
© ASV et al. 1996

HW/SW Co-Design
for Embedded Systems

L. Lavagno
Politecnico di Torino, Italy
Cadence Berkeley Labs, CA

P. Giusto, A. Jurecska
Magneti Marelli, Torino, Italy

H. Hsieh, A. Sangiovanni-Vincentelli
University of California, Berkeley, CA

K. Suzuki
Hitachi Res. Lab. , Tokio, Japan

M. Chiodo
Alta Group, Sunnyvale, CA

F. Balarin, E. Sentovich
Cadence Berkeley Labs, CA

© ASV et al. 1996

Outline

● Reactive Real-Time Embedded Systems
● Specification Models and Languages

◆ Data Flow
◆ Extended Finite State Machines

● Proposed Design Methodology
◆ System Specification
◆ Validation
◆ System Partitioning
◆ Software, Hardware and Interface Synthesis
◆ Real-time Operating System and Scheduling

● Summary

© ASV et al. 1996

Embedded Systems

● An embedded system
◆ uses a computer to perform some function,

but
◆ is not used (nor perceived) as a computer

● Software is used for features and flexibility
● Hardware is used for performance
● Typical characteristics:

◆ it performs a single function
◆ it is part of a larger (controlled) system
◆ cost and reliability are often the most

significant aspects

© ASV et al. 1996

Embedded System Applications

● Consumer electronics
(microwave oven, camera, ...)

● Telecommunication switching and terminal
equipment

(cellular phone, ...)
● Automotive, aero-spatial

(engine control, anti-lock brake, ...)
● Plant control and production automation

(robot, plant monitor, ...)
● Defense

(radar, intelligent weapon, ...)

© ASV et al. 1996

Reactive Real-time Systems

● Reactive Real-Time Systems
◆ “React” to external environment
◆ Maintain permanent interaction
◆ Ideally never terminate
◆ Are subject to external timing constraints

(real-time)

© ASV et al. 1996

Embedded Controller Example:
In-Vehicle Network (IVN)

Several protocols have been proposed for the
implementation of in-vehicle networks. Among them:
• CAN, VAN (Europe)

• J1850 (USA) Climate Control

Exhaust Control

Active Suspensions Transmission

Info
System

Engine
Control

ABS

© ASV et al. 1996

IVN - Implementation

Automotive networks come in three classes:

A

B

C

A

B

C

Body electronics

Information sharing

Real-time controls

Body electronics

Information sharing

Real-time controls

20-50 ms

1-10 ms

< 1 ms

20-50 ms

1-10 ms

< 1 ms

< 10 Kbit/s

10-20 Kbit/s

0.125-1 Mbit/s

< 10 Kbit/s

10-20 Kbit/s

0.125-1 Mbit/s

The implementation can be different for different
classes of applications. For example:
● class A - CPU can handle communication + application
● class C - communication IC required

application max. latency bit rateclass

© ASV et al. 1996

Embedded Controller Example:
Engine Control Unit (ECU)

Task: control the torque produced by the engine
by timing fuel injection and spark

● Major constraints:
Low fuel consumption
Low exhaust emission

© ASV et al. 1996

Engine Control Unit (ECU) - 2

Task: control injection time (3 sub-tasks)

compute
air flow compute

injection
time drive

actuators

air
flow

injection
time

air temperature

engine temperature

engine speed
throttle position

look-up table

PWM signalsair pressure

© ASV et al. 1996

Engine Control Unit (ECU) - Option 1

32 bit CPU

A/D
Actuations (PWM)

Analog inputs

Digital inputs

CPU has to:
• process input data
• compute outputs
• control actuators

• Relatively easy to
design

• May not meet timing
requirements

© ASV et al. 1996

Engine Control Unit (ECU) - Option 2

16 bit CPU

A/D

Actuations (PWM)

Analog inputs

Digital inputs

● CPU processes input data and computes
outputs

● FPGA controls actuators

FPGA

© ASV et al. 1996

Engine Control Unit (ECU) - Option 3

8 bit CPU
DSP

Actuations (PWM)

Analog
inputs

Digital inputs

● DSP processes input data
● CPU computes outputs
● FPGA controls actuators

FPGA
A/D

© ASV et al. 1996

RRTES Implementations

● Possibly contain both hardware and software
(ASIC plus embedded software)

● Past Design Methodology
◆ Software implementation:

timing offload to hardware
◆ Specify and design hardware and software

separately

© ASV et al. 1996

Problems with Past Design Method

● Lack of unified hardware-software
representation

● Partitions are defined a priori
◆ Can't verify the entire system
◆ Hard to find incompatibilities across HW-SW

boundary
● Lack of well-defined design flow

◆ Time-to-market problems
◆ Specification revision becomes difficult

➠Need Hardware-Software Co-Design

© ASV et al. 1996

Hardware/Software Co-Design
Goals and Requirements

● Unified design approach
◆ Facilitates system specification
◆ Easy HW-SW trade-off evaluation
◆ Flexible HW-SW partitioning

● Implementation Independent
◆ Stress system design issues
◆ Allow different hardware and software styles

● Design/ Implementation Verification
◆ Formal Verification
◆ Simulation

● Automatic Hardware and Software Synthesis

© ASV et al. 1996

Outline

● Reactive Real-Time Embedded Systems
● Specification Models and Languages

◆ Data Flow
◆ Extended Finite State Machines

● Proposed Design Methodology
◆ System Specification
◆ Validation
◆ System Partitioning
◆ Software, Hardware and Interface Synthesis
◆ Real-time Operating System and Scheduling

● Summary

© ASV et al. 1996

System Specification Models

● Main purpose: provide clear and unambiguous
description of system function

◆ documentation of initial design process
◆ allow the application of Computer Aided Design:

◆ design space exploration
◆ partitioning
◆ synthesis
◆ validation
◆ testing

◆ ideally should not constrain the implementation

© ASV et al. 1996

System Specification Models

● Distinguish between models and languages
(a language implies one or more models)

● Main models for embedded systems:
◆ Data Flow Diagrams (Petri Nets)
◆ Finite State Machines
◆ Software models
◆ Hardware simulation models

© ASV et al. 1996

System Specification Models

● Model choice depends on:
◆ Application domain

E.g. data flow for digital signal processing,
finite state machines for control,
simulation engine for hardware, ...

● Language choice depends on:
◆ Available tools
◆ Personal taste and/or company policy
◆ Underlying model

(the language must have a semantics in the
chosen model)

© ASV et al. 1996

Control versus Data Flow

● Fuzzy distinction, yet useful for:
◆ specification (language, model, ...)
◆ synthesis (scheduling, optimization, ...)
◆ validation (simulation, formal verification, ...)

● Rough classification:
◆ control:

◆ don’t know when data arrive (quick reaction)
◆ time of arrival often matters more than value

◆ data:
◆ data arrive in regular streams (samples)
◆ value matters most

© ASV et al. 1996

Control versus Data Flow

● Specification, synthesis and validation methods emphasize:
◆ for control:

◆ event/reaction relation
◆ response time
 (Real Time scheduling for deadline satisfaction)
◆ priority among events and processes

◆ for data:
◆ functional dependency between input and output
◆ memory/time efficiency
 (data flow scheduling for efficient pipelining)
◆ all events and processes are equal

© ASV et al. 1996

Outline

● Reactive Real-Time Embedded Systems
● Specification Models and Languages

◆ Data Flow
◆ Extended Finite State Machines

● Proposed Design Methodology
◆ System Specification
◆ Validation
◆ System Partitioning
◆ Software, Hardware and Interface Synthesis
◆ Real-time Operating System and Scheduling

● Summary

© ASV et al. 1996

Data Flow Networks

● Collection of nodes (processes) connected by FIFOs
● Typical domains of application:

◆ Digital Signal Processing
◆ Performance estimation (queueing models)

● Very different models depending on node interpretation:
◆ Uninterpreted

(classical Petri Nets)
◆ Arithmetic operators

(classical DFGs)
◆ Complex operators

(queueing models, colored Petri Nets)

© ASV et al. 1996

Data Flow Example

Process 1:
forever {

x = 0; y = 0;
while (x < 10) {

y = y + get_data (B);
x = x + 1;

}
put_data (A, y / 10);

}

Process 2:
forever {

a = get_data (A);
if (a < 0)

put_data (C, a);
else

put_data (D, - a);
}

ch.
B

ch.
A

ch.
D

ch.
C

proc. 1 proc. 2

© ASV et al. 1996

Data Flow Example

0

+1 +

0

B

x

y

A

D

-

C

a
>10

T F T F

T F

T F

T
T T F

>0

© ASV et al. 1996

Data Flow Primitives

0

+1

C

initial token
(with value)

constant

deterministic
split/merge

data dependency
(FIFO)

communication
channel

operator

flow duplicationT F

T

© ASV et al. 1996

● Kahn networks introduced to develop semantics for λ
calculus (‘74):

◆ nodes communicate via unbounded FIFO channels
◆ nodes must block when reading from a FIFO
 (cannot test and continue)
◆ nodes can choose which FIFO(s) they read from and

write to
● Originally used to program data flow computers

(Dennis ‘75)
● Recently used to specify algorithms for Digital Signal

Processors (Lee ‘87, Buck ‘93)

History of Data Flow Networks

© ASV et al. 1996

Properties of Data Flow Networks

● Inherently concurrent, asynchronous
computation model, but...

● Kahn Data Flow networks are determinate
◆ the stream of values produced by each node

does not depend on the execution (“firing”)
order of the nodes

● Strong limitation (blocking read) implies strong
result

● FSMs will need synchronicity to achieve the
same objective

● Similar, but not identical to Petri nets (Petri ‘62)

© ASV et al. 1996

Petri Nets

● Very powerful uninterpreted model
● Bipartite graph (transitions and places)
● Describes explicitly

◆ causality
◆ concurrency
◆ choice

● Does not describe
◆ computation
◆ reason for choice

(non-determinism)

© ASV et al. 1996

Petri Nets and Data Flow

● Similarities:
◆ distributed state (tokens in places, data in FIFOs)
◆ firing nodes move tokens around

● Differences:
◆ PN transitions cannot choose which successor place to

mark,
 DF nodes can
◆ PN transitions can share predecessor places,
 DF nodes cannot
◆ uninterpreted PNs are (relatively) easy to analyze,
 DF networks are Turing-equivalent (undecidability)

© ASV et al. 1996

Summary of Data Flow Networks

● Advantages:
◆ Easy to use (graphical languages)
◆ Powerful algorithms for

◆ synthesis (scheduling and allocation)
◆ verification (only PNs)

◆ Explicit concurrency
● Disadvantages:

◆ Efficient synthesis only for restricted models
(no input or output choice)

◆ Cannot describe reactive control (blocking read)

δ

+ ∗

Κ

© ASV et al. 1996

Outline

● Reactive Real-Time Embedded Systems
● Specification Models and Languages

◆ Data Flow
◆ Extended Finite State Machines

● Proposed Design Methodology
◆ System Specification
◆ Validation
◆ System Partitioning
◆ Software, Hardware and Interface Synthesis
◆ Real-time Operating System and Scheduling

● Summary

© ASV et al. 1996

Finite State Machines

● Typical domains of application:
◆ control functions
◆ protocols (telecom, computers, ...)

● Different communication mechanisms:
◆ synchronous

(classical FSMs, Moore ‘64, Kurshan ‘90)
◆ asynchronous

(CCS, Milner ‘80; CSP, Hoare ‘85)

© ASV et al. 1996

FSM Example

● Informal specification:
If the driver

turns on the key, and
does not fasten the seat belt within 5 seconds

then an alarm beeps
for 5 seconds, or
until the driver fastens the seat belt, or
until the driver turns off the key

© ASV et al. 1996

FSM Example

KEY_ON => START_TIMER

END_TIMER_5 =>
ALARM_ON

KEY_OFF or
BELT _ON =>

END_TIMER_10 or
BELT_ON or
KEY_OFF => ALARM_OFF

If no condition is satisfied, implicit self-loop in the current state

WAIT

ALARM

OFF

© ASV et al. 1996

FSM Definition

◆ FSM = (I, O, S, r, δ, λ)
◆ I = { KEY_ON, KEY_OFF, BELT_ON,

END_TIMER_5, END_TIMER_10 }
◆ O = { START_TIMER, ALARM_ON,

ALARM_OFF }
◆ S = { OFF, WAIT, ALARM }
◆ r = OFF

◆ δ : 2I × S → S
e.g. δ({KEY_OFF}, WAIT) = OFF

◆ λ : 2I × S → 2O

e.g. λ ({KEY_ON}, OFF) = {START_TIMER}

Set of all subsets of I (implicit “and”)

All other inputs are implicitly absent

© ASV et al. 1996

Non-deterministic FSMs

● δ and λ may be relations instead of functions:
◆ δ ⊆ 2I × S × S

e.g. δ({KEY_OFF, END_TIMER_5}, WAIT) = {{OFF}, {ALARM}}
◆ λ ⊆ 2I × S × 2O

● Non-determinism can be used to describe:
◆ an unspecified behavior

(incomplete specification)
◆ an unknown behavior

(environment modeling)

implicit “and” implicit “or”

© ASV et al. 1996

● E.g. error checking first partially specified:

● Then completed as even parity:

● Could be implemented as CRC later

NDFSM: incomplete specification

BIT or not BIT => BIT or not BIT => BIT or not BIT => ERR

BIT or not BIT =>
...

SYNC =>

BIT =>

not BIT =>

not BIT => ERR
...

SYNC =>

not BIT =>

...not BIT =>

BIT =>

not BIT =>

BIT =>

BIT =>

BIT => ERR

0 1 7 8

p1 p7

d7d10 8

© ASV et al. 1996

NDFSM: unknown behavior

● Modeling the environment
● Useful to:

◆ optimize (don’t care conditions)
◆ verify (exclude impossible cases)

● E.g. driver model:

● Can be refined
E.g. introduce timing constraints
(minimum reaction time 0.1 s)

s0

=> KEY_ON or
KEY_OFF or
BELT_ON

© ASV et al. 1996

NDFSM: time range

● Special case of unspecified/unknown behavior, but so
common to deserve special treatment for efficiency

● E.g. undetermined delay between 6 and 10 s

0

1 2 3 4

5

6

78

9

START => SEC =>

SEC => END

SEC => SEC =>

SEC =>

SEC =>

SEC =>
SEC =>

SEC =>

START =>

SEC =>
END

SEC => END

SEC =>
END

© ASV et al. 1996

NDFSMs and FSMs

● Formally FSMs and NDFSMs are equivalent
(Rabin-Scott construction, Rabin ‘59)

● In practice, NDFSMs are often more compact
(exponential blowup for determinization)

s1

s2 s3

s1

s2,s3

a
a

b

a

c a

s3
b

a

s2

c

ba

s1,s3
c

a

c

© ASV et al. 1996

FSM Composition

● Bridle complexity via hierarchy: FSM product yields an FSM
● Fundamental hypothesis:

all the FSMs change state together (synchronicity)
● System state = Cartesian product of component states

(state explosion may be a problem...)
● E.g. seat belt control + timer

0

1 2 3 4

56789

START_TIMER =>

START_TIMER =>

SEC =>

SEC =>
END_10_SEC

SEC => SEC =>
SEC =>
END_5_SEC

SEC =>SEC =>SEC =>SEC =>

© ASV et al. 1996

FSM Composition

OFF, 0 WAIT, 1

KEY_ON and START_TIMER =>
START_TIMER must be coherent

WAIT, 2

SEC and
not (KEY_OFF or BELT_ON) =>

OFF, 1

not SEC and
(KEY_OFF or BELT_ON) =>

OFF, 2

SEC and
(KEY_OFF or BELT_ON) =>

etc. etc.

© ASV et al. 1996

FSM Composition

● product of FSM1 and FSM2

● I = I1 ∪ I2

● O = O1 ∪ O2

● Assume e.g. that o1 ∈I2, o1 ∈O1 (communication)
● S = S1 × S2

● δ e λ are such that, e.g., for each pair:
◆ δ1({i1}, s1) = t1, λ1({i1}, s1) = {o1 }
◆ δ2({i2, o1}, s2) = t2, λ1({i2}, s2) = {o2 }
we have:
◆ δ({i1, i2, o1}, (s1, s2)) = (t1, t2)
◆ λ({i1, i2, o1}, (s1, s2)) = {o1, o2}

© ASV et al. 1996

Summary of Finite State Machines

● Advantages:
◆ Easy to use (graphical languages)
◆ Powerful algorithms for

◆ synthesis (SW and HW)
◆ verification

● Disadvantages:
◆ Sometimes overspecify implementation

(sequencing is fully specified)
◆ Numerical computations cannot be specified

compactly
(need extended FSMs)

HG HY

SGSY

car OR 5min

10sec

30sec

10sec

© ASV et al. 1996

Extended FSM Example

Process 1:
forever {

x = 0; y = 0;
while (x < 10) {

y = y + get_data (B);
x = x + 1;

}
put_data (A, y / 10);

}

Process 2:
forever {

a = get_data (A);
if (a < 0)

put_data (C, a);
else

put_data (D, - a);
}

ch.
B

ch.
A

ch.
D

ch.
C

proc. 1 proc. 2

© ASV et al. 1996

Extended FSM Example

x = 0
y = 0

y = y + get_data (B)
x = x + 1x < 10

SN

put_data (A, y / 10)

a = get_data (A)

 a < 0
SN

put_data (D, -a) put_data (C, a)

proc. 1 proc. 2
s1

s2

s3

t2 t3

t1

© ASV et al. 1996

Formal Extended FSM Example

s1

s2

s3

< 10
SN

x

+1

y B

+

00

A

/10

a D

C-

t1

t2t3

< 0
SN

proc. 1
proc. 2

© ASV et al. 1996

Extended FSM primitives

s1

s2 x

B

0

< 10
SN

initial state

state

decision

transition

constant

variable

communication
channel

data dependency

FSM/data connection
+1 operator

loading

© ASV et al. 1996

Communication models

● Synchronous:
all FSMs make a transition simultaneously

● Asynchronous:
communication is mediated by “channels”:
◆ blocking write/blocking read

 (rendez-vous: both partners must be ready)
◆ non-blocking write/blocking read

(FIFOs)
◆ non-blocking write/non-blocking read

(shared variables)

© ASV et al. 1996

Communication models

● Synchronous:
◆ predictable (determinacy)
◆ highly constraining

● Asynchronous:
◆ unpredictable (result depends on scheduling/timing)
◆ does not constrain the implementation
 (good for heterogeneous embedded systems)
◆ blocking write: difficult to implement correctly
◆ non-blocking write: needs unbounded buffers

(or may lose events)
◆ non-blocking read: consistency problems

© ASV et al. 1996

Outline

● Reactive Real-Time Embedded Systems
● Specification Models and Languages

◆ Data Flow
◆ Extended Finite State Machines

● Proposed Design Methodology
◆ System Specification
◆ Validation
◆ System Partitioning
◆ Software, Hardware and Interface Synthesis
◆ Real-time Operating System and Scheduling

● Summary

© ASV et al. 1996

Software Models

● Advantages:
◆ Executable model
◆ Object-oriented analysis:

◆ Natural hierarchical decomposition
◆ Inheritance
 (simplifies extension and re-use)
◆ Method invocation as communication

primitive
● Disadvantages:

◆ Strongly biased towards SW
◆ (Almost) impossible to verify formally

queue get

put

empty

stack pop

push

© ASV et al. 1996

Object-Oriented Methodologies

● Various CASE methodologies use an Object-
Oriented paradigm

(Shlaer-Mellor ‘88)
● Languages are widely known (C++, Java, ...)
● Typical domains of application:

◆ Rapid prototyping
◆ Complex (mainly SW) systems
◆ Network-wide programming

● The Object-oriented ideas are not limited to
software models !!!

© ASV et al. 1996

Hardware Simulation Models

● Advantages:
◆ Powerful algorithms for

◆ synthesis
◆ verification

◆ (Almost) standard languages
(VHDL, Verilog, UDL/I)

◆ Timing is handled explicitly
◆ Software-like extensions (e.g. VHDL, Verilog)

● Disadvantages:
◆ Strongly biased towards HW
◆ Not really formal...

D

© ASV et al. 1996

Hardware Simulation Models

● Typical domain of application:
◆ Hardware design

● Can be considered a least common denominator
among SW and HW

● With some constraints, can have an EFSM-based
semantics

◆ “synthesizable subsets”
◆ cycle-based simulation

© ASV et al. 1996

Outline

● Reactive Real-Time Embedded Systems
● Specification Models and Languages

◆ Data Flow
◆ Extended Finite State Machines

● Proposed Design Methodology
◆ System Specification
◆ Validation
◆ System Partitioning
◆ Software, Hardware and Interface Synthesis
◆ Real-time Operating System and Scheduling

● Summary

© ASV et al. 1996

Reactive Specification Languages

● Main aspects of language choice:
◆ Ease of use (domain-specific)
◆ Availability of tools/methodologies:

◆ a tool/methodology implies one or more
languages (and models)

◆ graphical capabilities
◆ (e.g. structured analysis uses DF and FSMs)
◆ Standards/regulations
◆ Tradition ...

© ASV et al. 1996

Graphical FSM Languages

● StateCharts, BetterCharts, SpeedCharts, ...
(Har’el ‘90)

● Easy to use for control-dominated systems
● Simulation (animated), SW and HW synthesis
● Extended with arithmetics
● Hierarchical states necessary for complex

reactive system specification

error
normal

recovery
odd

even
done

© ASV et al. 1996

Synchronous Languages

● Assumptions:
◆ the system continuously reacts to internal and external

events by emitting other events
◆ events can occur only at discrete instants
◆ zero (negligible) reaction time

● Both control (Esterel) and data flow (Lustre, Signal)
● Very simple syntax and clean semantics

(based on FSMs)
● Deterministic behavior
● Simulation, software and hardware synthesis, verification

© ASV et al. 1996

ESTEREL

● Designed at INRIA by Berry et al.
● Concurrent modules:

◆ interface signals, possibly with values
◆ local signals and variables
◆ statements, e.g.:

◆ await (single or multiple signals)
◆ do stmt1 watching signal [timeout stmt2]

(instantaneous killing of stmt1)
◆ trap exception in stmt1 [handle do stmt2]

(allow stmt1 to terminate)
◆ allows “external” procedures and functions

© ASV et al. 1996

Example: readable counter

module counter:
input go, reset, req; output ack(integer);
var t:integer in
loop do

t:=0;
every go do

t:=t+1;
await req; emit ack(t)

end
watching reset
end end.

go => t:=t+1

reset => t:=0

s1 s0

go => t:=t+1 req and not go

=> ack(t)

© ASV et al. 1996

Summary of Models/Languages

● Models/languages for control and data:
◆ same object (embedded computation), yet...
◆ different specification, different

optimization, different validation
● Currently: need to pick style at the beginning,

and hope for the best
● Future:

◆ at least, mix styles freely
◆ at best, decouple specification and

optimization styles
 (unified underlying model)

© ASV et al. 1996

Outline

● Reactive Real-Time Embedded Systems
● Specification Models and Languages

◆ Data Flow
◆ Extended Finite State Machines

● Proposed Design Methodology
◆ System Specification
◆ Validation
◆ System Partitioning
◆ Software, Hardware and Interface Synthesis
◆ Real-time Operating System and Scheduling

● Summary

© ASV et al. 1996

Main Codesign Methods and Tools

● CHINOOK (Chou, Ortega, Borriello et al. ‘92-...)
● COSYMA (Ernst, Henkel et al. ‘92-...)
● MEIJE (Berry, Gonthier, Halbwachs, Caspi,

Benveniste, Le Guernic et al. ‘91-...)
● POLIS (Chiodo, Lavagno, Sangiovanni et al. ‘92-...)
● PTOLEMY (Kalavade, Buck, Lee et al. ‘92-...)
● VULCAN (Gupta, Coelho, De Micheli et al. ‘92-...)
● ...

© ASV et al. 1996

CHINOOK (U. of Washington)

● Specification: Verilog HDL
● Internal representation: Event Graph (CDFG)
● Validation: none specific (Verilog simulation)
● Partitioning: directed by scheduling constraints
● Scheduling: aimed at satisfying timing constraints

(“modes” allow complex constraints)
● Synthesis: Verilog to C translator
● Main emphasis on interface synthesis

(port assignment and driver synthesis)

© ASV et al. 1996

COSYMA (U. of Braunschweig)

● Specification: C* (C++ extended with concurrency)
● Internal representation: ES graph (CDFG)
● Validation: none specific (C++ execution)
● Partitioning: two nested loops

◆ outer: hand-driven, uses synthesis and profiling for
cost estimation

◆ inner: simulated annealing, uses quick estimator
● Scheduling: none specific
● Synthesis: hardware extraction from (subset of) ES graph
● Main emphasis on partitioning for hardware accelerators

© ASV et al. 1996

MEIJE (INRIA and others)

● Specification: synchronous languages for control and data
flow (Esterel, Lustre, Signal)

● Internal representation: OC (EFSM)
● Validation:

◆ synchronous simulation
◆ formal verification

● Partitioning: none
● Scheduling: not needed (synchronous hypothesis)
● Synthesis: hardware from EFSM, software from hardware
● Main emphasis on determinate reaction to events

© ASV et al. 1996

 POLIS (U. C. Berkeley)

● Specification: FSM-based languages (Esterel, ...)
● Internal representation: CFSM network
● Validation:

◆ high-level co-simulation
◆ FSM-based formal verification

● Partitioning: by hand, based on co-simulation estimates
● Scheduling: classical RT algorithms
● Synthesis:

◆ S-graph-based code synthesis for software
◆ logic synthesis for hardware

● Main emphasis on unbiased verifiable specification

© ASV et al. 1996

 PTOLEMY (U. C. Berkeley)

● Specification: Data Flow graph
● Internal representation: DFG
● Validation: multi-paradigm co-simulation

(DF, discrete events, ...)
● Partitioning: greedy, based on scheduling
● Scheduling: linear, sorting blocks by “criticality”

(bit-level in HW, memory-intensive in SW)
● Synthesis:

◆ DSP code stitching for software
◆ custom DSP synthesis (LAGER) for hardware

● Main emphasis on heterogeneous computation models

© ASV et al. 1996

VULCAN (Stanford U.)

● Specification: Hardware C
● Internal representation: CDFG
● Validation: custom co-simulator
● Partitioning: greedy, based on scheduling
● Scheduling: timing-driven

◆ each I/O operation or unbounded loop
initiates a thread

● Synthesis: high-level synthesis (OLYMPUS) for
hardware

● Main emphasis on timing-driven scheduling of
threads

© ASV et al. 1996

Outline

● Reactive Real-Time Embedded Systems
● Specification Models and Languages

◆ Data Flow
◆ Extended Finite State Machines

● Proposed Design Methodology
◆ System Specification
◆ Validation
◆ System Partitioning
◆ Software, Hardware and Interface Synthesis
◆ Real-time Operating System and Scheduling

● Summary

© ASV et al. 1996

Our Co-design Environment

Graphical EFSM ESTEREL

Compilers

CFSMsPartitioning

Sw Synthesis

Formal
Verification

Sw Code +
RTOS

Logic NetlistSimulation

Hw SynthesisIntfc Synthesis

Prototype

© ASV et al. 1996

Codesign Finite State Machines

● We have chosen an FSM model for
◆ uncommitted
◆ synthesizable
◆ verifiable
HW/SW specification

● Translators from state diagrams, Esterel, HDLs
into a single FSM-based language

● Need efficient hw/sw communication primitive:
◆ Event broadcasting

● Software response could take a long time:
◆ Unbounded delay assumption

© ASV et al. 1996

Communication primitive: event

● One-way data communication
● Need efficient implementation

(interrupts, buffers...)
● No mutual synchronization requirement, but...

➠Building block for higher-level
synchronization primitives

● Examples:
◆ valued event : temperature sample
◆ pure event : excessive temperature alarm

© ASV et al. 1996

Introducing a CFSM...

● A Finite State Machine
● Input events, output events and state events
● Initial values (for state events)
● A transition function

➠Transitions may involve complex, memory-
less, instantaneous arithmetic and/or Boolean
functions

➠All the state of the system is under form of
events

● Need rules that define the CFSM behavior

© ASV et al. 1996

CFSM Rules: phases

● Four-phase cycle:
❶ Idle
❷ Detect input events
❸ Execute one transition
❹ Emit output events

● Discrete time
◆ Sufficiently accurate for synchronous systems
◆ Feasible formal verification

● Model semantics: Timed Traces i.e. sequences of
events labeled by time of occurrence

© ASV et al. 1996

CFSM Trace Semantics

CFSM state

0 91 2 3 54 6 7 8 10 1211 13 14 15 16 time

x1 x2 x3 x1

i1,v1 i2
i3
i4 s,x2 o2 o3 i1,v2

o2
o3 s,x3 i4 i5 s,x1 o4

c1
r1

c2 r2
r3c3

(i1==v1) and i3 and i4
=>{o2,o3}

x1 x3x2

(i1==v2) and i2
=> {o2,o3}

i4 and i5 => {o4}

© ASV et al. 1996

CFSM Rules: phases

● Implicit unbounded delay between phases
● Non-zero reaction time (avoid inconsistencies

when interconnected): minimum delay is 1 time
unit

● Causal model based on partial order (potential
verification speed-up)

● Phases may overlap

© ASV et al. 1996

CFSM Rules: events

● Hw is always “ready”
● Software may not be ready

➠Events may be “lost”
➠Implicit depth-1 buffer associated with every

event
● Event: basic tool to implement synchronization

◆ Trigger event can cause at most 1 transition
◆ All output events of a transition must be

emitted

© ASV et al. 1996

CFSM Rules: additional constraints

● What if some event may not be lost ?
● Tag some event as “critical”
● The problem is deferred to the partitioning and

scheduling phases:
◆ use Formal Verification to identify critical

events
◆ partition or schedule the system so that the

resulting constraint is satisfied
● The same technique can be used to assign

priorities to events

© ASV et al. 1996

Network of CFSMs: Depth-1 Buffers

CFSM2

CFSM3

C=>G

CFSM1

C=>F
B=>C

F^(G==1)

(A==0)=>B

C=>ACFSM1 CFSM2

C=>B

F

G

C
C

B
A

C=>G

C=>B

© ASV et al. 1996

CFSMs and FSMs

● The best known automated formal verification
methods are based on synchronous FSMs

➠define the behavior of a CFSM network as an
equivalent “standard” FSM network

● Event-driven model: self-loop until events are
detected

● Depth-1 buffers on input and output events
implemented as non-deterministic FSMs

● Additional “verifiability” (atomicity) constraints:
◆ events are detected only if a transition occurs
◆ all inputs are “cleared” if a transition occurs

© ASV et al. 1996

Buffer FSMs

111 => 11
00- => 0-
011 => 0-

012 => 0-
112 => 11

112 => 12
00- => 0-
012 => 0-

111 => 11
112 =>12
- 0 - => 0-

011 => 0-
111 => 12

10- => 11

10- => 12

012 => 0-

011 => 0-

Main FSM

s1

s2

s0

© ASV et al. 1996

Software Hardware Intermediate FormaT

● CSFM network
◆ Specific representation format: SHIFT
◆ Unbounded-delay interpretation

● SHIFT description
◆ List of input variables
◆ List of output variables
◆ Tabular transition relation
◆ Arithmetic expressions represented as

(library) function netlists

© ASV et al. 1996

Our Co-design Environment

Graphical EFSM ESTEREL

Compilers

CFSMsPartitioning

Sw Synthesis

Formal
Verification

Sw Code +
RTOS

Logic NetlistSimulation

Hw SynthesisIntfc Synthesis

Prototype

© ASV et al. 1996

Hardware - Software Architecture

● Hardware:
◆ One or more microcontrollers
◆ ASICs, DSPs....

● Software:
◆ Set of concurrent tasks
◆ Scheduler
➠Customized operating system

● Interfaces:
◆ Hardware modules
◆ Software procedures (polling, interrupt handlers, ...)

© ASV et al. 1996

System Partitioning

port5

CFSM1

CFSM7

CFSM6
CFSM5

CFSM4

CFSM3

CFSM2

e2

e8

e6

e4

e1

e3

e3

e5

e7

e9

port5

port1

port2

port3

HW partition 1

HW partition2

SW partition 3

Scheduler

port6

© ASV et al. 1996

Interfaces Among Partitions

● Automatically generated
● Standardized strobe/data protocol

(corresponding to the event/value primitive)
● Allow to use hand-designed modules

(following the interfacing convention)

Sender ReceiverA B C

Sender’s domain Channel’s domain Receiver’s domain

© ASV et al. 1996

An example of interface: hw to sw

HW SW

x

ack

y

11 + 0- / 0
-1 / 0

- 0 / 1

10 / 1x ack / y

x

y

ack

HwtoSw

10

© ASV et al. 1996

Our Co-design Environment

Graphical EFSM ESTEREL

Compilers

CFSMsPartitioning

Sw Synthesis

Formal
Verification

Sw Code +
RTOS

Logic NetlistSimulation

Hw SynthesisIntfc Synthesis

Prototype

© ASV et al. 1996

System Validation

● Safety-critical real-time systems must be validated
● Explicit exhaustive simulation is infeasible
● Formal verification can achieve the same level of safeness
● How to use verification and simulation together ?
● Simulation can be used initially for

◆ Quick functional debugging
◆ Ruling out obvious cases (can be expensive to verify)

● Then formal verification takes over for exhaustive
checking, but...

● Simulation is used again as user interface to provide the
designer with error traces

© ASV et al. 1996

Example of Formal Verification

(*KEY == ON) => *START

(*END == 5) => *ALARM=ON(*KEY == OFF) or
(*BELT == ON) =>

(*END == 10)) or
(*BELT == ON) or
(*KEY == OFF) => *ALARM = OFF

WAIT

OFF

ALARM

(*KEY == ON) and
(*BELT == ON) =>

© ASV et al. 1996

Example of Formal Verification

● Untimed property, e.g. using Temporal Logic
(CTL, Pnueli ‘77)
◆ AG(ALARM_ON --> AF(ALARM_OFF))

● Assumption: non-zero unbounded delays
◆ Property doesn’t hold
◆ Deduce reason for failure from error trace

◆ Need tighter delay range
◆ Specification refinement

© ASV et al. 1996

Example of Formal Verification

● Pick any delay K
◆ Property holds

● Conclusion:
◆ Any implementation with bounded non-zero

delays satisfies the property

© ASV et al. 1996

Example of Formal Verification

● Timed property, e.g. Timed Temporal Logic
(TCTL, Koymans ‘85)
◆ AG(ALARM_ON --> AF<6 s(ALARM_OFF))

● Property doesn’t hold for all K, it only holds for:
◆ 0 input delay, and
◆ output delay ranging from 0 to 0.5 s

© ASV et al. 1996

Example of Formal Verification

● A weaker timed property
◆ AG(ALARM_ON-->AF<11s(ALARM_OFF))

● There are some combinations of input and
output delays that satisfy the property

● This delay information can be used to “refine”
the specification and restrict “legal”
implementations to be consistent with the
specification

© ASV et al. 1996

Example of Formal Verification

● Purely hardware implementation
◆ Both “6s” and “11s” properties hold if

propagation delay < 0.5s
● Hw-Sw implementation

◆ Software implementation has non-zero input
delays

◆ No Hw-Sw can satisfy the “6s” property:
zero input delay is not feasible

◆ Some “fast” Hw-Sw implementation can
satisfy the “11s” property

© ASV et al. 1996

Problems of Formal Verification

● Is the error trace “real?”
◆ Maybe not, because of our simple model of

environment...
◆ No driver can turn off and on the key in one

tenth of a second !
➠Some behaviors may not be possible

● The cause of failure may be hard to decipher
from “automatic” simulation

● Formal verification is hard (state explosion)
◆ Longest run takes 6.5 hrs

◆ 60 million states (time unit 0.1s)

© ASV et al. 1996

Our Co-design Environment

Graphical EFSM ESTEREL

Compilers

CFSMsPartitioning

Sw Synthesis

Formal
Verification

Sw Code +
RTOS

Logic NetlistSimulation

Hw SynthesisIntfc Synthesis

Prototype

© ASV et al. 1996

High-level Co-simulation

● Functional (untimed) simulation allows:
◆ functional (partial) correctness, by generating inputs

and observing outputs
◆ debugging, by easy access to internal states

● High-level (timed) co-simulation allows:
◆ feasibility analysis for specification
◆ hardware/software partitioning
◆ architecture selection (CPU, scheduler, ...)

● Cannot be used to validate the final implementation
☞ need a much more detailed model of HW and SW

architecture

© ASV et al. 1996

Co-simulation Requirements

● Fast, for rapid testing of
◆ different input stimuli
◆ different architectures

● Interactive
◆ quickly change architectural parameters
◆ easily analyze results and debug

(graphical interface)
● Accurate

◆ hardly compatible with speed and
interactivity

© ASV et al. 1996

Existing tools and methods

● Hardware-oriented simulation
◆ Processor modeled at instruction or Register Transfer

level (Verilog, VHDL, ...)
◆ Fairly accurate, but fairly slow

● Functional simulation (mostly for DSP)
◆ “Block” programming environments

◆ data flow: MATLAB, SPW, COSSAP, ...
◆ control flow: SDL, StateCharts, ...

◆ System modeled as discrete or continuous data flow
◆ Computation time is usually ignored

● Prototyping (breadboards...)

© ASV et al. 1996

Our co-simulation approach

● Based on synthesized software timing estimates
● Synthesized C code annotated with clock cycles

required on several processors
● Clock cycle accumulation during simulation to

synchronize the software
◆ with the hardware
◆ with the environment

● Uses Ptolemy (Lee et al. 92) as:
◆ graphical interface
◆ simulation engine

(heterogeneous models can coexist)

© ASV et al. 1996

Our Co-simulation Approach

● Resource scheduling problem:
◆ hardware CFSMs are concurrent

(simulated in a cycle-based fashion)
◆ only one software CFSM can be active at a

time
◆ use the same (selectable) scheduling policy as

will be used in the real system

© ASV et al. 1996

Trade-off Evaluation

● Parameters associated with each hierarchy level:
◆ can be changed on the fly (no recompilation)
◆ define different architectural aspects:

◆ implementation of each CFSM
◆ CPU type, clock speed, ...
◆ constant inputs (scaling factors, priorities, ...)

● Hierarchical inheritance eases structured partitioning
● Automatically transmitted to following synthesis

steps

© ASV et al. 1996

Types of analysis

● Powerful graphical environment to generate inputs
and analyze outputs (Ptolemy)

● Functional simulation:
◆ no clock cycle accumulation
◆ useful for debugging and demonstration to

customer
(“virtual prototype”)

● Timed co-simulation:
◆ “Lost” input events (missed deadlines) can be

selectively reported
◆ CPU utilization graphs (for schedulability analysis)

© ASV et al. 1996

Future Work

● Interrupt handling
◆ nested interrupts
◆ maskable interrupts

● Multi-processor systems
◆ static allocation
◆ dynamic allocation

● Clock accumulation also within the scheduler
● Co-simulation in other environments

◆ VHDL, Verilog output for HW and SW

© ASV et al. 1996

Our Co-design Environment

Graphical EFSM ESTEREL

Compilers

CFSMsPartitioning

Sw Synthesis

Formal
Verification

Sw Code +
RTOS

Logic NetlistSimulation

Hw SynthesisIntfc Synthesis

Prototype

© ASV et al. 1996

Software Implementation Problem

● Input:
◆ set of tasks (specified by CFSMs)
◆ set of timing constraints (e.g., input event

rates and response constraints)
● Output:

◆ set of procedures that implement the tasks
◆ scheduler that satisfies the timing constraints

● Minimizing:
◆ CPU cost
◆ memory size
◆ power, etc.

© ASV et al. 1996

Software Implementation

● How to do it ?
● Traditional approach:

◆ hand-coding of procedures
◆ hand-estimation of timing input to

scheduling algorithms
● Long and error-prone
● Our approach: three-step automated procedure:

◆ synthesize each task separately
◆ extract (estimated) timing
◆ schedule the tasks

● Customized RT-OS (scheduler + drivers)

© ASV et al. 1996

Software Implementation

● Current strategy:
◆ Iterate between synthesis, estimation and

scheduling
◆ Designer chooses the scheduling algorithm

● Future work:
◆ Top-down propagation of timing constraints
◆ Software synthesis under constraints
◆ Automated scheduling selection

(based on CPU utilization estimates)

© ASV et al. 1996

Software Implementation

● Sub-problems:
◆ Find appropriate representations for

◆ code optimization
◆ scheduling

◆ Find appropriate code optimization
algorithms

(timing and memory occupation)
◆ Find appropriate scheduling algorithm

(guaranteed performance with acceptable
overhead)

© ASV et al. 1996

Software synthesis procedure

Specification, partitioning

S-graph synthesis

Timing estimation

Scheduling, validation
not
feasible feasible

Code generation

Compilation

Testing, validation

Production

pass

fail

© ASV et al. 1996

Task implementation

● Goal: quick response time, within timing and
size constraints

● Problem statement:
◆ Given a CFSM transition function and

constraints
◆ Find a procedure implementing the transition

function while meeting the constraints
● The procedure code is acyclic:

◆ powerful optimization and analysis
techniques

◆ looping, state storage etc. are implemented
outside (in the OS)

© ASV et al. 1996

Representation Issues

● The software representation should be:
◆ Low-level enough to allow detailed

optimization and estimation
◆ High-level enough to avoid excessive details

e.g. register allocation, instruction selection
● Main types of “user-mode” instructions:

◆ data movement
◆ ALU
◆ conditional/unconditional branches
◆ subroutine calls

● RTOS handles I/O, interrupts and so on

© ASV et al. 1996

Multi-valued Decision Diagrams

● Extension of Binary-valued Decision
Diagram (Akers ‘69, Bryant ‘86, Kam’92)

◆ Appropriate for control-dominated
tasks

◆ Single-path, single-test evaluation
◆ Size strongly depends on variable

ordering
◆ Well-developed set of optimization

techniques
● Must be augmented with arithmetic and

Boolean operators, to perform data
computations

f = a + b
a

b

1 0

f

© ASV et al. 1996

Our Representation: S-graphs

● Acyclic extended decision diagram computing a
transition function

● S-graph structure:
◆ directed acyclic graph
◆ set of finite-valued variables
◆ TEST nodes evaluate an expression and

branch accordingly
◆ ASSIGN nodes evaluate an expression and

assign its result to a variable

© ASV et al. 1996

An example of S-graph

a := a + 1 a := 0

*c a<b

BEGIN

END

F

T
TF

– input event *c
– output event *y
– state int a
– input int b
– forever

if (detect(*c))
if (a < b)

a := a + 1
emit(*y)

else
a := 0
emit(*y)

emit(*y)

© ASV et al. 1996

S-graphs and functions

● Execution of an s-graph computes a function
from a set of input and state variables to a set of
output and state variables:

◆ Output variables are initially undefined
◆ Traverse the s-graph from BEGIN to END

● Well-formed s-graph:
◆ every time a function depending on a

variable is evaluated, that variable has a
defined value

● How do we derive an s-graph implementing a
given function ?

© ASV et al. 1996

S-graphs and functions

● Problem statement:
◆ Given: a finite-valued multi-output function

over a set of finite-valued variables
◆ Find: an s-graph implementing it

● Procedure based on Shannon expansion
f = x fx + x’ fx’

● Result heavily depends on ordering of variables
in expansion

◆ inputs before outputs: TESTs dominate over
ASSIGNs

◆ outputs before inputs: ASSIGNs dominate
over TESTs

© ASV et al. 1996

Example of S-graph construction

x = a b + c
y = a b + d

a

b
c

d

x := 1

y := 1

0 1

0 1

1

1

d

0

x := 1

y := 0

x := 0

y := 1

x := 0

y := 0

00 1

Order: a, b, c, d, x, y
(inputs before
outputs)

© ASV et al. 1996

Example of S-graph construction

x = a b + c
y = a b + d

a

b

x := 1

y := 1

0 1

0 1

x := c

y := d

Order: a, b, x, y, c, d
(interleaving
inputs and
outputs)

© ASV et al. 1996

S-graph optimization

● General trade-off:
◆ TEST-based is faster than ASSIGN-based

(each variable is visited at most once)
◆ ASSIGN-based is smaller than TEST-based

(there is more potential for sharing)
● The procedure can be iterated over s-graph

fragments:
◆ local optimization, depending on fragment

criticality (speed versus size)
◆ constraint-driven optimization (still to be

explored)

© ASV et al. 1996

From S-graphs to instructions

● TEST nodes Î conditional branches
● ASSIGN nodes Î ALU ops and data moves
● No loops in a single CFSM transition

(user loops handled at the RTOS level)
● Data flow handling:

◆ “don’t touch” them (except common subexpression
extraction)

◆ map expression DAGs to C expressions
◆ C compiler allocates registers and select opcodes

● Need source-level debugging environment (with any of the
chosen entry languages)

© ASV et al. 1996

Software synthesis procedure

Specification, partitioning

S-graph synthesis

Timing estimation

Scheduling, validation
not
feasible feasible

Code generation

Compilation

Testing, validation

Production

pass

fail

© ASV et al. 1996

Performance and cost estimation

● S-graph: low-level enough to allow accurate
performance estimation

● Cost parameters assigned to each node,
depending on:

◆ system type (CPU, memory, bus, ...)
◆ node and expression type

● Cost parameters evaluated via simple
benchmarks

◆ need timing and size measurements for each
target system

◆ currently implemented for MIPS, 68332 and
68HC11 processors

© ASV et al. 1996

Performance and cost estimation

a := a + 1 a := 0

*c a<b

BEGIN

END

emit(*y)

40

26
41 63

14

T
F F T

18 9

● Example: 68HC11
timing estimation

● Cost assigned to s-
graph edges

◆ (different costs for
taken/not taken
branches)

● Estimated time:
◆ min: 26 cycles
◆ max: 126 cycles

● Accuracy: within 20%
of profiling

© ASV et al. 1996

Experimental results (68HC11)

b e lt

o d o m e te r

fu e l

sp ee d o m ete r

n o rm a lize

c ro s s_ d isp lay

d e tec t_ed g e

q u ad to s ig n

co il_sw itch

tim e r

0 1000 2000 3000 4000 5000 6000

b e lt

o d o m e te r

fu e l

sp ee d o m ete r

n o rm a lize

c ro s s_ d isp lay

d e tec t_ed g e

q u ad to s ig n

co il_sw itch

tim e r e s tim . t im in g
m e a s . t im in g
e s tim a ted s ize
m e a su re d s iz e

© ASV et al. 1996

Experimental results (68HC11)

b e lt

o d o m e te r

fu e l

s p e e d o m e te r

n o rm a l iz e

c ro s s _ d is p la y

d e te c t_ e d g e

q u a d to s ig n

c o i l_ s w itc h

t im e r

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0

b e lt

o d o m e te r

fu e l

s p e e d o m e te r

n o rm a l iz e

c ro s s _ d is p la y

d e te c t_ e d g e

q u a d to s ig n

c o i l_ s w itc h

t im e r
s u p p o r t
tw o - le v e l

● Support:
inputs before
dependent outputs

● Two-level:
switch on state
switch on inputs

© ASV et al. 1996

Future Work

● Better synthesis techniques
◆ add state variables to simplify s-graph
◆ performance-driven synthesis of critical paths
◆ exact memory/speed trade-off

● Estimation of caching and pipelining effects
◆ may have little impact on control-dominated

systems
(frequent branches and context switches)

◆ relatively easy during co-simulation

© ASV et al. 1996

Software synthesis procedure

Specification, partitioning

S-graph synthesis

Timing estimation

Scheduling, validation
not
feasible feasible

Code generation

Compilation

Testing, validation

Production

pass

fail

© ASV et al. 1996

The scheduling problem

● Given:
◆ estimates on the minimum and maximum

execution times for each CFSM transition
(from the S-graph)

◆ a set of timing constraints
e.g., input event rates and input-to-output

deadlines, “critical” events
● Find an execution ordering for CFSM transitions

that satisfies the constraints:
◆ either static, pre-computed (off-line)
◆ or dynamic, decided at run time (on-line)

© ASV et al. 1996

Scheduling algorithms

● Off-line scheduling: determine a cyclic
execution order that satisfies the constraints

◆ weak constraints: round-robin cyclic
executive

(like the synchronous hypothesis in Esterel)
◆ tight constraints: call each CFSM only when it

is expected to receive an event
(based on expected I/O rates)

● Advantages: simple, fast, highly predictable
(essential for mission-critical systems)

● Disadvantage: low utilization of CPU to
guarantee constraint satisfaction

© ASV et al. 1996

Scheduling algorithms

● On-line scheduling: determine a set of priority
values that determine the next runnable CFSM

● Priorities can be statically or dynamically
determined

● A running CFSM may or may not be interrupted
in the middle of a transition

(preemptive/non-preemptive algorithms)
● Advantage: higher CPU utilization
● Disadvantage: more complex, higher overhead

(dynamic and preemptive most complex)

© ASV et al. 1996

Scheduling algorithms

● Currently implemented algorithms:
◆ round-robin cyclic executive
◆ off-line I/O rate-based cyclic executive
◆ static pre-emptive: Rate Monotonic

Scheduling (Liu ‘73):
◆ highest I/O rate has highest priority

◆ dynamic pre-emptive: Earliest Deadline First
(Liu ‘73):

◆ CFSM with nearest deadline has highest
priority

© ASV et al. 1996

Problems with Current Approach

● Current scheduling algorithms:
◆ Lots of manual analysis required
◆ Either guaranteed performance with high

overhead
◆ Or no guarantee but highly efficient
◆ Schedulability analysis is usually very

pessimistic
☞ waste of CPU power at run time

● Scheduling algorithm choice is left to the user

© ASV et al. 1996

Future Work

● Propagation of constraints from external I/O
behavior to each CFSM

◆ probabilistic: Markov chains
◆ exact: FSM state traversal

● Satisfaction of constraints within a single
transition

(e.g., software-driven bus interface protocol)
● Automatic choice of scheduling algorithm, based

on performance estimation and constraints
● Scheduling for verifiability

© ASV et al. 1996

Other scheduling models

● Problem: computation result may depend on
dynamic schedule

● Synchronous systems (Esterel, Signal, Lustre): no
scheduler needed

(as long as the software is fast enough)
● Data-flow systems: result does not depend on

scheduling if event detection is blocking (Kahn ‘74)
● Can we obtain determinism without losing

efficiency ?

© ASV et al. 1996

Our Co-design Environment

Graphical EFSM ESTEREL

Compilers

CFSMsPartitioning

Sw Synthesis

Formal
Verification

Sw Code +
RTOS

Logic NetlistSimulation

Hw SynthesisIntfc Synthesis

Prototype

© ASV et al. 1996

Hardware Synthesis

● CFSMs interpreted as synchronous register-transfer
specification

● Direct implementation as combinational logic +
registers

● Non-zero delay implemented by latching all the
outputs

◆ Ensures correct composition (Moore-type
synchronous FSMs)

◆ Improves testability
● Logic synthesis for various target implementations

◆ FPGAs and FPICs for rapid prototyping

© ASV et al. 1996

Hardware Synthesis

comb.
logic

L

comb.
logic

L

CFSM 1

CFSM 2

© ASV et al. 1996

Our Co-design Environment

Graphical EFSM ESTEREL

Compilers

CFSMsPartitioning

Sw Synthesis

Formal
Verification

Sw Code +
RTOS

Logic NetlistSimulation

Hw SynthesisIntfc Synthesis

Prototype

© ASV et al. 1996

Micro-controller peripherals

● Custom HW (fully programmable, expensive)
● On-chip or off-chip peripheral (partially programmable,

inexpensive)

CPU
A/D

Timer

I/O ports

RAM

EPROM

© ASV et al. 1996

Previous work

● Chou et al. (DAC 94): synthesis of device drivers
(given choice and protocol)

● Mitra et al. (TVLSI 96): mapping of function to
complex peripheral devices

(syntactic matching only)

© ASV et al. 1996

Peripheral modeling approach

● Ideally: implement specified function using peripherals
(if possible)

● Currently: use three models
◆ Behavioral (Ptolemy) model for co-simulation
◆ CFSM model for RTL co-simulation and rapid

prototyping
◆ C model for implementation (programming and

interfacing with the peripheral)
● Parameters customize all models simultaneously

(plug-in replacement of abstraction levels)
● Synthesizable CFSM model key to limited re-

targetability

© ASV et al. 1996

Peripheral modeling approach

● The user must
◆ decide in advance which functions may need to be

implemented on a library peripheral
◆ choose the best fitting model from a library
◆ co-simulate to decide implementation

(SW, custom HW, peripheral, …)
● The co-design environment takes care of:

◆ synthesizing in SW or HW
◆ extracting peripheral programming SW from library

(may be partially micro-controller independent)
◆ interfacing transparently

© ASV et al. 1996

Current Status

● Modeled various peripherals of the 68hc11
family

◆ Timer unit
◆ input capture (measuring time of events)
◆ output compare (generating delays)

◆ A/D converter
◆ PWM generators

● Writing and debugging a new model requires
1-2 days (for simple peripherals)

© ASV et al. 1996

Our Co-design Environment

Graphical EFSM ESTEREL

Compilers

CFSMsPartitioning

Sw Synthesis

Formal
Verification

Sw Code +
RTOS

Logic NetlistSimulation

Hw SynthesisIntfc Synthesis

Prototype

© ASV et al. 1996

Why hardware prototypes ?

● High-level co-simulation cannot be used to
validate the final implementation

◆ need a much more detailed model of HW and
SW architecture

● Low-level co-simulation (using HW simulator) is
too slow

● Need to validate the design in the real
environment

● Example: engine control
◆ specification cannot be formalized

(“must run well”)
◆ must be loaded on a vehicle for test drives

© ASV et al. 1996

Rapid prototyping methodology

● Synthesis from a high-level uncommitted
specification

● Hardware, software, RT-OS and interfaces are
automatically generated

● Use the APTIX Field-Programmable
Interconnect Circuits to quickly modify the
board configuration

● System netlist changes reflected on the board in
a matter of minutes

● Can be programmed via EPROM for field
deployment

© ASV et al. 1996

The APTIX Board

FPIC FPIC

FPICFPIC

CPU

FPGA

FPGA

FPGA

RAM

EPROM

EPROM

Analog
components

Connectors

© ASV et al. 1996

The Development Environment

FPIC FPIC

FPICFPIC

CPU

FPGA

FPGA

FPGA

RAM

EPROM

EPROM

XCHECKER

Workstation

Host
Interface
Module

Logic
Analyzer

© ASV et al. 1996

The Development Environment

● Microcontroller emulator for software
debugging

● XCHECKER to program and observe XILINX
FPGAs

● APTIX FPIC-D can bring any interconnection to
a logic analyzer pod

● APTIX software can program the HP logic
analyzer

● Currently the bottleneck is the FPGA
programming environment (slow CAD, slow
programming, slow debugging)

© ASV et al. 1996

Current status and future work

● Virtual prototyping environment is complete
● Physical prototyping environment:

◆ debugged “toy” system
◆ currently developing a dashboard controller

● Future work:
◆ enhance software debugging capabilities

(ESTEREL source debugging via emulator)
◆ automate system netlist generation
◆ explore new types of FPGAs

© ASV et al. 1996

Current Design Flow

● System specification:
◆ ESTEREL
◆ FSM editor
◆ graphical CFSM net editor

● SW synthesis and estimation
● High-level co-simulation

◆ functional debugging
◆ trade-off evaluation

● Formal verification
● SW, HW, RTOS synthesis
● Low-level co-simulation and prototyping

© ASV et al. 1996

Car dashboard example

● Implemented a dashboard controller:
◆ Speedometer and odometer
◆ Safety functions (seat-belt alarm)
◆ Fuel gauge control

● Timing functions implemented by the user
(custom scheduler)

● 23 interacting CFSMs, of 13 different sorts:
◆ Speed, Odo, RPM (speedometer, odometer)
◆ Belt (safety)
◆ Crossdisp (fuel)
◆ FRC, Timer (scheduler)

© ASV et al. 1996

Car dashboard example

● Control functions specified with Esterel
◆ automated translation from Esterel to CFSMs

● CFSM interconnection specified graphically

FRC

Timer

Odo

Belt

Speed

RPM Crossdisp

Crossdisp

Crossdisp
Fuel

fuel

key, belt

clock

wheel

engine

fuel_disp

speed_disp

RPM_disp

odo_disp

© ASV et al. 1996

Car Dashboard Implementation (I)

● Defined by hand, based on fast co-simulation
output

● Custom HW blocks:
◆ Timer counter (originally part of 68HC11

timer unit)
◆ PWM generators (jitter is critical)

● SW blocks: everything else
● Estimated code size: 7Kbytes (excluding OS)
● Estimated CLBs on XILINX: >170
● HW/SW communication: 31 bits (events) + 82

bytes (values) of memory-mapped I/O

© ASV et al. 1996

Car Dashboard Implementation (I)

● Actual code size:
◆ user code: 9130 bytes ROM + 370 bytes RAM
◆ custom RTOS: 1543 bytes ROM + 1475 bytes RAM
◆ size estimation accuracy: within 20%

(error due to ignoring different cost of SW MULT)
● Actual HW size: 2 XILINX 3000

◆ 130 CLB + 50 I/O
◆ 144 CLB + 48 I/O
(automated partitioning)

© ASV et al. 1996

Car dashboard Implementation (II)

● Re-defined using 68HC11 peripherals:
◆ Timer unit for input event processing and

scheduling
◆ PWM generators for outputs (on 68HC11GAUSS)

● SW blocks: everything else
● Estimated code size: 10Kbytes (including RTOS)
● PWM generators can also be implemented on FPGA

(if not available on micro-controller)

© ASV et al. 1996

Comparison with Manual Design

● Exact comparison is difficult
● Similar code size

(8K bytes vs. 10Kbytes)
● Synthesized code is much faster

(3 times for the speedometer computation chain)
● RTOS overhead is being reduced

◆ careful usage of RAM
◆ support for micro-controller resource usage

(timers, PWM generators, serial I/O)

© ASV et al. 1996

Conclusions

● Introduced a new model for hardware and
software

◆ Simple: finite state, no complex
synchronization,...

◆ Uncommitted to a specific implementation
◆ Event-driven causal model with implicit

unbounded delays

© ASV et al. 1996

Conclusions

● The proposed methodology is based on a
implementation - independent specification
format

● Partitioning and synthesis are made easier by
the common model used

● Partitioned hardware and software
implementations are automatically generated

● The FSM model derived from a CFSM is
compatible with many formal verification
algorithms

© ASV et al. 1996

Conclusions

● Rapid prototyping is required for embedded
system design

● Three levels of prototypes:
◆ functional prototype, with animation
◆ approximate timing prototype, for

performance evaluation and partitioning
◆ physical prototype for testing on the field

● All three depend on
◆ uncommitted formal specification
◆ automated synthesis

