
Chapter 10

ELECTRONIC SYSTEM DESIGN
AUTOMATION USING HIGH
LEVEL PETRI NETS

Patrik Rokyta
Siemens AG Munich,
Germany
Patrik.Rokyta@icn.siemens.de

Wolfgang Fengler and Thorsten Hummel∗

Ilmenau Technical University,
Germany
{Wolfgang.Fengler,Thorsten.Hummel}@theoinf.tu-ilmenau.de

Abstract A design and implementation methodology for system specification,
modelling and implementation using a special kind of high level Petri
nets is described. Electronic system design automation tools are used
to generate synthesizable VHDL code from a Petri net model. For the
design of large systems with regular structures using of coloured Petri
nets will improve the handling and flexibility. Two design examples
illustrate the described methodology.

Keywords: Hardware Design, Petri nets, VHDL

1. INTRODUCTION
A design and implementation methodology must provide tools for

system specification, modelling and implementation.

∗Supported by DFG grant GRK 164/1-96

193

Thorsten Hummel
Published in: A. Yakovlev, L. Gomes, L. Lavagno (Eds.): Hardware Design and Petri Nets. Kluwer Academic Publishers, March 2000, pp. 193-204, ISBN 0-7923-7791-5.



194

The expected behaviour of the system (behavioural model) is captured
in the specification. This model is useful to check the algorithm of the
system without any constraints towards implementation.

A formal language is used to capture a RTL model of the design.
The most popular languages for capturing a RTL model are Verilog and
VHDL [4]. These hardware description languages can be synthesized to
a gatelevel netlist.

Petri nets have shown to be a powerful formal language to specify
and model the behaviour of parallel systems at a high abstraction level.
Since a PN can be analysed, the error detection is possible without any
verification methods.

Electronic System Design Automation (ESDA) allows to capture a
graphical model of the design using state diagrams, flow charts or truth
tables. The creation of a synthesizable VHDL model is provided by a
built-in VHDL generator.

Since Petri nets are more flexible for modelling parallel designs they
should be used instead of state machines. Using Petri nets the merger
between the behaviour and the state machine can be fulfilled. The anal-
ysis of the design can be extended to its behaviour (i.e. reachable values
of the output signals instead of reachable state vectors).

The VHDL generator must extract a fully synthesizable VHDL code
out of any type of Petri net model.

Figure 10.1 ESDA based System Design using Hardware Petri Nets.

2. THE HARDWARE PETRI NET
In order to use Petri nets for capturing a design for verification or a

design for manufacturing, the Place Transition Net must be extended
for purposes, which allow high level signal modelling. This kind of Petri
net is refered to as the Hardware Petri Net (HPN):



Electronic System Design Automation Using High Level Petri Nets 195

- The Places store a certain amount of tokens up to their capacity.
This feature allows modelling of bus signals. The capacity of the
place must correspond with the width of the bus.

- When a place stores at least one token the corresponding asyn-
chronous I/O-function, which is attached to the place, is executed.
This is supposed to be used for modelling of asynchronous be-
haviour. The function is defined using VHDL statements and must
be fully synthesizable.

- When a transition fires, the corresponding synchronous I/O-function,
which is attached to this transition, is executed. This is useful for
modelling of synchronous behaviour. The function is defined using
VHDL statements and must be fully synthesizable.

- Besides known arcs, enabling and setting arcs are defined.
Enabling arcs define an additional firing condition related to the
marking of the place the arc is connected with. Any condition is
allowed on this arc (e.g. < 3, >= 4). An inhibitor arc, which is
included in the enabling arcs, provides an enabling function, when
the place stores no token (= 0).
Setting arcs cause the place to obtain a certain amount of tokens,
which is defined on this arc.
Since a place is represented by a flip-flop in a logical design, the
setting arc can be used to synchronize external signals with the
active edge of the system clock.

- An additional external firing condition can be attached to any
transition. Though, this can cause timing violations at the flip-
flops.

Using HPN for signal modelling allows the modelling of either syn-
chronous or asynchronous behaviour. Setting the corresponding default
value for asynchronous signals, a latch, a tri-state or a combinational
logic design can be synthesized. A reset value can be defined for any
signal of the design which takes place if reset is active.

Using I/O-functions either on places or on transitions, a Mealy ma-
chine is synthesized. For a critical design using places with the corre-
sponding capacity (1 for 1 bit, 3 for 2 bits, 15 for 4 bits) to represent
the value of the output signals, a Moore machine is synthesized.
Firing transitions are synchronized with the active edge of a clock.



196

3. HIERARCHICAL DESIGN AND
PARTITIONING

The state vector of a HPN is built out of bit vectors where each of
them corresponds with the capacity of the related place. Since the design
can have an unlimited amount of places with unlimited (the highest
integer used in the synthesis tool) capacity, the state vector can become
very large. Since the FSM optimization does not work with large state
vectors, the design must be split into several (hierarchical) blocks. The
FSM optimization (reachable states, encoding style) can be applied to
the lowest level of the hierarchy.

The partitioning of a HPN design is fulfilled at the top level. In this
case the design is split into several units. Each unit is synchronized with
individual clock and reset.

Within each unit a hierarchical HPN can be captured using macros. A
macro allows to descent to the next hierarchy level. Since the hierarchy is
directly translated to a VHDL model, incremental synthesis is possible.

For each signal within a unit only one driver is synthesized. To get
more drivers for one signal, the signal must be modeled in more than
one unit and must be defined as a tri-state signal.

4. GENERATION OF SYNTHESIZABLE
VHDL-CODE

Using HPN a generation of synthesizable VHDL-Code is possible for
any kind of design. Using the reachable states the synthesis result can
be optimized since the lowest level of the hierarchy is always a FSM.

The top level of a HPN design consists of the unit instances. Since a
unit requires a synchronous reset the reset is synchronized outside this
unit with the unit clock and is handled as an asynchronous reset within
this unit in order to save logic and get more efficient synthesis results.

Each VHDL model of a HPN unit consists of the synchronous and the
asynchronous I/O-process where all I/O-functions, which are attached to
the places and the transitions of this unit, are executed. The execution
order is controlled by the priority value attached to these elements.

The most important part within a HPN unit is the FSM instance
which simulates the firing of transitions. This FSM is a separated VHDL
model. In this model the firing conditions of the transitions are calcu-
lated. A special VHDL process detects and removes any firing hazards.
Another VHDL process controls the token flow within the unit. Since
the FSM can be a hierarchical design using macros it can consist of other
instances of FSM at the lower level.



Electronic System Design Automation Using High Level Petri Nets 197

Figure 10.2 Firing condition of the transition.

The firing condition of the transitions are calculated out of the mark-
ings of the connected places and the token value of the related arcs. The
firing condition is extended by the external firing condition which can
be attached to the transition. Enabling arcs and setting arcs affect the
firing condition of the transition as well (Fig.10.2). The token value of
the setting arc must not exceed the capacity of the related place element.

Figure 10.3 Removing of firing hazards.

Firing hazards are removed by defining a firing priority of the tran-
sitions which are conflicting. Only transitions with the highest priority



198

will fire at the specified clockedge. Since one transition can take part in
more firing hazards at one time, the removing of the firing hazards must
be done using VHDL variables (Fig.10.3).The functionality of solving
firing hazards is implemented as a VHDL sequential process.

Figure 10.4 Token flow with active clock edge.

The token flow is controlled by another VHDL process. It consists
of the detection of the reset phase and the active clock edge. During
reset the marking of the place elements is set to their start value. If the
active clock edge is detected the token flow will takes place (Fig.10.4).
The user defined function ’getm’ returns the token amount which will
relatively change the marking of the related place if the corresponding
transition fires.

Using I/O functions the optimal scheduling must be done in advance.
Since scheduling is not supported by Petri nets, it must be done manu-
ally by synthesizing examples which correspond to the functionality of
the design. The synthesis results in the number of multicycles or the
scheduling plan for the corresponding arithmetic operation. Scheduling
can be done using formal analysis methods as well - synthesizing test
examples does relate to the target technology and includes the timing of
the wiring and the total area needed for the gatelevel design.

Since adding or substracting of tokens is an arithmetic operation as
well, the clock period must be set to a value, where the marking of the
places can be calculated at once. Using multicycles is not possible at
this point. For time critical designs, the design can be turned to a finite
state machine and FSM optimization can be run. This will remove all



Electronic System Design Automation Using High Level Petri Nets 199

arithmetic operations from the token flow process. The design bases on
changes, which are done to the state vector of the design. The state
vector is built out of the marking of all places in the design. FSM op-
timization is supported by the synthesis tool. The reachable markings
should be known to allow an extended optimization of the state vector
and to save the amount of the state registers.

Allocation, structuring, flattening and mapping to the target tech-
nology is done by the synthesis tool i.e. DESIGN ANALYZER (Synop-
sys, Inc.) or AUTOLOGIC (Mentor Graphics, Inc.) since the VHDL
code generated out of a Hardware Petri Net uses full synthesizable RTL
(Register Transfer Level) VHDL subset. Behavioural synthesis is not
necessary.

5. UNFOLDING COLOURED PETRI NET
DESIGNS TO HPN

Using ordinary Petri nets for modeling of large designs the resulting
nets often seem to be badly arranged and confused. But typically, they
frequently contain regular subnet structures. Using coloured Petri nets
[6] simplifies the net structure by enfolding, i.e. information of the net
structure will be transfered into the description of the net elements. The
entire modeling ability will be kept but the handling and flexibility will
be improved.

For simulating and generating the VHDL code the coloured HPN has
to be unfolded, i.e. the information contained in the description of the
net elements will be transfered back into a net structure without any
loss of information. There are existing tools [10] including unfoulding
rules to automate these processes.

6. DESIGN EXAMPLES

6.1 A MOTOR SUPERVISOR
This device controls a motor [3]. The motor is moved to a specific

angle which is defined by the user. The motor will move in that di-
rection which is shorter to reach the specific angle. The motor receives
pulses, where each pulse means a movement of 1 degree. The new an-
gle is defined by PHI and will be set using the signal LOAD (Fig.10.5).
The supervisor stores the old angle in the variable OLDPHI and counts
out the difference (DIFF) and the direction DIR. Once these values are
counted out, the supervisor sends the corresponding pulses toward the
motor.



200

Figure 10.5 Motor Supervisor - Petri net model.

The functional simulation shows motions from 0 to 5, from 5 to 350,
from 350 to 349, and from 349 to 0 degrees (Fig.10.6).

Figure 10.6 Motor Supervisor - Functional Simulation.

The synthesis results are constraint by area since the timing is not
the point of interest.
Using the lca300kv target library (LSI Logic), following results are achieved:
15 ports, 393 nets and 293 cells.
The synthesized area amounts to:
1813 (total), 1304 (cells) and 509 (nets).



Electronic System Design Automation Using High Level Petri Nets 201

6.2 A SIMPLE ATM CELL RATE POLICER
Using STM (synchronous transfer mode) a channel with fixed trans-

mission rate is reserved for each connection. ATM (asynchronous trans-
fer mode) allows connections with variable transfer rate. This rate can
be defined by the user and should not be crossed at any time. To detect
any violations a policer is necessary to watch over the actual rate of an
ATM connection. If a violation is detected, extra fee has to be paid
by the user or the connection will be refused. Because some devices can
cause a higher cell rate than allowed (multiplexers) a temporary crossing
of the specific rate should be allowed.

Figure 10.7 Simple ATM cell policer - Algorithm.

The ATM cell rate policer uses the leaky bucket algorithm [2]. It
consists of two parallel working parts - the decrement counter (ZT) and
the cell counter (Z).

Each time an ATM cell is received (ATM) the cell counter increments.
If the number of cells exceed the allowed limit (S) the acknowledge of the
incoming cell will be denied (ACK). The decrement counter decrements
the cell counter each T period. The decrement value is specified by D.

The period and the decrement value specifies the time where crossing
the reserved cell rate is allowed.



202

Figure 10.8 Simple ATM cell policer - Simulation.

The synthesis results have been done using the area optimization for
the decrement counter and the time optimization for the cell counter.

Figure 10.9 Simple ATM cell policer - HPN model.

The ATM cell rate policer is necessary for each ATM channel. Using
a coloured Petri net the entire functionality can be flexible captured in
the same Petri net as shown in this example.



Electronic System Design Automation Using High Level Petri Nets 203

7. SUMMARY AND CONCLUSIONS
Using Petri nets to specify and model a digital system is an improve-

ment in comparison to other ESDA capturing methods e.g. state ma-
chines. Using the analysing methods and the capability to describe par-
allel tasks, a powerful method is found to detect a large number of design
errors prior to system implementation.

Since the VHDL generation out of a Hardware Petri Net is possible, a
synthesizable design (e.g. FPGA or ASIC) can be captured at a higher
abstraction level than VHDL. The creation of an executable specifica-
tion even for large systems is possible as well.

To enlarge the flexibility of Petri nets in a hardware design process,
the system should be captured as a coloured HPN and unfolded to a
HPN before generating the VHDL code. Both steps unfolding a CHPN
and the VHDL code generation can be done automatically.



References

[1] Carlson, S.: Introduction to HDL-Based Design using VHDL. Syn-
opsys Inc., 1991.

[2] G. Daisenberger, J. Oehlerich, G. Wegmann: Two concepts for
overload regulation in SPC switching systems: STATOR and TAIL.
Telecommunication Journal, vol.56, V/1989.

[3] W. Fengler, A. Karg: Design of complex embedded systems based
on different Petri-net interpretations. In Advanced Simulation Tech-
nologies Conference, Boston, MA, 5.-9.4.1998.

[4] IEEE Standard VHDL Language Reference Manual - IEEE Std 1076-
1993. The Institute of Electrical and Electronics Engineers Inc., 1994.

[5] The System Specs VHDL Generator - Beta2-Version. Data Sheet.
Ivy Team, 1994.

[6] Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods
and Practical Use. Springer Verlag, Berlin, Heidelberg, New York,
1992.

[7] Perry, D.: VHDL. McGraw-Hill Inc., 1991.

[8] Peterson, J.: Petri Net Theory and the Modelling of Systems.
Prentice-Hall Inc., 1981.

[9] Visual HDL for VHDL on UNIX - Edition 4.0. Summit Design Inc.,
1997.

[10] Wikarski, D.: Petri net tools: A Comparative Study. ISST-Bericht
39/96. Technical Report, Fraunhofer-Gesellschaft e.G., Berlin, 1996.

204


		2000-06-21T16:26:56+0100
	Ilmenau
	Dipl.-Ing. Thorsten Hummel
	Dokument ist herausgegeben.


		2000-06-21T17:23:57+0100
	Ilmenau
	Dipl.-Ing. Thorsten Hummel
	Dokument ist herausgegeben.




