
CONCURRENT OBJECT NETS - A DESIGN METHOD
FOR DISTRIBUTED AND EMBEDDED REAL-TIME

SYSTEMS

Wolfgang Fengler, Jürgen Nützel

Technical University Ilmenau, Faculty for Informatics and Automation, D-98684 Ilmenau,
Germany, wfengler; nuetzel@theoinf.tu-ilmenau.de, http://www.theoinf.tu-ilmenau.de/ra1/

Abstract. In this paper we present an object-oriented method for the design, verification and
implementation of embedded and distributed real-time systems. The method is called
Concurrent Object Net (CON). The CON method is based upon extended statecharts which
use specific message links for communication. For simulation and verification corresponding
Petri nets are used. A platform abstraction framework for CON accesses hardware in
optimized manner. An anti-slip-control of a rc-car is used to show further CON details.

Key Words. Object-orientation, simulation, Petri nets, embedded systems, real-time, anti-slip-
control

1. INTRODUCTION

The design and implementation of embedded and
distributed real-time systems differs hardly from
traditional software design known from office
applications. Despite all known differences we found
object-oriented paradigm suitable for embedded
systems as well. But using the object-oriented design
techniques for embedded systems means to deal with
two contradictory intentions. On one side the
object-orientation tries to assist the designer handling
huge software systems by providing techniques like
abstraction, inheritance and polymorphism. On the
other side designing embedded applications stands for
accessing hardware directly and using provided
computing resources most effectively. This often
conflicts with the other side because the traditional
usage of object-orientation doesn't provide the
demanded code efficiency for distributed and
embedded applications. For this reason why designed
a new object-oriented design method directly for the
design of distributed embedded real-time systems. The
method is called Concurrent Object Nets. The method
provides a graphical semantics for classes and objects
and their interaction. An corresponding Petri net
semantic of the objects supplies the designer with
formal description. A hardware abstraction framework
was integrated to realize optimized hardware access in
combination with portability and code efficiency.

In the next section a description of the object-oriented
design model is given. Afterwards the corresponding
Petri nets semantic is described. In section 4 the
architecture of a visual CASE tool for Concurrent
Object Net (CON) design is introduced. Section 5 is
devoted to an anti-slip-control of a rc-car.

2. DESIGN METHOD

In this section we introduce a graphical and object-
oriented design method for distributed and embedded
real-time systems. The method is called Concurrent
Object Nets (CON) [3, 4] and additionally provides a
framework for the abstraction of distributed embedded
platforms including their actuators and sensors (see
figure 1). The section starts with a discussion about
different design properties which are originated from
contradictory views on embedded and distributed
systems.

2.1. Contradictory Views
If a software designer is directly involved with the
logical view on the system to design, she normally
expects three fundamental logical realization properties
from a design method:

 - Concurrency. A property coming from the
environment of the real-time system. At each time
different activities may run concurrently in the
environment to which the system has to react

E n viro n m e n t

C o n c u rre n t O b je c t N e ts

D is tr ib u te d E m b e d d e d P la tfo rm

S e n s o rs Ac tu a to rs

Fig. 1. The Elements of Distributed Embedded Real-
Time Systems

Class Contro lSlip

Constraint c1 {
 send MotorVoltage between 0 10ms
 after VSpeed && WSpeed occurred
}

Send Port
R ece ive Port

MotorVoltage VSpeed

W Speed

Fig. 2. Abstract ON class with textual constraint

simultaneously. Concurrent Objects: All objects
(instances of Object Net classes) are working
concurrently.

 - Reactivity. A reactive system reacts continuously to
signals from the environment. Active Objects (like
actors) [5]: All instances have their own thread of
control (hierarchical ones have several threads).
Each instance is able to react directly to its
environment.

 - Guaranty for time and logical restrictions: In case
of safety and real-time requirements facilities will
be needed, which ensure that some system states
will reached and some other will never occur.
Additionally strict time borders for some reactions
are needed too. Safety Objects: For every Object
Net class a set of such constraints may be given.
CON design ensures the fulfilment of these
constraints.

If the designer (may be different to the one above) is
involved with the physical view (implementation) on
the hardware, she appreciates different properties
provided by the Concurrent Object Net platform
abstraction framework (PAF).

 - Portability and distributability. The functionality of
the specification should be validated (by
simulation) before hardware details become visible.
The real access function to actuator/sensor
hardware should be added after the validation and
verification. If an abstract actuator/sensor access
exists which hides platform details, automatic
software-hardware-mapping algorithms could be
applied. Such algorithms generate an optimized and
distributed implementation based upon the time
restrictions of the specification. The platform
abstraction framework (PAF) provides the designer
with a class system to wrap the functionality of
typical embedded controllers.

 - Being close to the hardware. Despites the request

for hardware wrapping and abstraction the
implementation has to access the controller as
directly as possible. The lowest classes of PAF
allow method implementation in platform’s native
code (also in assembler).

2.2. Abstract and Refined Object Nets
To make designer’s live easier when handling
concurrency, safety properties and hardware access we
added object-oriented features. These features allow the
designer to abstract from code internals, to reuse and
refine a design easily.

As already told Object Nets (ON) are concurrent
working instances of ON classes which may be also
distributed over several platform target nodes. An ON
class is a kind of graphical template for the creation of
Object Nets instances with certain interface and
behaviour. The interface of an ON class consists of a
set of so called ports. Message links connect ports of
different ON instances with each other. ON instances
communicate via these message links (asynchronous)
by sending simple control messages or messages with
user defined data structure. Beside its port interface
every ON class has an internal behaviour (beside the
abstract ones). Three different meta classes can be
distinguished by their internal behaviour:

 - An abstract ON class (AONC) has no specific
behaviour. AONCs like all other ON classes may
have a port interface and an optional list of time and
logical constraints (see figure 2). During the design
flow all instances of AONCs have to be substituted
by instances with refined behaviour.

 - A hierarchical ON class (HONC) encapsulates an
Object Net which consists of several ON instances
connected by a number of message links. These
aggregated instances may also be created either
from AONC, HONC or elementary ON classes.
Selected ports from the interface of the aggregated
instances can be exported into the interface of the
surrounding HONC.

 - An elementary ON class (EONC) encapsulates a
hierarchical extended state machine [1] with
additional time delays and time constraints. The
EONC is the fundamental building block. HONCs

C oun t P lace

Arc Variable

x
t1p1

7

p2
y

T C : x < 5

(6, 3)

T F : y = x+1
uint16

W T : 10
uint16

p3

Q ueue Place

D ata C lass
W a iting T im e

T ransition Function

T ransition G uard

Two uint16 -
Tokens

T es t A rc

Fig. 3. High-level Petri net for the behavioural
description

Plat form
independent
 code

Method
implementat ion

ASC method in ter face

Method
implementat ion
with simulat ion

code
C F U O s

PICOs

HW-Pla t fo rmEnvi ronment ON

Access f rom act ions

Plat form
specif ic
assembler
code

Simulat ion Code generat ion

Fig. 4. Actuator/Sensor Classes for Simulation and
Code Generation

are only used for a better design structure.
Hierarchy can be removed without change in
operating semantic. The peripheral interface ports
are assigned to the internal state changes. Actions
with program code (which can be simulated) are
assigned to the state changes. Within the actions
access to actuators and sensors is possible. This is
done through abstract actuator/sensor classes which
couple with the ON specification of the
environment. Additional local attributes (variables)
extend the state space of the EONC.

Within the CON method certain inheritance rules have
been defined. A subclass always refines the superclass.
An AONC can be refined to either a HONC or EONC.
Refining HONCs means (simplified speaking) to add
new ports or ON instances (ONI). Each inherited ONI
can be overwritten by an ONI which is more specific
than the inherited one. EONCs can also be refined by
extending their port interface. The inherited state
machine can also be refined by adding new parts (like
states, state changes, actions, attributes) or by refining
the inherited states. The use of all inheritance rules is
restricted by the CON design flow [4].

2.3. Platform Abstraction Framework (PAF)
Within the EONCs actions allow to access peripheral
actuators and sensors through objects from special
abstract actuator/sensor classes (ASC). These classes
wrap the functionality of the hardware of actuators and
sensors which are connected to the distributed
embedded controller nodes. Abstract ASCs are
platform independent. Their methods correspond to the
complementary ASO of the Object Net environment
specification which is used to create test patterns. In the
case of implementation the CON platform abstraction
framework (PAF) provides a technology to derive
concrete ASCs from the abstract ones by inheritance.
These concrete ASCs include the code for the different
target controllers.

As the right half of figure 4 shows the implementation
of concrete ASC methods uses two further meta classes
from the PAF. Core function unit classes (CFUC)
encapsulate the controller core specific code which is

needed to access the different function units of the
controller core. The PAF provides a selection of
abstract CFUCs which reflect typical functional units
like ports, watchdogs or counters. These CFUCs will be

used to design platform independent peripheral
interface coupler classes (PICC). PICCs hide the
process interface around the controller core. Different
DACs and ADCs are typically represented by PICCs.
After the mapping of the ASOs on a specific platform
CFUOs from abstract classes will be replaced by
objects from concrete classes which are coded using
target assembly language in an optimized manner.

Beside the ASC design PAF also supports the design of
controller’s communication interfaces (CI). CI classes
(CIC) also use PICOs and CFUOs for their
implementation. Unlike the ASCs the CIC are not
visible from the Object Net specification. Their purpose
is to implement the message link communication on the
top of different types of protocols (e.g. CAN-Bus) and
communication hardware [4].

2.4. The Design Flow with Object Nets
The design flow in the Object Net method is based on
the principle of refinement through inheritance. The
software designer starts to discuss the problem with the
customer. As a result of this discussion the designer
creates a first Object Net specification. This
specification formalizes the informal requirement of the
customer. It includes instances of AONCs. During the
refinement (through inheritance) process the designer
overwrites the instances from the first specification
level with instances which are more specific.

The mechanism of refinement through inheritance is
very restrictive in the CON method. Two fundamental
inheritance rules define the allowed refinements. The
interface inheritance rule is based upon the principle
that the environment of a subclass can not distinguish
between a subclass and its superclass if the subclass has
replaced the superclass. The constraint inheritance rule
forces a subclass to fulfil the constraints of the
superclass as well.

If designer’s refinements use these inheritance rules the
properties of the first specification will be preserved.

O bjec t N et
Contra ints

H igh-Leve l
Petri N et

O bjec t N et
Spec ifica tion

F lattened
O bjec t N et

H igh-Leve l
Petri N et

P latfo rm and
M apping

In form ation

O bjec t N et
Env irom ent

Spec ifica tion

Full simulation

Fig. 5. Formal verification of specification constraints

T c l/T k 8 .0 In te rp re te r

Inven to ry

O b ject N et
C lasses

Spec. Tcl
Com m ands

S Q L

Tcl
(TONI)

O b ject M app ing In te rface - ob jec t o rien ted A P I

Inven to ry

abs trac t
A S C lasses

A n im a tion

F la tting and
C onverting

S im u la tion
C ode

genera tion

P la tfo rm
abs trac tion

(PA F)

O b ject N et D esign V a lida tion Im p lem en ta tion

C on tro lle r
nodes

ne tw ork
(e.g . C AN)

Tcl

Fig. 6. The Object System Specification Inventory
(OSSI)

C la s s U in t16 S e n s o r

C la s s U in t16 S e n s o r

M o to r
M ot orV ol ta ge V S pe e d

W S p ee d

VS p ee d S e ns o r

W S p ee d S en s o r

Va lue

Valu e

Valu e

C la ss U in t1 6 A c tu at or C la s s C o nt ro lS l ip

C on tr ol

Abs tracts access to
motor eletronic

Fig. 7. CON specification of the control

An automatic (formalized) check detects whether the
designer has violated the rules.

At the end of the refinement process a specification
with all details will be found. This specification can be
graphically simulated. The last step in the design flow
transforms the fully refined Object Net specification
into a specification which can be implemented on the
distributed target platform.

The final mapping of the ONIs and ASOs onto the
controller nodes is restricted by the node's performance
parameters and the delays of the communication
network between the nodes. The time constraints from
the specification hold further restrictions for the
mapping algorithm.

3. VERIFICATION BASED UPON
HIGH-LEVEL PETRI NETS

For simulation and implementation every hierarchical
ON will be automatically transformed into a flat ON
including only EON instances coupled by message
links. If an Object Net environment specification
already exists it will be integrated. In the second step
these flat ONs will be transformed into high-level timed
Petri nets using further information from the platform
(performance and delay parameters) and mapping
specification. After this conversion process the resulted
Petri net will be executed/checked in the attached
simulator. The conversion principles are shown within
the application example at the end of the paper.

The Petri net class of the simulator/checker provides
several high-level features which extend traditional
Petri nets (see figure 3). Tokens are able to carry data
of specific structure (data class). Special queue places
are used to model communication buffers directly. A
time extension (waiting time) is available to describe
time consumption of communication and software
actions.

To check if the corresponding Petri net fulfils the timed
and logical constraints of the specification a conversion
is needed. After the conversion an observer Petri net
will result (see figure 5). This Petri net (which includes

forbidden transitions) in combinations with the Petri net
form the input for the verification. If no forbidden
transition fires the specification fulfils the constraints.

4. VISUAL DESIGN TOOLSET

In order to assist all the features of the CON method the
modular design toolset OSSI (Object System
Specification Inventory) was developed (see figure 6).
It supports the complete design and implementation
cycle within a software workgroup. OSSI provides a
class/object inventory which is based on a client-server
SQL database. The complete class inheritance
mechanism is controlled by that inventory. It holds the
complete ON class tree and all ON instances designed
by a workgroup using CONs. The Object Net class
browser and the platform abstraction browser allow the
designer to control its project data stored in the
inventory. The object mapping interface wraps the
physical representation of inventory and makes the tool
architecture independent from the selected database
technology.

5. EXAMPLE: ANTI-SLIP-CONTROL
FOR AN RC-CAR

We use for the demonstration of our research results [2]
a rc-car (in 1:7 scale). We added to the car a distributed
controller system (see figure 8). Three 16-bit
controllers (C164CI from Infinion) are connected via

Fig. 8. BMW rc-car with three 16-bit controllers

M o to rVo lt ag e

V Sp ee d

V Sp e ed

W Sp ee d

W S pe e d

C la s s C o ntr olS lip

C la s s C o nt ro lS l ip2

VSpeed
Slip

WSpeed

Class Es timateSlip

In1Out In

C lass ControlMotor

Va lu e

Va lu e

Cla s s U int 16 S en s o r

C las s Sp e ed S e ns o r

W h e elS e nso r

I dle

s en dV alu e

Us e s A S O : W h ee lS en s o r
T im e s c ale : 1 00 u s
A ttr ib ut e A c tion G u ard

s e nd Valu e

M ot orV ol ta g e

inherited Port

ON Instance of elementary
ON class

Refinement thru
inheritance

C o n s tra in t c1

C o n s tra in t c1

inherited
Constraint

Fig. 9. The refinement thru inheritance

C.Control.In1.Idle

Port_VSpeed

TF:CalcS lip

uint16

Sensor attrib ute connec ts control
and environment

C.Control.In1.VSpeed

uint16

C.Control.In1.W Speed

Port_W Speed

TF:sendValue

Port_Value

C.VSpeedSensor.Idle

TF:readValue

E .VSpeedSensor.Idle

Port_Value

getSpeed

_getSpeed

_getSpeed

uint16

W T:waitt ime

c lock

changed

Port_S lip

Control

Environment

Fig. 10. A part of the corresponding Petri net for
control and environment.

CAN-Bus.

We added an anti-slip-control feature to the rc-car, to
make real-time problems visible. The car is rear-wheel
driven. At the front wheel we measure the speed of the
car (the vehicle speed). If the rear wheel turns faster
than the front wheels the rear wheels slip. If the slip is
greater than a certain amount (e.g. 1%) the driver (with
the remote control) may loose control over the car.

The task of an anti-slip-control is first to measure the
speed of the rear wheel (WSpeed) and the speed of the
front wheel (VSpeed). Then it calculates the slip. And
after that it modifies the engine power (Motor). All this
is done several hundred time a second.

In our CON example we made specific simplifications
to make the design more understandable. First we
removed the access of the remote control. Figure 7
shows the CON control specification. The specification
consists of four ON-Instances (Motor, Control,
VSpeedSensor and WSpeedsensor). On this level of
design all classes (Uint16Actuator, Uint16Sensor and
ControlSlip) are abstract. For the class ControlSlip
some constraints (named c1) are given (see figure 2).

On a later design step all instances will be overwritten
with more specific classes. The instance Control will be
overwritten by an hierarchical class (see bottom of
figure 9). The more specific class ControlSlip2 includes
two instances of elementary type. The first one
calculates the slip. The second one derives from the slip
the motor voltage. The top of figure 9 shows the
refinement of the instances VSpeedSensor and
WSpeedSensor. The more specific class SpeedSensor
is a simple state machine which calls cyclic the action
sendValue. This action is written in C and uses ASC
methods (see figure 4) to access the sensor hardware. In
the simulation the ASC method connects the CON
control specification with the CON specification of the
environment.

Before the code generation [4] starts the verification
(full simulation) is possible (see figure 5). Figure 10
shows a part of the corresponding Petri net (without
platform specific parameters). Two elementary
instances from the control specification and on from the
environment are shown.

uint16

C.Control.In1.VSpeed
uint16

C.Control.In1.W Speed

yes .VSpeedno.VSpeed yes .W Speedno.W Speed

.idle

.toolate

.okay

.start1

.before
W T: "0ms "

.between
W T: "10ms -0ms "

.tooearly
.start2

uint16

C.Motor.Value

forbidde n
tra nsitions

Fig. 11. The observing Petri net derived from the
textual constraint

The observing Petri net which implements the
constraint definition from figure 2 makes the Petri net
complete for verification. The observing Petri net from
figure 11 does not effect the rest of net. It is coupled via
test arcs. The firing either of the transition .toolate or
the transition .tooearly indicates that the real-time
constraint c1 was not hold by the CON design.

6. CONCLUDING REMARKS

The Concurrent Object Net (CON) method in
combination with its platform abstraction framework
(PAF) was designed for easy access to the domain of
distributed embedded real-time systems. Our intention
was to address engineers who are familiar with
hardware details but not willing to become a computer
scientist. Beside easy programming of heterogenous
platforms we focused on verification of safety critical
systems [2]. Our future goals will be to rise the
acceptance of simulation and verification in the
embedded system domain.

7. REFERENCES

1. Harel, David: Statecharts: A visual formalism for
complex systems, Science of Computer
Programming, Vol. 8, p. 231-274, 1987

2. I S C R A H o m e p a g e , 2 0 0 0 :
http://www.theoinf.tu-ilmenau.de/ISCRA/

3. Nützel, J.; Däne, B.; Fengler, W.: Object Nets for
the Design and Verification of Distributed and
Embedded Applications, EHPC´98 Orlando,
USA,1998, In LNCS p. 953-962 Springer Verlag
1998

4. Nützel, J.: Objektorientierter Entwurf verteilter
eingebetteter Echtzeitsysteme auf Basis höherer
Petri-Netze, Dissertation, TU-Ilmenau, 1999

5. Selic, B.; Gullekson, G.; Ward, P. T.: ROOM -
Real-Time Object-Oriented Modelling, John Wiley
& Sons, 1994

