentley mentioned that some of his
most logical changes actually slowed the program down.)

� Try to make each timing test under identical conditions.

� If possible, contrive a test that doesn’t rely on any user input to avoid variations in user
response that can cause the results to fluctuate.

Speedup techniques
Now that the critical region has been isolated, you can apply two types of optimizations:
generic techniques and those specific to Java.

Generic approaches
An effective generic speedup is to redefine the program in a more practical way. For example,
in Programming Pearls [14], Bentley describes Doug McIlroy’s representation of the English
language with a novel data depiction that enabled him to produce a remarkably fast,
compact spelling checker. In addition, choosing a better algorithm will probably give a bigger
performance gain than any other approach, particularly as the size of the data set increases.
For more of these generic approaches, see the general book listings [12-19] at the end of this
appendix.

Language dependent approaches
To put things in perspective, it’s useful to look at the time it takes to perform various
operations. So that the results are relatively independent of the computer being used, they
have been normalized by dividing by the time it takes to make a local assignment.

Operation Example Normalized
time

Local assignment i = n; 1.0
Instance
assignment

this.i = n; 1.2

int increment i++; 1.5
byte increment b++; 2.0
short increment s++; 2.0
float increment f++; 2.0
double increment d++; 2.0
Empty loop while(true) n++; 2.0
Ternary expression (x<0) ? -x : x 2.2
Math call Math.abs(x); 2.5
Array assignment a[0] = n; 2.7
long increment l++; 3.5
Method call funct( ); 5.9



832 Thinking in Java  www.BruceEckel.com

throw and catch
exception

try{ throw e; }
catch(e){}

320

synchronized
method call

synchMethod( ); 570

New Object new Object( ); 980
New array new int[10]; 3100

Using present systems (such as Pentium 200 pro, Netscape 3, and JDK 1.1.5), these relative
times show the extraordinary cost of new objects and arrays, the heavy cost of
synchronization, and the modest cost of an unsynchronized method call. References [5] and
[6] give the Web address of measurement applets you can run on your own machine.

General modifications
Here are some modifications that you can make to speed up time-critical parts of your Java
program. (Be sure to test the performance before and after you try them.)

Replace With Why
Interface Abstract Class

(when only one
parent is needed)

Multiple inheritance of
interfaces prevents some
optimizations.

Non-local
or array
loop
variable

Local loop variable Time (above) shows an instance
integer assignment is 1.2 local
integer assignments, but an
array assignment is 2.7 local
integer assignments.

Linked list
(fixed size)

Saving discarded
link items or
replacing the list
with a circular
array (in which
approximate size is
known)

Each new object takes 980 local
assignments. See Reusing
Objects (below), Van Wyk [12]
p. 87 and Bentley[15] p. 81

x/2 (or any
power of 2)

X >> 2
(or any power of 2)

Uses faster hardware
instructions

Specific situations
The cost of Strings: The String concatenation operator + looks innocent but involves a lot
of work. The compiler can efficiently concatenate constant strings, but a variable string
requires considerable processing. For example, if s and t are String variables:

System.out.println("heading" + s + "trailer" + t);

this requires a new StringBuffer, appending arguments, and converting the result back to a
String with toString( ). This costs both space and time. If you’re appending more than one
String, consider using a StringBuffer directly, especially if you can repeatedly reuse it in a
loop. Preventing the creation of a new StringBuffer on each iteration saves the object
creation time of 980 seen earlier. Using substring( ) and the other String methods is usually
an improvement. When feasible, character arrays are even faster. Also notice that
StringTokenizer is costly because of synchronization.

Synchronization: In the JDK interpreter, calling a synchronized method is typically 10
times slower than calling an unsynchronized method. With JIT compilers, this performance



Appendix D: Performance 833

gap has increased to 50 to 100 times (notice the timing above shows it to be 97 times
slower). Avoid synchronized methods if you can – if you can’t, synchronizing on methods
rather than on code blocks is slightly faster.

Reusing objects: It takes a long time to create an object (the timing above shows 980
assignment times for a new Object, and 3100 assignment times for a small new array), so
it’s often worth saving and updating the fields of an old object instead of creating a new
object. For example, rather than creating a new Font object in your paint( ) method, you
can declare it an instance object, initialize it once, and then just update it when necessary in
paint( ). See also Bentley, Programming Pearls p. 81 [15].

Exceptions: You should only throw exceptions in abnormal situations, which are usually
cases in which performance is not an issue since the program has run into a problem that it
doesn’t normally expect. When optimizing, combine small try-catch blocks, which thwart
compiler optimization by breaking the code into small independent sections. On the other
hand, be careful of sacrificing the robustness of your code by over-zealous removal of
exception handling.

Hashing: The standard Hashtable class in Java 1.0 and 1.1 requires casting and costly
synchronization (570 assignment times). Furthermore, the early JDK library doesn’t
deliberately choose prime number table sizes. Finally, a hashing function should be designed
for the particular characteristics of the keys actually used. For all these reasons, the generic
Hashtable can be improved by designing a hash class that fits a particular application. Note
that the HashMap in the Java 1.2 collections library has much greater flexibility and isn’t
automatically synchronized.

Method inlining: Java compilers can inline a method only if it is final, private, or static,
and in some cases it must have no local variables. If your code spends a lot of time calling a
method that has none of these modifiers, consider writing a version that is final.

I/O: Use buffers wherever possible, otherwise you can end up doing I/O a single byte at a
time. Note that the JDK 1.0 I/O classes use a lot of synchronization, so you might get better
performance by using a single “bulk” call such as readFully( ) and then interpreting the data
yourself. Also notice that the Java 1.1 “reader” and “writer” classes were designed for
improved performance.

Casts and instanceof: Casts take from 2 to 200 assignment times. The more costly ones
require travel up the inheritance hierarchy. Other costly operations lose and restore
capabilities of the lower level constructs.

Graphics: Use clipping to reduce the amount of work done in repaint( ), double buffering to
improve perceived speed, and image strips or compression to speed downloading times.
Animation in Java Applets from JavaWorld and Performing Animation from Sun are two good
tutorials. Remember to use high-level primitives; it’s much faster to call drawPolygon( ) on
a bunch of points than looping with drawLine( ). If you must draw a one-pixel-wide line,
drawLine(x,y,x,y) is faster than fillRect(x,y,1,1).

Using API classes: Use classes from the Java API when they offer native machine
performance that you can’t match using Java. For example, arrayCopy( ) is much faster
than using a loop to copy an array of any significant size.

Replacing API classes: Sometimes API classes do more than you need, with a corresponding
increase in execution time. For these you can write specialized versions that do less but run
faster. For example, one application that needed a container to store many arrays was
speeded by replacing the original Vector with a faster dynamic array of objects.



834 Thinking in Java  www.BruceEckel.com

Other suggestions
� Move repeated constant calculations out of a critical loop, for example, computing

buffer.length for a constant-size buffer.

� static final constants can help the compiler optimize the program.

� Unroll fixed length loops.

� Use javac’s optimization option, -O, which optimizes compiled code by inlining static,
final, and private methods. Note that your classes may get larger in size (JDK 1.1 or
later only – earlier versions might not perform byte verification). Newer just-in-time
(JIT) compilers will dramatically speed the code.

� Count down to zero whenever possible – this uses a special JVM byte code.

References
Performance tools

[1] MicroBenchmark running on Pentium Pro (200Mh), Netscape 3.0, JDK 1.1.4 (see
reference [5] below).

[2] Sun’s Java document page on the JDK Java interpreter
http://java.sun.com/products/JDK/tools/win32/java.html

[3] Vladimir Bulatov’s HyperProf http://www.physics.orst.edu/~bulatov/HyperProf

[4] Greg White’s ProfileViewer http://www.inetmi.com/~gwhi/ProfileViewer/ProfileViewer.html

Web sites
[5] The premiere online references for optimizing Java code are Jonathan Hardwick’s Java
Optimization site at http://www.cs.cmu.edu/~jch/java/optimization.html, “Tools for
Optimizing Java” at http://www.cs.cmu.edu/~jch/java/tools.html, and “Java
Microbenchmarks” (with a quick 45 second measurement benchmark) at
http://www.cs.cmu.edu/~jch/java/benchmarks.html.

Articles
[6] Make Java fast: Optimize! How to get the greatest performance out of your code through low-
level optimizations in Java by Doug Bell http://www.javaworld.com/javaworld/jw-04-
1997/jw-04-optimize.html, complete with an extensive annotated measurement Benchmark
applet.

[7] Java Optimization Resources http://www.cs.cmu.edu/~jch/java/resources.html

[8] Optimizing Java for Speed http://www.cs.cmu.edu/~jch/java/speed.html

[9] An Empirical Study of FORTRAN Programs by Donald Knuth, 1971, Software – Practice and
Experience, Volume 1 p. 105-33.



Appendix D: Performance 835

[10] Building High-Performance Applications and Servers in Java: An Experiential Study, by
Jimmy Nguyen, Michael Fraenkel, Richard Redpath, Binh Q. Nguyen, and Sandeep K.
Singhal; IBM Software Solutions, IBM T.J. Watson Research Center.
http://www.ibm.com/java/education/javahipr.html.

Java specific books
[11] Advanced Java, Idioms, Pitfalls, Styles, and Programming Tips, by Chris Laffra, Prentice
Hall, 1997. (Java 1.0) Chapter Sections 11-20.

General books
[12] Data Structures and C Programs by Christopher J. Van Wyk, Addison-Wesley, 1988.

[13] Writing Efficient Programs by Jon Bentley, Prentice Hall, 1982, especially p. 110 and p.
145-151.

[14] More Programming Pearls by Jon Bentley. Association for Computing Machinery,
February 1988.

[15] Programming Pearls by Jon Bentley, Addison-Wesley 1989. Part II addresses generic
performance enhancements.

[16] Code Complete: A Practical Handbook of Software Construction by Steve McConnell,
Microsoft Press 1993, Chapter 9.

[17] Object-Oriented System Development by Champeaux, Lea, and Faure, Chapter 25.

[18] The Art of Programming by Donald Knuth, Volume 1 Fundamental Algorithms 3rd Edition,
1997; Volume 2, Seminumerical Algorithms 3rd Edition; Volume 3 Sorting and Searching 2nd

Edition, Addison-Wesley. The definitive encyclopedia of algorithms.

[19] Algorithms in C: Fundamentals, Data Structures, Sorting, Searching by Robert Sedgewick,
3rd Edition, Addison-Wesley 1997. The author is an apprentice of Knuth’s. This is one of
seven editions devoted to several languages and contains timely, somewhat simpler
treatments of algorithms.



837

J

E: A bit about garbage
collection

It’s hard to believe that Java could possibly be as fast or faster than
C++.
This assertion has yet to be proven to my satisfaction. However, I’ve begun to see that many
of my doubts about speed come from early implementations that were not particularly
efficient so there was no model at which to point to explain how Java could be fast.

Part of the way I’ve thought about speed has come from being cloistered with the C++
model. C++ is very focused on everything happening statically, at compile time, so that the
run-time image of the program is small and fast. C++ is also based directly on the C model,
primarily for backwards compatibility, but sometimes simply because it worked a particular
way in C so it was the easiest approach in C++. One of the most important cases is the way
memory is managed in C and C++, and this has to do with one of my more fundamental
assertions about why Java must be slow: in Java, all objects must be created on the heap.

In C++, creating objects on the stack is fast because when you enter a particular scope the
stack pointer is moved down once to allocate storage for all the stack-based objects created in
that scope, and when you leave the scope (after all the local destructors have been called) the
stack pointer is moved up once. However, creating heap objects in C++ is typically much
slower because it’s based on the C concept of a heap as a big pool of memory that (and this
is essential) must be recycled. When you call delete in C++ the released memory leaves a
hole in the heap, so when you call new, the storage allocation mechanism must go seeking
to try to fit the storage for your object into any existing holes in the heap or else you’ll
rapidly run out of heap storage. Searching for available pieces of memory is the reason that
allocating heap storage has such a performance impact in C++, so it’s far faster to create
stack-based objects.



838 Thinking in Java  www.BruceEckel.com

Again, because so much of C++ is based on doing everything at compile-time, this makes
sense. But in Java there are certain places where things happen more dynamically and it
changes the model. When it comes to creating objects, it turns out that the garbage collector
can have a significant impact on increasing the speed of object creation. This might sound a
bit odd at first – that storage release affects storage allocation – but it’s the way some JVMs
work and it means that allocating storage for heap objects in Java can be nearly as fast as
creating storage on the stack in C++.

You can think of the C++ heap (and a slow implementation of a Java heap) as a yard where
each object stakes out its own piece of turf. This real estate can become abandoned sometime
later and must be reused. In some JVMs, the Java heap is quite different; it’s more like a
conveyor belt that moves forward every time you allocate a new object. This means that
object storage allocation is remarkably rapid. The “heap pointer” is simply moved forward
into virgin territory, so it’s effectively the same as C++’s stack allocation. (Of course, there’s
a little extra overhead for bookkeeping but it’s nothing like searching for storage.)

Now you might observe that the heap isn’t in fact a conveyor belt, and if you treat it that
way you’ll eventually start paging memory a lot (which is a big performance hit) and later
run out. The trick is that the garbage collector steps in and while it collects the garbage it
compacts all the objects in the heap so that you’ve effectively moved the “heap pointer”
closer to the beginning of the conveyor belt and further away from a page fault. The
garbage collector rearranges things and makes it possible for the high-speed, infinite-free-
heap model to be used while allocating storage.

To understand how this works, you need to get a little better idea of the way the different
garbage collector (GC) schemes work. A simple but slow GC technique is reference counting.
This means that each object contains a reference counter, and every time a handle is attached
to an object the reference count is increased. Every time a handle goes out of scope or is set
to null, the reference count is decreased. Thus, managing reference counts is a small but
constant overhead that happens throughout the lifetime of your program. The garbage
collector moves through the entire list of objects and when it finds one with a reference
count of zero it releases that storage. The one drawback is that if objects circularly refer to
each other they can have non-zero reference counts while still being garbage. Locating such
self-referential groups requires significant extra work for the garbage collector. Reference
counting is commonly used to explain one kind of garbage collection but it doesn’t seem to
be used in any JVM implementations.

In faster schemes, garbage collection is not based on reference counting. Instead, it is based
on the idea that any non-dead object must ultimately be traceable back to a handle that lives
either on the stack or in static storage. The chain might go through several layers of objects.
Thus, if you start in the stack and the static storage area and walk through all the handles
you’ll find all the live objects. For each handle that you find, you must trace into the object
that it points to and then follow all the handles in that object, tracing into the objects they
point to, etc., until you’ve moved through the entire web that originated with the handle on
the stack or in static storage. Each object that you move through must still be alive. Note
that there is no problem with detached self-referential groups – these are simply not found,
and are therefore automatically garbage.

In the approach described here, the JVM uses an adaptive garbage-collection scheme, and
what it does with the live objects that it locates depends on the variant currently being used.
One of these variants is stop-and-copy. This means that, for reasons that will become
apparent, the program is first stopped (this is not a background collection scheme). Then,
each live object that is found is copied from one heap to another, leaving behind all the
garbage. In addition, as the objects are copied into the new heap they are packed end-to-end,



Appendix E: A Bit about Garbage Collection 839

thus compacting the new heap (and allowing new storage to simply be reeled off the end as
previously described).

Of course, when an object is moved from one place to another, all handles that point at
(reference) that object must be changed. The handle that comes from tracing to the object
from the heap or the static storage area can be changed right away, but there can be other
handles pointing to this object that will be encountered later during the “walk.” These are
fixed up as they are found (you could imagine a hash table mapping old addresses to new
ones).

There are two issues that make copy collectors inefficient. The first is the idea that you have
two heaps and you slosh all the memory back and forth between these two separate heaps,
maintaining twice as much memory as you actually need. Some JVMs deal with this by
allocating the heap in chunks as needed and simply copying from one chunk to another.

The second issue is the copying. Once your program becomes stable it might be generating
little or no garbage. Despite that, a copy collector will still copy all the memory from one
place to another, which is wasteful. To prevent this, some JVMs detect that no new garbage
is being generated and switch to a different scheme (this is the “adaptive” part). This other
scheme is called mark and sweep, and it’s what Sun’s JVM uses all the time. For general use
mark and sweep is fairly slow, but when you know you’re generating little or no garbage
it’s fast.

Mark and sweep follows the same logic of starting from the stack and static storage and
tracing through all the handles to find live objects. However, each time it finds a live object
that object is marked by setting a flag in it, but the object isn’t collected yet. Only when the
marking process is finished does the sweep occur. During the sweep, the dead objects are
released. However, no copying happens, so if the collector chooses to compact a fragmented
heap it does so by shuffling objects around.

The “stop-and-copy” refers to the idea that this type of garbage collection is not done in the
background; instead, the program is stopped while the GC occurs. In the Sun literature
you’ll find many references to garbage collection as a low-priority background process, but
it turns out that this was a theoretical experiment that didn’t work out. In practice, the Sun
garbage collector is run when memory gets low. In addition, mark-and-sweep requires that
the program be stopped.

As previously mentioned, in the JVM described here memory is allocated in big blocks. If you
allocate a large object, it gets its own block. Strict stop-and-copy requires copying every live
object from the source heap to a new heap before you could free the old one, which
translates to lots of memory. With blocks, the GC can typically use dead blocks to copy
objects to as it collects. Each block has a generation count to keep track of whether it’s alive.
In the normal case, only the blocks created since the last GC are compacted; all other blocks
get their generation count bumped if they have been referenced from somewhere. This
handles the normal case of lots of short-lived temporary objects. Periodically, a full sweep is
made – large objects are still not copied (just get their generation count bumped) and blocks
containing small objects are copied and compacted. The JVM monitors the efficiency of GC
and if it becomes a waste of time because all objects are long-lived then it switches to mark-
and-sweep. Similarly, the JVM keeps track of how successful mark-and-sweep is, and if the
heap starts to become fragmented it switches back to stop-and-copy. This is where the
“adaptive” part comes in, so you end up with a mouthful: “adaptive generational stop-and-
copy mark-and-sweep.”

There are a number of additional speedups possible in a JVM. An especially important one
involves the operation of the loader and Just-In-Time (JIT) compiler. When a class must be



840 Thinking in Java  www.BruceEckel.com

loaded (typically, the first time you want to create an object of that class), the .class file is
located and the byte codes for that class are brought into memory. At this point, one
approach is to simply JIT all the code, but this has two drawbacks: it takes a little more
time, which, compounded throughout the life of the program, can add up; and it increases
the size of the executable (byte codes are significantly more compact than expanded JIT code)
and this might cause paging, which definitely slows down a program. An alternative
approach is lazy evaluation, which means that the code is not JIT compiled until necessary.
Thus, code that never gets executed might never get JIT compiled.

Because JVMs are external to browsers, you might expect that you could benefit from the
speedups of some JVMs while using any browser. Unfortunately, JVMs don’t currently
interoperate with different browsers. To get the benefits of a particular JVM, you must
either use the browser with that JVM built in or run standalone Java applications.



841

E

F: Recommended
reading

Java in a Nutshell: A Desktop Quick Reference, 2nd Edition, by David Flanagan, O’Reilly &
Assoc. 1997. A compact summary of the online documentation of Java 1.1. Personally, I
prefer to browse the docs online, especially since they change so often. However, many folks
still like printed documentation and this fits the bill; it also provides more discussion than
the online documents.

The Java Class Libraries: An Annotated Reference, by Patrick Chan and Rosanna Lee, Addison-
Wesley 1997. What the online reference should have been: enough description to make it
usable. One of the technical reviewers for Thinking in Java said, “If I had only one Java book,
this would be it (well, in addition to yours, of course).” I’m not as thrilled with it as he is.
It’s big, it’s expensive, and the quality of the examples doesn’t satisfy me. But it’s a place to
look when you’re stuck and it seems to have more depth (and sheer size) than Java in a
Nutshell.

Java Network Programming, by Elliote Rusty Harold, O’Reilly 1997. I didn’t begin to
understand Java networking until I found this book. I also find his Web site, Café au Lait, to
be a stimulating, opinionated, and up-to-date perspective on Java developments,
unencumbered by allegiances to any vendors. His almost daily updating keeps up with fast-
changing news about Java. See http://sunsite.unc.edu/javafaq/.

Core Java, 3nd Edition, by Cornell & Horstmann, Prentice-Hall 1997. A good place to go for
questions you can’t find the answers to in Thinking in Java. Note: the Java 1.1 revision is
Core Java 1.1 Volume 1 – Fundamentals & Core Java 1.1 Volume 2 – Advanced Features.

JDBC Database Access with Java, by Hamilton, Cattell & Fisher (Addison-Wesley, 1997). If you
know nothing about SQL and databases, this is a nice, gentle introduction. It also contains
some of the details as well as an “annotated reference” to the API (again, what the online



842 Thinking in Java  www.BruceEckel.com

reference should have been). The drawback, as with all books in The Java Series (“The ONLY
Books Authorized by JavaSoft”) is that it’s been whitewashed so that it says only wonderful
things about Java – you won’t find out about any dark corners in this series.

Java Programming with CORBA Andreas Vogel & Keith Duddy (John Wiley & Sons, 1997). A
serious treatment of the subject with code examples for the three main Java ORBs
(Visibroker, Orbix, Joe).

Design Patterns, by Gamma, Helm, Johnson & Vlissides (Addison-Wesley 1995). The seminal
book that started the patterns movement in programming.

UML Tookit, by Hans-Erik Eriksson & Magnus Penker, (John Wiley & Sons, 1997). Explains
UML and how to use it, and has a case study in Java. An
accompanying CD-ROM contains the Java code and a cut-down version of Rational Rose. An
excellent introduction to UML and how to use it to build a real system.

Practical Algorithms for Programmers, by Binstock & Rex (Addison-Wesley 1995). The
algorithms are in C, so they’re fairly easy to translate into Java. Each algorithm is
thoroughly explained.



H
Index

Please note that some names will be duplicated in capitalized form.
Following Java style, the capitalized names refer to Java classes, while
lowercase names refer to a general concept.

-, 96
!=, 97; operator, 441
&, 101
&&, 98
&=, 101
@dll.import, 794, 795
@dll.struct, 797
[ ]: indexing operator [ ], 155
^, 101
^=, 101
|, 101
||, 98
|=, 101
‘+’: operator + for String, 462
+, 96
<, 97
<<, 101
<<=, 102
<=, 97
==, 97; operator, 441; vs. equals( ), 380
>, 97
>=, 97
>>, 101
>>=, 102
abstract: class, 219; inheriting from an abstract

class, 220; vs. interface, 227
abstract keyword, 220
Abstract Window Toolkit (AWT), 469
AbstractButton, 576

abstraction, 40; in program design, 716
AbstractSequentialList, 308
AbstractSet, 296
accept( ), 657
access: class, 178; control, 43, 163, 180; inner

classes & access rights, 238; package access and
friendly, 173; specifiers, 43, 163, 172; within a
directory, via the default package, 174

action( ), 476, 487, 493, 680; cannot combine with
listeners, 537

ActionEvent, 510, 511, 529, 570
ActionListener, 510
actionPerformed( ), 512
ActiveX/Beans integration, 806
adapters: listener adapters, 513
add( ), 488
addActionListener( ), 510, 567, 622
addAdjustmentListener( ), 510
addComponentListener( ), 510
addContainerListener( ), 510
addElement( ), Vector, 272
addFocusListener( ), 510
addItemListener( ), 510
addition, 94
addKeyListener( ), 510
addListener, 508
addMouseListener( ), 510
addMouseMotionListener( ), 510
addTab( ), 592



addTextListener( ), 510
addWindowListener( ), 510
AdjustmentEvent, 510, 511
AdjustmentListener, 510
adjustmentValueChanged( ), 512
Adler32, 390
aliasing, 93; and String, 462; during a method call,

434
align, 473
AlreadyBoundException, 710
analysis: & design, object-oriented, 62;

requirements analysis, 63
AND: bitwise, 106; logical (&&), 98
anonymous inner class, 233, 309, 364, 516, 634,

751; and constructors, 237
appendText( ), 483
applet, 471, 671; advantages for client/server

systems, 498; align, 473; and packages, 474;
archive tag, for HTML and JAR files, 516;
classpath, 474; codebase, 473; combined applets
and applications, 514; creating a Frame from
within an applet, 556; destroy( ), 472;
displaying a Web page from within an applet,
687; init( ), 472, 474; name, 473; packaging
applets in a JAR file to optimize loading, 516;
paint( ), 472; parameter, 473; placing inside a
Web page, 473; restrictions, 497; start( ), 472,
474; stop( ), 472, 474; submitting a POST with
an applet, 697; tag, for HTML page, 473;
update( ), 472

Applet, 489; combined with application, 609;
initialization parameters, 609

appletviewer, 473
application: application builder, 560; application

framework, 245; combined applets and
applications, 514; combined with Applet, 609;
running an application from within an applet,
556; standalone windowed application, 502;
windowed applications, 499

application framework, 471
archive tag, for HTML and JAR files, 516
argument: constructor, 132; final, 202, 364;

passing a handle into a method, 434; variable
argument lists (unknown quantity and type of
arguments), 159

array, 265, 324; associative array, 282; bounds
checking, 156; dynamic creation, 728; first-class
objects, 266; initialization, 155; length, 266;
multidimensional, 159; of Object, 581; of
objects, 266; of primitives, 267; sorting, 317

ArrayList, 296, 300
ArrayMap, 306
Arrays, 317
Arrays.toList( ), 317
ArraySet, 304
assigning objects, 92

assignment, 92
associative array, 271, 282
auto-decrement operator, 96
auto-increment operator, 96
automatic compilation, 168
automatic type conversion, 184
available( ), 371
AWT: Abstract Window Toolkit, 469; action( ), 476,

487, 493, 680; action( ), cannot combine with
listeners, 537; ActionEvent, 510, 511, 529, 570;
ActionListener, 510; actionPerformed( ), 512;
add( ), 488; addActionListener( ), 510, 567;
addAdjustmentListener( ), 510;
addComponentListener( ), 510;
addContainerListener( ), 510;
addFocusListener( ), 510; addItemListener( ),
510; addKeyListener( ), 510; addListener, 508;
addMouseListener( ), 510;
addMouseMotionListener( ), 510;
addTextListener( ), 510; addWindowListener( ),
510; AdjustmentEvent, 510, 511;
AdjustmentListener, 510;
adjustmentValueChanged( ), 512; appendText( ),
483; Applet, 489; applet advantages for
client/server systems, 498; applet restrictions,
497; archive tag, for HTML and JAR files, 516;
BorderLayout, 489, 515; Button, 475, 489;
Button, creating your own, 494; Canvas, 494;
CardLayout, 490, 591; Checkbox, 482, 483;
Checkbox, Java 1.1, 521; CheckboxGroup, 483;
CheckboxMenuItem, 499; CheckboxMenuItem,
Java 1.1, 525; Choice, 484; Choice, Java 1.1,
523; combining layouts, 491; Component, 472,
487, 489, 493; ComponentAdapter, 513;
componentAdded( ), 512; ComponentEvent, 510,
511; componentHidden( ), 512;
ComponentListener, 510; componentMoved( ),
512; componentRemoved( ), 512;
componentResized( ), 512; componentShown( ),
512; consume( ), 519; Container, 489;
ContainerAdapter, 513; ContainerEvent, 510,
511; ContainerListener, 510; controlling layout,
488; DataFlavor, 559; desktop colors, 551;
Dialog, 502; dialog box, 502; Dialog, Java 1.1,
529; dispatchEvent( ), 529; dispatching
messages, 529; dispose( ), 502, 556;
drawString( ), 472; drop-down list, 484; East,
489; eliminating flicker, 545; enableEvents( ),
546; end( ), 556; event listener, 508; Event
object, 476, 486; event target, 476; event-driven
programming, 476; FileDialog, 505; FileDialog,
Java 1.1, 531; flavor, clipboard, 557;
FlowLayout, 489; Focus traversal, 550;
FocusAdapter, 513; FocusEvent, 510, 511;
focusGained( ), 512; FocusListener, 510;
focusLost( ), 512; Font, 555; Frame, 489, 499;
getAlignment( ), 481; getAppletContext( ), 477;
getContents( ), 559; getDirectory( ), 507;



Index 845

getFile( ), 507; getPrintJob( ), 556;
getSelectedItems( ), 485; getState( ), 502;
getText( ), 481; getTransferData( ), 559;
getTransferDataFlavors( ), 559; gotFocus( ), 493;
graphics, 505; Graphics, 472, 556;
GridBagLayout, 492; GridLayout, 490;
handleEvent( ), 477, 486, 493; inner classes,
508; isDataFlavorSupported( ), 559;
isFocusTraversable( ), 550; ItemEvent, 510, 511,
521; ItemListener, 510, 521;
itemStateChanged( ), 512; JAR, packaging
applets to optimize loading, 516; KeyAdapter,
513; keyDown( ), 493; KeyEvent, 510, 511;
KeyListener, 510; keyPressed( ), 512;
keyReleased( ), 512; keyTyped( ), 512; keyUp( ),
493; Label, 480; layout manager, 482; List, 485;
list boxes, 485; List, Java 1.1, 524; listener
adapters, 513; lostFocus( ), 493; match an event
to the text on a button, 478; Menu, 499; menu
shortcuts, 528; Menu, Java 1.1, 525; MenuBar,
499, 529; MenuComponent, 499; MenuItem,
499, 529; MenuItem, Java 1.1, 525; menus,
499; MouseAdapter, 513; mouseClicked( ), 512;
mouseDown( ), 493, 505; mouseDrag( ), 493;
mouseDragged( ), 512; mouseEnter( ), 494;
mouseEntered( ), 512; MouseEvent, 510, 511;
mouseExit( ), 494; mouseExited( ), 512;
MouseListener, 510; MouseMotionAdapter, 513;
MouseMotionListener, 510; mouseMove( ), 493;
mouseMoved( ), 512; mousePressed( ), 512;
mouseReleased( ), 512; mouseUp( ), 493;
multicast, 569; multicast events, 534; multiple
selection in a List, 488; new event model, 507;
North, 489; paint( ), 494, 505, 551, 556; Panel,
491; print( ), 551, 556; PrintGraphics, 556;
printing, 557; printing text, 555; PrintJob, 555;
processEvent( ), 545; proportionally-spaced font,
481; radio button, 483; removeActionListener( ),
510, 567; removeAdjustmentListener( ), 510;
removeComponentListener( ), 510;
removeContainerListener( ), 510;
removeFocusListener( ), 510;
removeItemListener( ), 510;
removeKeyListener( ), 510;
removeMouseListener( ), 510;
removeMouseMotionListener( ), 510;
removeTextListener( ), 510;
removeWindowListener( ), 510; repaint( ), 545;
requestFocus( ), 550; setActionCommand( ), 528;
setAlignment( ), 481; setCheckboxGroup( ), 483;
setContents( ), 559; setDirectory( ), 507;
setEditable( ), 479; setFile( ), 507; setLayout( ),
489; setMenuBar( ), 499; setText( ), 481; show( ),
507; showStatus( ), 477; South, 489; standalone
windowed application, 502; StringSelection, 559;
super.action( ), 477; super.handleEvent( ), 488;
system clipboard, 557; target of an event, 477;
TextArea, 479, 557; TextArea, Java 1.1, 519;

TextComponent, 478; TextComponent, Java 1.1,
519; TextEvent, 510, 511; TextField, 478;
TextField, Java 1.1, 519; TextListener, 510;
textValueChanged( ), 512; Toolkit, 556;
TooManyListenersException, 534, 569;
Transferable, 559; unicast, 569; unicast events,
534; update( ), 545; Web browser window status
line, 477; West, 489; WINDOW_CLOSING, 529;
WINDOW_DESTROY, 502; windowActivated( ),
512; WindowAdapter, 513; windowClosed( ),
512; windowClosing( ), 512;
windowDeactivated( ), 512;
windowDeiconified( ), 512; windowed
applications, 499; WindowEvent, 510, 511, 529;
windowIconified( ), 512; WindowListener, 510;
windowOpened( ), 512

bag, 294
base 16, 107
base 8, 108
base class, 176, 186, 212; abstract base class, 219;

base-class interface, 215; constructor, 253;
constructors and exceptions, 190; initialization,
188

Basic: Microsoft Visual Basic, 560
BasicArrowButton, 578
Bean: integrating with ActiveX, 807
beanbox Bean testing tool, 571
BeanInfo: custom BeanInfo, 572
Beans: and Borland’s Delphi, 560; and Microsoft’s

Visual Basic, 560; and multithreading, 619;
application builder, 560; beanbox Bean testing
tool, 571; bound properties, 571; component,
560; constrained properties, 571; custom
BeanInfo, 572; custom property editor, 572;
custom property sheet, 572; events, 560;
EventSetDescriptors, 565; FeatureDescriptor,
572; getBeanInfo( ), 563;
getEventSetDescriptors( ), 565;
getMethodDescriptors( ), 565; getName( ), 565;
getPropertyDescriptors( ), 565;
getPropertyType( ), 565; getReadMethod( ), 565;
getWriteMethod( ), 565; indexed property, 571;
Introspector, 563; JAR files for packaging, 570;
manifest file, 570; Method, 565;
MethodDescriptors, 565; naming convention,
561; properties, 560; PropertyChangeEvent, 571;
PropertyDescriptors, 565;
ProptertyVetoException, 571; reflection, 560,
562; Serializable, 569; visual programming, 560

behavioral design patterns, 718
Bill Joy, 97
binary: numbers, 108; operators, 101
binarySearch( ), 317
bind( ), 709
binding: dynamic binding, 212; dynamic, late, or

run-time binding, 209; late binding, 212;
method call binding, 212; run-time binding, 212



BitSet, 271, 279
bitwise: AND, 106; AND operator (&), 101;

EXCLUSIVE OR XOR (^), 101; NOT ~, 101;
operators, 101; OR, 106; OR operator (|), 101

bitwise copy, 441
blank final, in Java 1.1, 201
blocking: and available( ), 372; and threads, 623;

on IO, 629
Booch, Grady, 724
book: errors, reporting, 35; updates of the book, 34
Boolean, 117; algebra, 101; and casting, 107; vs. C

and C++, 99
BorderLayout, 489, 515
Borland, 594; Delphi, 560
bound properties, 571
bounds checking, array, 156
BoxLayout, 593
break keyword, 121
browser: class browser, 178
BufferedInputStream, 360, 371
BufferedOutputStream, 361, 372
BufferedReader, 348, 382, 763
BufferedWriter, 382
business objects/logic, 534
button, 475, 489; creating your own, 494; radio

button, 483
ButtonGroup, 578
ByteArrayInputStream, 356
ByteArrayOutputStream, 358
C/C++, interfacing with, 786
C++, 39, 97, 835; CGI programming in C++, 688;

comparing C++ and Java, 815; copy
constructor, 454; copy-constructor, 692; GNU
C++ Compiler, 688; in contrast with Java, 688;
operator overloading, 692; Standard Template
Library (STL), 293; Standard Template Library
(STL)., 688; STL, 294; template, 741; templates,
275; vector class, vs. array and Java Vector, 266

callback, 289, 363
callback function, 797
Canvas, 494, 648
capitalization: Java capitalization style source-code

checking tool, 766; of package names, 79
CardLayout, 490, 591
case statement, 127
cast, 139, 415; and collections, 271; and primitive

types, 118; from float or double to integral,
truncation, 129; operators, 106

catch: catching an exception, 329; catching any
exception, 332; keyword, 330

CD ROM for book, 32
CGI: Common-Gateway Interface, 671; connecting

Java to CGI, 682; crash course in CGI
programming, 682; GET, 682, 695; HTML
content-type, 695; intercepting results, 687;

invoking a CGI program from Java, 683; POST,
682, 696; programming in C++, 688

change: vector of change, 248, 716, 726
CharArrayReader, 382
CharArrayWriter, 382
Checkbox, 482, 483; Java 1.1, 521
CheckboxGroup, 483
CheckboxMenuItem, 499; Java 1.1, 525
CheckedInputStream, 388
CheckedOutputStream, 388
Checksum, 389
Choice, 484; Java 1.1, 523
class, 177; abstract class, 219; access, 178;

anonymous inner class, 233, 364, 516, 634,
751; anonymous inner class and constructors,
237; base class, 176, 186, 212; browser, 178;
class hierarchies and exception handling, 351;
class literal, 417, 420; derived class, 212; final
classes, 203; inheritance diagrams, 198;
inheriting from an abstract class, 220; inheriting
from inner classes, 242; initialization & class
loading, 204; initialization of data members,
147; initializing members at point of definition,
149; initializing the base class, 188; inner class,
230, 519, 603, 728; inner class nesting within
any arbitrary scope, 235; inner classes, 537;
inner classes & access rights, 238; inner classes
and overriding, 243; inner classes and super,
243; inner classes and the AWT, 508; inner
classes and upcasting, 232; inner classes in
methods & scopes, 233; inner classes, identifiers
and .class files, 245; intializing the derived class,
188; loading, 206; member initialization, 185;
order of initialization, 150; private inner classes,
248; public class, and compilation units, 164;
read-only classes, 457; referring to the outer
class object in an inner class, 241; static inner
classes, 240; style of creating classes, 177;
subobject, 188

Class, 579; Class object, 407, 416, 616; forName( ),
417, 776; getClass( ), 332; getConstructors( ),
427; getInterfaces( ), 424; getMethods( ), 427;
getName( ), 425; getSuperclass( ), 425;
isInstance, 422; isInterface( ), 425;
newInstance( ), 425; printInfo( ), 425; reflection,
728; RTTI using the Class object, 423

ClassCastException, 263, 418
classpath, 92, 166, 474; and rmic, 711; pitfall, 170
cleanup: and garbage collector, 192; performing,

144; with finally, 345
client programmer, 43
client, network, 655
clipboard: system clipboard, 557
clone( ), 438, 726; and composition, 443; and

inheritance, 448; Object.clone( ), 441;
removing/turning off clonability, 450;



Index 847

super.clone( ), 441, 453; supporting cloning in
derived classes, 450

Cloneable interface, 439
CloneNotSupportedException, 441
close( ), 371
CLSID, 802
code: calling non-Java code, 785; coding standards,

34, 823; extracting code listings, 753;
organization, 173; re-use, 183

codebase, 473
coding: improving code with inner classes, 603
collection: class, 265, 271; Hashtable, 764; of

primitives, 269
Collection, 294
Collections, 317, 321
collections library, new, 293
collision: name, 168
colors: desktop colors, 551
COM, 801; Java/COM integration, 785
com.ms.com, 806
com.ms.win32, 795
combo box, 586
comma operator, 105, 121
comments: and embedded documentation, 83
common interface, 219
common pitfalls when using operators, 106
Common-Gateway Interface (CGI), 671
Comparable, 306, 319
Comparator, 306, 319
compare( ), 319
compareTo( ), 320
comparison: natural comparison method, 319
compilation unit, 164
compile-time constant, 199
compiling, automatic compilation, 168
complexity theory, Boids example, 777
Component, 472, 487, 489, 493, 592
component, and Java Beans, 560
ComponentAdapter, 513
componentAdded( ), 512
ComponentEvent, 510, 511
componentHidden( ), 512
ComponentListener, 510
componentMoved( ), 512
componentRemoved( ), 512
componentResized( ), 512
componentShown( ), 512
composition, 183, 291; and cloning, 443; and

design, 258; and design patterns, 716; and
dynamic behavior change, 259; choosing
composition vs. inheritance, 195; combining
composition & inheritance, 190; vs. inheritance,
199, 378

compression: Java 1.1 compression library, 388

ConcurrentModificationException, 324
conditional operator, 104
conference, Software Development Conference, 26
console input, 385
const, in C++, 462
constant: compile-time constant, 199; folding, 199;

groups of constant values, 228; implicit
constants, and String, 462

constrained properties, 571
constructor, 131; and anonymous inner classes,

234; and exception handling, 348; and
exceptions, 343; and finally, 348; and
overloading, 133; and polymorphism, 251;
arguments, 132; base-class constructor, 253;
base-class constructors and exceptions, 190;
behavior of polymorphic methods inside
constructors, 256; C++ copy constructor, 454;
calling base-class constructors with arguments,
189; calling from other constructors, 141;
default, 139; default constructor synthesized by
the compiler, 717; default constructors, 135;
initialization during inheritance and
composition, 190; name, 132; no-arg
constructors, 135; order of constructor calls
with inheritance, 251; private constructor, 717;
return value, 133; static construction clause,
153

Constructor, 579; for reflection, 426, 729
consulting & mentoring provided by Bruce Eckel,

35
consume( ), 519
Container, 489
container class, 265
ContainerAdapter, 513
ContainerEvent, 510, 511
ContainerListener, 510
content-type, HTML, 695
continue keyword, 121
control framework, and inner classes, 245
controlling access, 43, 180
conversion: automatic, 184; narrowing conversion,

107, 139; widening conversion, 107
copy: deep copy, 438; shallow copy, 438
copy-constructor, in C++, 692
CORBA, 712, 807
CORBA and Java, interfacing, 785
couplet, 603, 749
coupling, 331
CRC32, 390
createStatement( ), 701
creational design patterns, 718, 724
critical section, and synchronized block, 618
currentThread(), 599
daemon threads, 610



data: final, 199; primitive data types and use with
operators, 109; static initialization, 151

database: flat-file database, 703; Java DataBase
Connectivity (JDBC), 699; relational database,
703; URL, 700

DatabaseMetaData, 707
DataFlavor, 559
Datagram, 666, 672, 677; receive( ), 681; User

Datagram Protocol (UDP), 666
DatagramPacket, 666, 669, 679
DatagramSocket, 666, 679
DataInput, 361
DataInputStream, 359, 371, 372, 382, 754
DataOutput, 361
DataOutputStream, 361, 372, 383, 754, 765
DCOM, 712
dead, Thread, 623
deadlock, multithreading, 627, 632
decorator design pattern, 358
decoupling through polymorphism, 209
decrement operator, 96
deep copy, 438, 443; and Vector, 445; using

serialization to perform deep copying, 446
default constructor, 135, 139; synthesized by the

compiler, 717; synthesizing a default
constructor, 189

default keyword, in a switch statement, 127
default package, 174
DefaultMutableTreeNode, 589
defaultReadObject( ), 404
DefaultTreeModel, 589
defaultWriteObject( ), 404
DeflaterOutputStream, 388
Delphi, from Borland, 560
dequeue, 294
derived: derived class, 212; derived class,

initializing, 188
design, 39, 260; abstraction in program design,

716; adding more methods to a design, 181;
analysis & design, object-oriented, 62; and
composition, 258; and inheritance, 258; and
mistakes, 181; library design, 163; of object
hierarchies, 206

design patterns, 180, 715; behavioral, 718;
creational, 718, 724; decorator, 358; factory
method, 724; observer, 718; prototype, 726,
733; singleton, 180; structural, 718; vector of
change, 716, 726; visitor, 743

desktop colors, 551
destroy( ), 472, 636
destructor, 143, 144, 345; Java doesn’t have one,

191
development, incremental, 197
diagram, class inheritance diagrams, 198
Dialog, 502; Java 1.1, 529

dialog box, 502
Dictionary, 282
directory: and packages, 172; creating directories

and paths, 366; lister, 362
dispatchEvent( ), 529
dispatching: double dispatching, 737, 744; multiple

dispatching, 737
dispatching messages, AWT, 529
dispose( ), 502, 556
division, 94
documentation: comments & embedded

documentation, 83
Domain Name Service (DNS), 654
dotted quad, 654
double dispatching, 737, 744
double, literal value marker (D), 108
Double.valueOf( ), 731
do-while, 120
downcast, 199, 261, 418; type-safe downcast in

run-time type identification, 418
drawString( ), 472
drop-down list, 484
dynamic: array creation, 728; behavior change

with composition, 259; binding, 209, 212
early binding, 212
East, 489
efficiency: and arrays, 266; and final, 204; and

threads, 599; when using the synchronized
keyword, 619

elegance, in programming, 65
elementAt( ), Vector, 272, 275
else keyword, 118
emergent behavior, 777
enableEvents( ), 546, 585
encapsulation, 177
encode( ), URLEncoder, 683
end( ), 556
enum, groups of constant values in C & C++, 228
Enumeration, 276, 288, 293, 297, 723;

hasMoreElements( ), 277; nextElement( ), 277
equals( ), 98, 305, 477; overriding for Hashtable,

286; vs. ==, 380
equivalence: ==, 97; object equivalence, 97
error: handling with exceptions, 327; recovery,

352; reporting errors in book, 35
event: Event object, 486; Event object, AWT, 476;

event-driven programming, 476; event-driven
system, 246; Java Beans, 560; listener, 508;
match an event to the text on a button, 478;
model, new in Java 1.1, 507; multicast, 534;
multicast event and Java Beans, 620; target,
476; unicast, 534

event listener: order of execution, 534
EventSetDescriptors, 565



Index 849

exception: and base-class constructors, 190; and
constructors, 343; and inheritance, 341, 351;
catching an exception, 329; catching any
exception, 332; changing the point of origin of
the exception, 335; class hierarchies, 351;
constructors, 348; creating your own, 338;
design issues, 350; Error class, 336; Exception
class, 336; exception handler, 330; exception
handling, 327; exception matching, 351;
FileNotFoundException, 350; fillInStackTrace( ),
333; finally, 343; guarded region, 330; handler,
328; handling, 192; losing an exception, pitfall,
347; NullPointerException, 337;
printStackTrace( ), 333; restrictions, 341; re-
throwing an exception, 333; RuntimeException,
337; specification, 331; termination vs.
resumption, 331; Throwable, 332; throwing an
exception, 328, 329; try, 345; try block, 330;
typical uses of exceptions, 352

exceptional condition, 328
exceptions: and JNI, 791
exec( ), 672, 676
executeQuery( ), 701
Exponential notation, 108
extends, 176, 188, 260; and interface, 228;

keyword, 186
extensible, 749; program, 215
extension: pure inheritance vs. extension, 259
Externalizable, 398; alternative approach to using,

403
extracting code listings, 753
factory method, 724
fail fast collections, 324
false, 98
FeatureDescriptor, 572
Field, for reflection, 426
fields, initializing fields in interfaces, 229
file: characteristics of files, 366; data file output

shorthand, 374; formatted file output
shorthand, 374; input shorthand, 373; JAR file,
165

File, 357, 383, 764, 772; class, 362; File.list( ), 362;
mkdirs( ), 764

File Transfer Protocol (FTP), 473
FileDescriptor, 357
FileDialog, 505; Java 1.1, 531
FileInputStream, 357, 371
FilenameFilter, 362, 771
FileNotFoundException, 350
FileOutputStream, 358, 372
FileReader, 348, 382
FileWriter, 382
fillInStackTrace( ), 333
FilterInputStream, 357
FilterOutputStream, 358
FilterReader, 382

FilterWriter, 382
final, 222; and efficiency, 204; and static, 199;

argument, 202, 364; blank finals in Java 1.1,
201; classes, 203; data, 199; keyword, 199;
method, 213; methods, 202; static primitives,
201; with object handles, 199

finalize( ), 143, 194, 351; and inheritance, 253;
and super, 255; calling directly, 144; order of
finalization of objects, 256;
runFinalizersOnExit( ), 146

finally, 192, 193; and constructors, 348; keyword,
343; pitfall, 347

finding .class files during loading, 166
firewall, 681
flat-file database, 703
flavor, clipboard, 557
flicker, eliminating, 545
float, literal value marker(F), 108
floating point: true and false, 100
flocking, simulating behavior, 777
FlowLayout, 489
Focus traversal, 550
FocusAdapter, 513
FocusEvent, 510, 511
focusGained( ), 512
FocusListener, 510
focusLost( ), 512
folding, constant, 199
Font, 555
font, proportionally-spaced, 481
for keyword, 120
forName( ), 417, 776
FORTRAN, 108
forward referencing, 150
Frame, 489, 499; creating a Frame from within an

applet, 556
framework: application framework, 471; control

framework and inner classes, 245
friendly, 163, 232; and interface, 222
FTP: File Transfer Protocol (FTP), 473
functor, 363
garbage collection, 143, 144, 253; and cleanup,

192; and native method execution, 791; forcing
finalization, 194; how it works, 835; order of
object reclamation, 194; setting handles to null
to allow cleanup, 247

generic, 275
Generic Collection Library for Java (JGL), 293
GET, 682; CGI, 695; request, 684
get( ), Hashtable, 285
getAddress( ), 669
getAlignment( ), 481
getAppletContext( ), 477
getBeanInfo( ), 563
getClass( ), 332, 423



getConstructor( ), 579
getConstructor( ), reflection, 728
getConstructors( ), 427; reflection, 729
getContents( ), 559
getDirectory( ), 507
getDocumentBase( ), 687
getEventSetDescriptors( ), 565
getFile( ), 507
getFloat( ), 701
getInputStream( ), 657, 699
getInt( ), 701
getInterfaces( ), 424
getMethodDescriptors( ), 565
getMethods( ), 427
getModel( ), 589
getName( ), 425, 565
getOutputStream( ), 657, 698
getPort( ), 669
getPrintJob( ), 556
getPriority( ), 636
getProperties( ), 287
getPropertyDescriptors( ), 565
getPropertyType( ), 565
getReadMethod( ), 565
getSelectedItems( ), 485
getState( ), 502
getString( ), 701
getSuperclass( ), 425
getText( ), 481
getTransferData( ), 559
getTransferDataFlavors( ), 559
getWriteMethod( ), 565
GNU C++ Compiler, 688
gotFocus( ), 493
goto: lack of goto in Java, 123
graphical user interface (GUI), 246, 469
graphics, 505; Graphics object, 472, 556
greater than (>), 97
greater than or equal to (>=), 97
GridBagLayout, 492
GridLayout, 490, 647
guarded region, in exception handling, 330
GUI: builders, 470; graphical user interface, 246,

469
GUID: Globally Unique IDentifier, 802
guidelines, coding standards, 823
GZIPInputStream, 388
GZIPOutputStream, 388
handle: assigning objects by copying handles, 92;

equivalence vs object equivalence, 98; final, 199;
finding exact type of a base handle, 415; handle
equivalence vs. object equivalence, 441; null, 73

handleEvent( ), 477, 486, 493
handler, exception, 330

hardware devices, interfacing with, 785
has-a relationship, composition, 196
hashCode( ), 284, 304; overriding for Hashtable,

286
HashMap, 306
HashSet, 304
Hashtable, 266, 271, 282, 288, 294, 324, 378,

497, 764; combined with Vector, 765; used with
Vector, 771

hasMoreElements( ), Enumeration, 277
hasNext( ), 297
herding, simulating behavior, 777
Hexadecimal, 107
hiding, implementation, 177
HRESULT, 803
HTML, 671, 682; name, 609; param, 609; value,

609
Icon, 579
idltojava, 809
if-else statement, 104, 118
IllegalMonitorStateException, 628
ImageIcon, 580
immutable objects, 457
implementation: and interface, 195, 222; and

interface, separation, 43, 177; hiding, 177, 232
implements keyword, 222
import keyword, 164
increment operator, 96
incremental development, 66, 197
indexed property, 571
indexing operator [ ], 155
indexOf( ), 731, 763; String, 363, 428, 680
InetAddress, 679
InflaterInputStream, 388
inheritance, 176, 183, 186, 209; and cloning, 448;

and design patterns, 716; and final, 204; and
finalize( ), 253; and synchronized, 623; choosing
composition vs. inheritance, 195; class
inheritance diagrams, 198; combining
composition & inheritance, 190; designing with
inheritance, 258; extending interfaces with
inheritance, 227; from an abstract class, 220;
from inner classes, 242; inheritance and method
overloading vs. overriding, 194; initialization
with inheritance, 205; multiple inheritance in
C++ and Java, 225; pure inheritance vs.
extension, 259; specialization, 196; vs
composition, 378; vs. composition, 199

init( ), 472, 474
initialization: and class loading, 204; array

initialization, 155; base class, 188; class member,
185; constructor initialization during inheritance
and composition, 190; initializing class members
at point of definition, 149; initializing with the
constructor, 131; instance initialization, 154;
instance initialization in Java 1.1, 237; member



Index 851

initializers, 253; non-static instance
initialization, 154; of class data members, 147;
of method variables, 147; order of initialization,
150, 257; static, 206; with inheritance, 205

inline method calls, 203
inner class, 230, 519, 537, 603, 728; access rights,

238; and super, 243; and overriding, 243; and
control frameworks, 245; and the AWT, 508; and
upcasting, 232; anonymous, 309, 751;
anonymous inner class, 364, 634; anonymous
inner class and constructors, 237; hidden
reference to the object of the enclosing class, 239;
identifiers and .class files, 245; in methods &
scopes, 233; inheriting from inner classes, 242;
nesting within any arbitrary scope, 235; private,
604; private inner classes, 248; referring to the
outer class object, 241; static, 240; static inner
classes, 240

input: console input, 385; file input shorthand,
373

InputStream, 356, 659, 672
InputStreamReader, 381, 382, 659
insertNodeInto( ), 589
instance: instance initialization in Java 1.1, 237;

non-static instance initialization, 154
instanceof: dynamic instanceof, 422; keyword, 418
Integer: parseInt( ), 505
interface: and implementation, separation, 177;

and inheritance, 227; base-class interface, 215;
Cloneable interface used as a flag, 439; common
interface, 219; graphical user interface (GUI),
246, 469; initializing fields in interfaces, 229;
keyword, 222; Runnable, 606; separation of
interface and implementation, 43; upcasting to
an interface, 225; vs. abstract, 227; vs.
implemenation, 195

interfacing with hardware devices, 785
internationalization, in IO library, 381
Internet: Internet Protocol, 654; Internet Service

Provider (ISP), 473
interrupt( ), 633
InterruptedException, 599
Intranet, 499
Introspector, 563
IO: and threads, blocking, 624; available( ), 371;

blocking on IO, 629; blocking, and available( ),
372; BufferedInputStream, 360, 371;
BufferedOutputStream, 361, 372;
BufferedReader, 348, 382, 763; BufferedWriter,
382; ByteArrayInputStream, 356;
ByteArrayOutputStream, 358; characteristics of
files, 366; CharArrayReader, 382;
CharArrayWriter, 382; CheckedInputStream,
388; CheckedOutputStream, 388; close( ), 371;
connecting to a non-Java program, 672; console
input, 385; controlling the process of
serialization, 398; data file output shorthand,

374; DataInput, 361; DataInputStream, 359,
371, 372, 382, 754; DataOutput, 361;
DataOutputStream, 361, 372, 383, 754, 765;
DeflaterOutputStream, 388; deprecated, 355;
directory lister, 362; directory, creating
directories and paths, 366; exec( ), 672;
Externalizable, 398; File, 357, 383, 764, 772; File
class, 362; file input shorthand, 373; File.list( ),
362; FileDescriptor, 357; FileInputStream, 357,
371; FilenameFilter, 362, 771; FileOutputStream,
358, 372; FileReader, 348, 382; FileWriter, 382;
FilterInputStream, 357; FilterOutputStream,
358; FilterReader, 382; FilterWriter, 382;
formatted file output shorthand, 374; from
standard input, 375; GZIPInputStream, 388;
GZIPOutputStream, 388; InflaterInputStream,
388; input, 356; InputStream, 356, 659, 672;
InputStreamReader, 381, 382, 659;
internationalization, 381; Java 1.1 compression
library, 388; library, 355; lightweight
persistence, 393; LineNumberInputStream, 360,
372; LineNumberReader, 382; mark( ), 362;
mkdirs( ), 368, 764; nextToken( ), 772;
ObjectOutputStream, 394; output, 356;
OutputStream, 356, 357, 659, 672;
OutputStreamWriter, 381, 382, 659; pipe, 356;
piped stream, 629; PipedInputStream, 357, 376;
PipedOutputStream, 357, 358, 376; PipedReader,
382; PipedWriter, 382; PrintStream, 361, 372,
373; PrintWriter, 382, 659; Process, 672;
pushBack( ), 772; PushbackInputStream, 360;
PushBackReader, 383; RandomAccessFile, 361,
372, 383; read( ), 356; readChar( ), 373;
readDouble( ), 373; Reader, 381, 382, 659;
readExternal( ), 398; readLine( ), 350, 371, 372,
373, 376, 382; readObject( ), 394; redirecting
standard IO, 387; renameTo( ), 368; reset( ), 362;
seek( ), 361, 373; SequenceInputStream, 357,
383; Serializable, 398; setErr(PrintStream), 387;
setIn(InputStream), 387; setOut(PrintStream),
387; StreamTokenizer, 376, 383, 428, 771;
StringBuffer, 357; StringBufferInputStream, 357,
371; StringReader, 382; StringWriter, 382;
System.err, 375; System.in, 375, 385;
System.out, 375; text file manipulation, 753;
transient, 401; typical IO configurations, 368;
Unicode, 381; write( ), 356; writeBytes( ), 373;
writeChars( ), 373; writeDouble( ), 373;
writeExternal( ), 398; writeObject( ), 394; Writer,
381, 382, 659; ZipEntry, 391; ZipInputStream,
388; ZipOutputStream, 388

IP (Internet Protocol), 654
is-a, 260; relationship, inheritance, 196;

relationship, inheritance & upcasting, 197
isDaemon( ), 610
isDataFlavorSupported( ), 559
isFocusTraversable( ), 550
isInstance, 422



isInterface( ), 425
is-like-a, 260
ISP (Internet Service Provider), 473
isPopupTrigger( ), 585
ItemEvent, 510, 511, 521
ItemListener, 510, 521
itemStateChanged( ), 512
iteration, during software development, 65
iterator, 276, 716
Iterator, 297
iterator( ), 297
J/Direct, 785
jactivex, 803
JAR, 570; archive tag, for HTML and JAR files,

516; file, 165, 498; files, 539; jar files and
classpath, 167; Java 1.1 JAR utility, 391;
packaging applets to optimize loading, 516

Java: and classpath, 92; and pointers, 433; and set-
top boxes, 101; C++ in contrast with Java, 688;
capitalization style source-code checking tool,
766; comparing C++ and Java, 815; connecting
to a non-Java program, 672; crashing Java,
278; public Java seminars, 26; speed, 835;
versions, 34

Java 1.0, 34, 79, 102, 146, 158, 194, 269, 278,
281, 289, 355, 356, 368, 371, 375, 378, 381,
382, 383, 420, 422, 469, 470, 476, 479, 488,
492, 519, 524, 528, 537, 561, 594, 659, 668,
672, 677, 680, 716, 771

Java 1.1, 30, 34, 55, 59, 60, 71, 72, 79, 87, 102,
146, 147, 154, 158, 159, 165, 194, 201, 202,
230, 237, 245, 279, 281, 348, 350, 355, 365,
368, 371, 375, 378, 381, 382, 383, 386, 387,
388, 389, 393, 396, 411, 412, 413, 417, 420,
422, 423, 425, 426, 446, 469, 470, 476, 479,
488, 489, 493, 494, 498, 515, 519, 523, 524,
525, 528, 537, 539, 540, 546, 550, 555, 557,
561, 562, 594, 629, 659, 668, 672, 681, 699,
707, 712, 728, 729, 818, 821, 823, 825, 839;
and Swing, 572; AWT, 470; IO streams, 381; JAR
utility, 391; new array initialization syntax,
269; new AWT, 507; reflection, 426, 726, 773;
String behavior, 278

Java 1.2, 34, 79, 166, 275, 278, 291, 365, 366,
469, 470, 594, 623, 627, 631, 632, 646, 680,
716, 783, 823; collections library, new, 293; new
collections library, 293; Swing library, 572

Java Beans: see Beans, 559
Java Foundation Classes (JFC/Swing), 469
Java Generic Library (former name of the JGL),

293
Java Native Interface (JNI), 785
Java operators, 91
Java Runtime Interface, 785
Java Virtual Machine, 416
Java/COM integration, 785

javah, 787
Javareg, 803
JButton, 578
JCheckbox, 579
JColorChooser, 593
JComboBox, 586
JComponent, 575
JDBC: createStatement( ), 701; database URL, 700;

DatabaseMetaData, 707; executeQuery( ), 701;
flat-file database, 703; getFloat( ), 701; getInt( ),
701; getString( ), 701; Java DataBase
Connectivity, 699; join, 703; relational database,
703; ResultSet, 701; SQL stored procedures, 704;
Statement, 701; Structured Query Language
(SQL), 699

JFC: Java Foundation Classes (JFC/Swing), 469
JFileChooser, 593
JFrame, 575
JGL: Generic Collection Library for Java, 293
JHTMLPane, 593
JInternalFrame, 593
JIT: Just-In Time compilers, 67
JLabel, 575
JLabels, 584
JLayeredPane, 593
JList, 586
JMenu, 584
JMenuItem, 579, 586
JMenuItems, 584
JNI: Java Native Interface, 785
JNI functions, 789
JNICALL, 787
JNIEnv, 789
JNIEXPORT, 787
join, 703
JOptionPane, 593
JPasswordField, 593
JPopupMenu, 585
JProgressBar, 587
JRadioButton, 579
JScrollPane, 573, 586, 589
JSlider, 587
JTabbedPane, 591
JTextField, 586
JTextPane, 593
JToggleButton, 578
JToolbar, 593
JTree, 587, 589
JVM (Java Virtual Machine), 416
KeyAdapter, 513
keyboard navigation, and Swing, 573
keyDown( ), 493
KeyEvent, 510, 511
KeyListener, 510



Index 853

keyPressed( ), 512
keyReleased( ), 512
keySet( ), 314
keyTyped( ), 512
keyUp( ), 493
label, 123
Label, 480
labeled break, 123
labeled continue, 123
late binding, 209, 212
layout: combining layouts, 491; controlling

layout, 488; layout manager, 482, 488
lazy evaluation, 293
left-shift operator (<<), 101
length( ), 763
length, for arrays, 266
less than (<), 97
less than or equal to (<=), 97
library: design, 163; use, 164
lightweight: Swing components, 573
lightweight persistence, 393
LineNumberInputStream, 360, 372
LineNumberReader, 382
linked list, 294
LinkedList, 300
list: boxes, 485; drop-down list, 484
List, 294, 300, 485; Java 1.1, 524; sorting, 320
list box, 586
listener adapters, 513
listener classes, 537
ListIterator, 300
literal: class literal, 417, 420; double, 108; float,

108; long, 108; values, 107
loading: .class files, 166; initialization & class

loading, 204; loding a class, 206
local loopback IP address, 655
localhost, 655; and RMI, 710
lock, for multithreading, 615
logarithms: natural logarithms, 108
logical: AND, 106; operator and short-circuiting,

100; operators, 98; OR, 106
long, literal value marker (L), 108
lostFocus( ), 493
lvalue, 92
main( ), 187
manifest file, for JAR files, 392, 570
map, 282
Map, 294, 306
mark( ), 362
marshaling, 796
Math.random( ), 284; values produced by, 129
mathematical operators, 94
max( ), 322
MDI, 593

member initializers, 253
menu: popup menu, 585
Menu, 499; Java 1.1, 525; Swing, 581
menu shortcuts, 528
MenuBar, 499, 529
MenuComponent, 499
MenuItem, 499, 529; Java 1.1, 525
message box, in Swing, 593
meta-class, 416
method: adding more methods to a design, 181;

aliasing during a method call, 434; aliasing
during method calls, 94; behavior of
polymorphic methods inside constructors, 256;
distinguishing overloaded methods, 135; final,
213; final methods, 202; initialization of method
variables, 147; inline method calls, 203; inner
classes in methods & scopes, 233; lookup tool,
773; method call binding, 212; overloading, 133;
passing a handle into a method, 434;
polymorphic method call, 209; polymorphic
method calls, 723; protected methods, 196;
recursive, 279; recursive method calls, 729;
static, 142; synchronized method and blocking,
624

Method, 565; for reflection, 426
MethodDescriptors, 565
methodology, software development, 62
Microsoft, 594; Visual Basic, 560
min( ), 322
mistakes, and design, 181
mkdirs( ), 368, 764
modulus, 94
monitor, for multithreading, 615
MouseAdapter, 513
mouseClicked( ), 512
mouseDown( ), 493, 505
mouseDrag( ), 493
mouseDragged( ), 512
mouseEnter( ), 494
mouseEntered( ), 512
MouseEvent, 510, 511, 585
mouseExit( ), 494
mouseExited( ), 512
MouseListener, 510
MouseMotionAdapter, 513
MouseMotionListener, 510
mouseMove( ), 493
mouseMoved( ), 512
mousePressed( ), 512
mouseReleased( ), 512
mouseUp( ), 493
multicast, 569; event, and Java Beans, 620;

multicast events, 534
multidimensional arrays, 159
Multimedia CD ROM for book, 32



multiple dispatching, 737
multiple inheritance, in C++ and Java, 225
multiple selection, AWT List, 488
multiple-document interface, 593
multiplication, 94
multitasking, 597
multithreading, 597, 662; and collections, 323; and

Java Beans, 619; blocking, 623; deciding what
methods to synchronize, 623; drawbacks, 651;
Runnable, 646; stop( ), 680; when to use it, 651

multi-tiered systems, 534
name, 473; clash, 164; collisions, 168; creating

unique package names, 166; spaces, 164
name, HTML keyword, 609
Naming: bind( ), 709; rebind( ), 710; unbind( ), 710
narrowing conversion, 107, 139
native code for connecting to a non-Java program,

672
native method interface (NMI) in Java 1.0, 786
natural comparison method, 319
natural logarithms, 108
network programming, 653; accept( ), 657; applet,

671; CGI GET, 695; CGI POST, 696; CGI
programming in C++, 688; client, 655;
Common-Gateway Interface (CGI), 671;
connecting Java to CGI, 682; crash course in CGI
programming, 682; datagram, 672, 677;
Datagram.receive( ), 681; DatagramPacket, 666,
669, 679; datagrams, 666; DatagramSocket,
666, 679; dedicated connection, 661; displaying
a Web page from within an applet, 687; DNS
(Domain Name Service), 654; dotted quad, 654;
firewall, 681; GET request, 684; getAddress( ),
669; getDocumentBase( ), 687;
getInputStream( ), 657, 699;
getOutputStream( ), 657, 698; getPort( ), 669;
HTML, 671, 682; HTML content-type, in CGI
programming, 695; identifying machines, 654;
InetAddress, 679; intercepting results from a CGI
program, 687; Internet Protocol (IP), 654;
invoking a CGI program from Java, 683; Java
DataBase Connectivity (JDBC), 699; local
loopback IP address, 655; localhost, 655;
multithreading, 662; openConnection( ), 697;
port, 656; POST using an applet, 697;
QUERY_STRING, 695; receive( ), 669, 680;
reliable protocol, 666; server, 655; serving
multiple clients, 662; Servlet Server, 713; servlet
servers, 682; setAllowUserInteraction(false),
697; setDoInput(true), 697; setDoOutput(true),
697; showDocument( ), 687, 699; Socket, 661;
stream-based sockets, 666; testing programs
without a network, 655; Transmission Control
Protocol (TCP), 666; unreliable protocol, 666;
URL, 686, 688; URL openStream( ), 687;
URLConnection, 697; URLEncoder.encode( ), 683;

User Datagram Protocol (UDP), 666; Web
application, 671

new collections library, 293
new operator, 143; and primitives, array, 157
newInstance( ), 579, 592; reflection, 425
newInstance( ), reflection, 729
next( ), 297
nextElement( ), Enumeration, 277
nextToken( ), 772
NMI: Java 1.0 native method interface, 786
no-arg: constructors, 135
non-Java: connecting to a non-Java program, 672
non-Java code, calling, 785
North, 489
not equivalent (!=), 97
notify( ), 624
notifyAll( ), 624
notifyListeners( ), 622
notifyObservers( ), 718, 720
null, 73, 268
NullPointerException, 337
numbers, binary, 108
object, 40; aliasing, 93; arrays are first-class

objects, 266; assigning objects by copying
handles, 92; assignment, 92; business
object/logic, 534; Class object, 407, 416, 616;
creation, 132; equals( ) method, 98; equivalence,
97; equivalence vs handle equivalence, 98; final,
199; handle equivalence vs. object equivalence,
441; immutable objects, 457; lock, for
multithreading, 615; object-oriented
programming, 414; order of finalization of
objects, 256; process of creation, 153;
serialization, 393; web of objects, 394, 438

Object, 266, 284, 723; array of Object, 581;
clone( ), 438, 441; getClass( ), 423

Object Request Broker (ORB), 785
object-oriented: analysis & design, 62
object-oriented programming, 39
ObjectOutputStream, 394
ObjectSpace, 293
Observable, 718
Observer, 718
observer design pattern, 718
Octal, 108
ODBC, 700
OMG, 807
ones complement operator, 101
OOP, 177; protocol, 222
openConnection( ), 697
openStream( ), URL, 687
operator, 91; + and += overloading for String,

187; +, for String, 462; == and !=, 441; binary,
101; bitwise, 101; casting, 106; comma, 105;
comma operator, 121; common pitfalls, 106;



Index 855

indexing operator [ ], 155; logical, 98; logical
operators and short-circuiting, 100; ones-
complement, 101; operator overloading for
String, 462; overloading, 105; precedence, 92;
precedence mnemonic, 109; relational, 97; shift,
101; ternary, 104; unary, 96, 101

operator overloading: in C++, 692
optimization, 829
optional methods, in the Java 1.2 collections, 316
OR, 106; (||), 98
ORB (Object Request Broker), 785
order: of constructor calls with inheritance, 251; of

finalization of objects, 256; of initialization, 150,
205, 257

organization, code, 173
output: data file output shorthand, 374; formatted

file output shorthand, 374
OutputStream, 356, 357, 659, 672
OutputStreamWriter, 381, 382, 659
overflow: and primitive types, 117; stack overflow,

279
overloading: and constructors, 133; distinguishing

overloaded methods, 135; lack of name hiding
during inheritance, 194; method overloading,
133; on return values, 139; operator + and +=
overloading for String, 187; operator
overloading, 105; operator overloading for
String, 462; overloading vs. overriding, 194; vs.
overriding, 218

overriding: and inner classes, 243; overloading vs.
overriding, 194; vs. overloading, 218

package, 164, 723; access, and friendly, 173; and
applets, 474; and directory structure, 172;
creating unique package names, 166; default
package, 174; names, capitalization, 79;
statement and book chapter subdirectories, 92;
visibility, friendly, 232

paint( ), 472, 494, 505, 551, 556
Panel, 491
param, HTML keyword, 609
parameter, applet, 473
parameterized type, 275, 293, 740
parseInt( ), 505
pass: pass by value, 436; passing a handle into a

method, 434
patterns, design patterns, 180, 715
performance, 835; and final, 204
performance guidelines, 827
persistence, 405; lightweight persistence, 393
pipe, 356
piped stream, 629
PipedInputStream, 357, 376
PipedOutputStream, 357, 358, 376
PipedReader, 382
PipedWriter, 382

planning, software development, 63
platform-independent file manipulation, 754
pointers, and Java, 433
polymorphism, 209, 263, 414, 430, 723, 735, 752;

and constructors, 251; behavior of polymorphic
methods inside constructors, 256

popup menu, 585
port, 656
portability in C, C++ and Java, 109
POST, 682; CGI, 696; using an applet, 697
precedence: operator precedence mnemonic, 109
primitive: collections of primitives, 269;

comparison, 98; data types, and use with
operators, 109; dealing with the immutability of
primitive wrapper classes, 457; final, 199; final
static primitives, 201; initialization of class data
members, 147; wrappers, 285

print( ), 551, 556
PrintGraphics, 556
printInfo( ), 425
printing, 557; text, 555
PrintJob, 555
println( ), 278
printStackTrace( ), 332, 333
PrintStream, 361, 372, 373
PrintWriter, 382, 659
priority: default priority for a Thread group, 639;

thread, 636
private, 43, 163, 172, 175, 196, 615; and the final

specifier, 203; constructor, 717; inner class, 604;
inner classes, 248

problem space, 40, 197
Process, 672
process, and threading, 597
processEvent( ), 545
profiling, 828
ProgID, 802
programmer, client, 43
programming: coding standards, 823; event-driven

programming, 476; object-oriented, 39, 414
progress bar, 586
promotion: of primitive types, 117; type

promotion, 108
Properties, 287, 771
property, 560; bound properties, 571; constrained

properties, 571; custom property editor, 572;
custom property sheet, 572; indexed property,
571

PropertyChangeEvent, 571
PropertyDescriptors, 565
proportionally-spaced font, 481
ProptertyVetoException, 571
protected, 163, 172, 176, 196; and friendly, 196;

use in clone( ), 439
protocol, 222; unreliable protocol, 666



prototype, 726; design pattern, 733
public, 43, 163, 172, 173; and interface, 222; class,

and compilation units, 164
pure inheritance, vs. extension, 259
pure substitution, 260
pushBack( ), 772
PushbackInputStream, 360
PushBackReader, 383
put( ), Hashtable, 285
QUERY_STRING, 695
queue, 294
Quicksort, 289
RAD (Rapid Application Development), 425
radio button, 483
random number generator, values produced by,

129
random( ), 284
Random.nextBytes( ), 318
RandomAccessFile, 361, 372, 383
Raw Native Interface (RNI), 785
read( ), 356, 677
readChar( ), 373
readDouble( ), 373
Reader, 381, 382, 629, 659
readExternal( ), 398
reading from standard input, 375
readLine( ), 350, 371, 372, 373, 376, 382
readObject( ), 394; with Serializable, 403
rebind( ), 710
receive( ), 669, 680; Datagram, 681
recursive, 279; method calls, 729
redirecting standard IO, 387
referencing, forward referencing, 150
reflection, 425, 562, 728, 773; and Beans, 560;

difference between RTTI and reflection, 426; Java
1.1 reflection, 726

registry: remote object registry, 709; Windows
registry, 802

relational: database, 703; operators, 97
reliable protocol, 666
Remote Method Invocation (RMI), 707
RemoteException, 712
remove( ), 297
removeActionListener( ), 510, 567, 622
removeAdjustmentListener( ), 510
removeComponentListener( ), 510
removeContainerListener( ), 510
removeFocusListener( ), 510
removeItemListener( ), 510
removeKeyListener( ), 510
removeMouseListener( ), 510
removeMouseMotionListener( ), 510
removeTextListener( ), 510
removeWindowListener( ), 510

renameTo( ), 368
repaint( ), 545
replace( ), 764
reporting errors in book, 35
requestFocus( ), 550
requirements analysis, 63
reset( ), 362
resources, 470
ResultSet, 701
resume( ), 624, 626; and deadlocks, 632;

deprecation in Java 1.2, 634
resumption, termination vs. resumption, exception

handling, 331
re-throwing an exception, 333
return: constructor return value, 133; overloading

on return value, 139
reuse, 206; code reuse, 183; reusable code, 559
right-shift operator (>>), 101
RMI: AlreadyBoundException, 710; and CORBA,

813; bind( ), 709; CORBA, 712; localhost, 710;
rebind( ), 710; Remote, 708; remote interface,
707; Remote Method Invocation, 707; remote
object registry, 709; RemoteException, 708, 712;
rmic, 711; rmic and classpath, 711; rmiregistry,
709; RMISecurityManager, 709; Serializable
arguments, 711; skeleton, 711; stub, 711;
TCP/IP, 710; unbind( ), 710;
UnicastRemoteObject, 708

rmic, 711
rmiregistry, 709
RMISecurityManager, 709
RNI: Raw Native Interface, 785
rollover, 581
RTI: Class, 579
RTTI: and cloning, 442; cast, 415; Class object,

416; ClassCastException, 418; Constructor, 426,
579; difference between RTTI and reflection, 426;
downcast, 418; eliminating from your design,
737; Field, 426; getConstructor( ), 579;
instanceof keyword, 418; isInstance, 422; meta-
class, 416; Method, 426; misuse of RTTI, 723,
734, 749; newInstance( ), 579; reflection, 425;
run-time type identification (RTTI), 262; type-
safe downcast, 418; using the Class object, 423

runFinalizersOnExit( ), 255, 371
Runnable, 646, 677; interface, 606; Thread, 623
running programs and the classpath, 92
Runtime, 672
run-time binding, 212; polymorphism, 209
run-time type identification: (RTTI), 262; misuse,

430; shape example, 413; when to use it, 430
RuntimeException, 266, 337
rvalue, 92
safety, and applet restrictions, 497
scheduling, software development, 64



Index 857

scope: inner class nesting within any arbitrary
scope, 235; inner classes in methods & scopes,
233

section, critical section and synchronized block,
618

seek( ), 361, 373
selection, multiple selection in an AWT List, 488
seminars: public Java seminars, 26; training,

provided by Bruce Eckel, 35
separation of interface and implementation, 43,

177
SequenceInputStream, 357, 383
Serializable, 393, 398, 401, 410, 569; readObject( ),

403; writeObject( ), 403
serialization: and object storage, 405; and

transient, 401; controlling the process of
serialization, 398; defaultReadObject( ), 404;
defaultWriteObject( ), 404; RMI arguments, 711;
to perform deep copying, 446; Versioning, 405

server, 655
server-side programming, 61
Servlet Server, 713
servlet servers, 682
servlets, 61
Set, 294, 303
setActionCommand( ), 528
setAlignment( ), 481
setAllowUserInteraction(false), 697
setBorder( ), 575
setChanged( ), 720
setCheckboxGroup( ), 483
setContents( ), 559
setDaemon( ), 610
setDirectory( ), 507
setDoInput(true), 697
setDoOutput(true), 697
setEditable( ), 479
setErr(PrintStream), 387
setFile( ), 507
setIcon( ), 581
setIn(InputStream), 387
setLayout( ), 489
setMenuBar( ), 499
setOut(PrintStream), 387
setPriority( ), 636
setSelectedIndex( ), 592
setText( ), 481
setToolTipText( ), 575
shallow copy, 438, 443
shape: example, 213; example, and run-time type

identification, 413
shift operators, 101
shortcut, menu shortcuts, 528
show( ), 507

showConfirmDialog( ), 593
showDocument( ), 687, 699
showMessageDialog( ), 593
showStatus( ), 477
side effect, 91, 97, 139, 436
signed two’s complement, 104
Simula-67, 177
simulation, 777
singleton, 716; design pattern, 180
size( ), Vector, 272
sizeof( ): lack of in Java, 109
skeleton, RMI, 711
sleep( ), 599, 614, 624, 625
slider, 586
Smalltalk, 39, 41, 143
Socket, 661
sockets, stream-based, 666
Software Development Conference, 26
software development, process, 62
sort( ), 317
sorting, 289
source code copyright notice, 33
South, 489
specialization, 196
specification: system specification, 63
specification, exception, 331
specifier: access specifiers, 43, 163, 172
speed, and Java, 835
Spinner, 578
splitter control, 593
Springs & Struts, 593
SQL: stored procedures, 704; Structured Query

Language, 699
stack: and object creation, 835; overflow, 279
Stack, 266, 271, 281, 324
standard input: Reading from standard input, 375
Standard Template Library (STL) for C++, 293
standards: coding standards, 34, 823
start( ), 472, 474
Statement, 701
static, 222; and final, 199; and inner classes, 240;

block, 153; clause, 417; construction clause,
153; data initialization, 151; final static
primitives, 201; initialization, 206; inner classes,
240; keyword, 142; method, 142; synchronized
static, 616

status line, Web browser, 477
STL: C++, 294; C++ Standard Template Library,

688; Standard Template Library for C++, 293
stop( ), 472, 474, 680; and deadlocks, 632;

deprecation in Java 1.2, 633
stored procedures in SQL, 704
stream-based sockets, 666
StreamTokenizer, 376, 383, 428, 771



String, 753; automatic type conversion, 274; class
methods, 461; concatenation with operator +,
105; immutability, 461; indexOf( ), 363, 428,
680, 731, 763; length( ), 763; lexicographic vs.
alphabetic sorting, 318; methods, 463; operator
+, 274; Operator +, 105; operator + and +=
overloading, 187; replace( ), 764; substring( ),
763; substring( ), 731; toString( ), 184, 273;
trim( ), 686, 763; trim( ), 731

StringBuffer, 357, 371; methods, 465
StringBufferInputStream, 357, 371
StringReader, 382
StringSelection, 559
StringSpinner, 578
StringTokenizer, 379
StringWriter, 382
Stroustrup, Bjarne (C++ inventor), 34
structural design patterns, 718
stub, RMI, 711
style of creating classes, 177
subList( ), 322
subobject, 188, 195
substring( ), 731, 763
subtraction, 94
super, 189; and finalize( ), 255; and inner classes,

243
super keyword, 188
super.action( ), 477
super.clone( ), 439, 441, 453
super.handleEvent( ), 488
superclass, 188
suspend( ), 624, 626; and deadlocks, 632;

deprecation in Java 1.2, 634
Swing: AbstractButton, 576; addTab( ), 592;

BasicArrowButton, 578; BoxLayout, 593;
ButtonGroup, 578; combo box, 586;
Component, 592; DefaultMutableTreeNode, 589;
DefaultTreeModel, 589; getModel( ), 589; Icon,
579; ImageIcon, 580; insertNodeInto( ), 589;
isPopupTrigger( ), 585; Java Foundation Classes
(JFC), 469; JButton, 578; JCheckbox, 579;
JColorChooser, 593; JComboBox, 586;
JComponent, 575; JFileChooser, 593; JFrame,
575; JHTMLPane, 593; JInternalFrame, 593;
JLabel, 575; JLabels, 584; JLayeredPane, 593;
JList, 586; JMenu, 584; JMenuItem, 579, 586;
JMenuItems, 584; JOptionPane, 593;
JPasswordField, 593; JPopupMenu, 585;
JProgressBar, 587; JRadioButton, 579;
JScrollPane, 573, 586, 589; JSlider, 587;
JTabbedPane, 591; JTextField, 586; JTextPane,
593; JToggleButton, 578; JToolbar, 593; JTree,
587, 589; keyboard navigation, 573; list box,
586; MDI, 593; Menus, 581; message box, 593;
MouseEvent, 585; multiple-document interface,
593; newInstance( ), 592; popup menu, 585;

progress bar, 586; rollover, 581; setBorder( ),
575; setIcon( ), 581; setSelectedIndex( ), 592;
setToolTipText( ), 575; showConfirmDialog( ),
593; showMessageDialog( ), 593; slider, 586;
Spinner, 578; splitter control, 593; Springs &
Struts, 593; StringSpinner, 578; table, 589;
TitledBorder, 576, 592; tool tip, 581; toolbar,
593; tree, 587; UI Component library, 572;
undo, 593

switch keyword, 127
synchronized, 615; and inheritance, 623; and

wait( ) & notify( ), 628; collections, 323; deciding
what methods to synchronize, 623; efficiency,
619; method, and blocking, 624; static, 616;
synchronized block, 618

system clipboard, 557
system specification, 63
System.err, 375
System.in, 375, 385
System.out, 375
System.out.println( ), 278
table, 589
tag, applet, in HTML, 473
target, of an event, 477
TCP, Transmission Control Protocol, 666
TCP/IP, and RMI, 710
template: C++ Standard Template Library (STL),

688; in C++, 275, 741
termination vs. resumption, exception handling,

331
ternary operator, 104
testing: unit testing, 187
testing techniques, 241
text: file manipulation, 753; processing, 753
TextArea, 479, 557; Java 1.1, 519
TextComponent, 478; Java 1.1, 519
TextEvent, 510, 511
TextField, 478; Java 1.1, 519
TextListener, 510
textValueChanged( ), 512
this keyword, 140
Thread, 597, 599; and Java Beans, 619; and

Runnable, 646; blocked, 623; combined with
main class, 605; daemon threads, 610; dead,
623; deadlock, 632; deciding what methods to
synchronize, 623; destroy( ), 636; drawbacks,
651; getPriority( ), 636; interrupt( ), 633; IO and
threads, blocking, 624; isDaemon( ), 610; new
Thread, 623; notify( ), 624; notifyAll( ), 624;
order of execution of threads, 601; priority, 636;
properly suspending & resuming, 634; resume( ),
624, 626; resume( ) , deprecation in Java 1.2,
634; resume( ), and deadlocks, 632; run( ), 600;
Runnable, 623; Runnable interface, 606;
setDaemon( ), 610; setPriority( ), 636; sharing
limited resources, 611; sleep( ), 614, 624, 625;



Index 859

start( ), 600; states, 623; stop( ) , deprecation in
Java 1.2, 633; stop( ), and deadlocks, 632;
stopping, 633; suspend( ), 624, 626; suspend( ) ,
deprecation in Java 1.2, 634; suspend( ), and
deadlocks, 632; synchronized method and
blocking, 624; thread group, 640; thread group,
default priority, 639; threads and efficiency, 599;
wait( ), 624, 628; when they can be suspended,
615; when to use threads, 651; yield( ), 624

throw keyword, 329
Throwable, 335; base class for Exception, 332
throwing an exception, 329
time-critical code sections, 785
TitledBorder, 576, 592
toArray( ), 314
token, 376
tool tip, 581
toolbar, 593
Toolkit, 556
TooManyListenersException, 534, 569
toString( ), 184, 273, 278, 288
training seminars provided by Bruce Eckel, 35
Transferable, 559
transient, 401
translation unit, 164
Transmission Control Protocol (TCP), 666
tree, 587
TreeMap, 306
trim( ), 482, 686, 731, 763
true, 98
try, 193, 345; try block in exceptions, 330
two’s complement, signed, 104
type: finding exact type of a base handle, 415;

parameterized type, 275, 740; primitive data
types and use with operators, 109; type checking
and arrays, 266; type safety in Java, 106; type-
safe downcast in run-time type identification,
418

TYPE field, for primitive class literals, 418
type library, 803
type safe sets of constants, 229
type-check coding, 723
type-conscious Vector, 274
UDP, User Datagram Protocol, 666
UML, Unified Modeling Language, 64
unary: minus (-), 96; operator, 101; operators, 96;

plus (+), 96
unbind( ), 710
undo, 593
unicast, 569; unicast events, 534
UnicastRemoteObject, 708
Unicode, 381
unit testing, 187
unmodifiable collections, 323

unsupported methods, in the Java 1.2 collections,
316

UnsupportedOperationException, 316
upcasting, 197, 209, 414, 723; and interface, 225;

inner classes and upcasting, 232
update( ), 472, 545
updates of the book, 34
URL, 686, 688; openStream( ), 687
URLConnection, 697
URLEncoder: encode( ), 683
use case, 64
User Datagram Protocol (UDP), 666
user interface: and threads, for responsiveness,

601; responsive, with threading, 598
value: preventing change at run-time, 199
value, HTML keyword, 609
variable: defining a variable, 121; initialization of

method variables, 147; variable argument lists
(unknown quantity and type of arguments), 159

Vector, 266, 271, 275, 278, 281, 288, 324, 723,
765; addElement( ), 272; and deep copying, 445;
combined with Hashtable, 765; elementAt( ),
272, 275; size( ), 272; type-conscious Vector,
274; used with Hashtable, 771

vector of change, 65, 248, 716, 726, 752
versioning, serialization, 405
versions of Java, 34
visibility, package visibility, (friendly), 232
visitor pattern, 743
visual: programming, 560; programming

environments, 470
Visual Basic, 804
Visual Basic, Microsoft, 560
wait( ), 624, 628
Web: application, 671; displaying a Web page from

within an applet, 687; placing an applet inside a
Web page, 473; safety, and applet restrictions,
497

Web browser: status line, 477
web of objects, 394, 438
West, 489
while, 119
widening conversion, 107
Win32 API, 795
window: Abstract Window Toolkit (see AWT), 469;

standalone windowed application, 502; Web
browser status line, 477

WINDOW_CLOSING, 529
WINDOW_DESTROY, 502
windowActivated( ), 512
WindowAdapter, 513
windowClosed( ), 512
windowClosing( ), 512
windowDeactivated( ), 512
windowDeiconified( ), 512



windowed applications, 499
WindowEvent, 510, 511, 529
windowIconified( ), 512
WindowListener, 510
windowOpened( ), 512
Windows registry, 802
wrapper, dealing with the immutability of

primitive wrapper classes, 457
write( ), 356
writeBytes( ), 373

writeChars( ), 373
writeDouble( ), 373
writeExternal( ), 398
writeObject( ), 394; with Serializable, 403
Writer, 381, 382, 629, 659
XOR, 101
yield( ), 624
ZipEntry, 391
ZipInputStream, 388
ZipOutputStream, 388


	Cover
	Front Matter
	Comments from Readers
	About "Thinking in C++"
	Title Page
	Copyright Page
	Hands-On Java Seminar
	Hands-On Java Seminar Multimedia CD
	Dedication

	Overview (short Table of Contents)
	What's Inside (long Table of Contents)
	Foreword
	Introduction
	1: Introduction to objects
	2: Everything is an object
	3: Controlling program flow
	4: Initialization and cleanup
	5: Hiding the implementation
	6: Reusing classes
	7: Polymorphism
	8: Holding your objects
	9: Error handling with exceptions
	10: The Java IO system
	11: Run-time type identification
	12: Passing and returning objects
	13: Creating windows and applets
	14: Multiple threads
	15: Network programming
	16: Design patterns
	17: Projects
	A: Using non-Java code
	B: Comparing C++ and Java
	C: Java programming guidelines
	D: Performance
	E: A bit about garbage collection
	F: Recommended reading
	Index

