Der Einsatz hybrider Petri-Netze beim Entwurf eingebetteter Systeme für mechatronische Anwendungen

Wolfgang Fengler
Thorsten Hummel
Vesselka Duridanova
Technische Universität Ilmenau
Institut für Theoretische und Technische Informatik
Fachgebiet Rechnerarchitekturen
e-mail: wfengler,thummel,vesselka@theoinf.tu-ilmenau.de

Gliederung

- 1. Motivation
- 2. Hybride Petri-Netze
- 3. Anwendungsbeispiel
- 4. Zusammenfassung / Ausblick

Motivation

- Eingebettete Systeme
 - Komplexe Hard- und Softwaresysteme
 - Enthalten häufig Elemente, die unterschiedlichen Zeit- und Signalvorstellungen entsprechen
 - → Heterogene oder hybride Systeme
 - Beschreibung durch unterschiedliche Formalismen
 - + analog: kontinuierliches Zeitmodell
 - + digital: diskrete Ablaufschritte
- ➤ Einheitliches Beschreibungsmittel für unterschiedliche Zeit- und Signalvorstellungen
 - → Hybride Petri-Netze

Hybride Petri-Netze

- Basierend auf den durch David und Alla eingeführten kontinuierlichen Petri-Netzen
 - Marken werden nicht ganzzahlig interpretiert, sondern in eine theoretisch unendliche Menge von Markenbruchstücken zerlegt
 - Den kontinuierlichen Transitionen wird anstelle der Schaltzeit eine Feuergeschwindigkeit zugeordnet
- Kombination klassischer diskreter S/T-Netze mit kontinuierlichen Petri-Netzen
- Spezielle Hybride Petri-Netz-Klasse (Drath, TU Ilmenau)

Hybride Dynamische Netze (HDN)

$HDN = (P, T, F, P_T, T_T, F_T, E) \rightarrow Hybrides Dynamisches Netz$

(1) P, T, F \rightarrow endliche Mengen mit

$$P \cap T = \emptyset$$
, $P \cup T \neq \emptyset$

(2) $P_T P_D \rightarrow diskrete Plätze$

 $P_{\kappa} \rightarrow$ kontinuierliche Plätze

$$P_D \cap P_K = \emptyset$$

(3) $T_T T_D \rightarrow diskrete Transitionen$

T_K → kontinuierliche Transitionen

$$T_D \cap T_K = \emptyset$$

(2)
$$F_T$$
: $F = K_{SEK} \cup K_{SAK} \cup K_{TEK} \cup K_{IEK}$

$$\mathsf{mit}\;\mathsf{K}_{\mathsf{SEK}}\!\cap\mathsf{K}_{\mathsf{SAK}}\!\cap\mathsf{K}_{\mathsf{TEK}}\!\cap\mathsf{K}_{\mathsf{IEK}}=\varnothing$$

Hybride Dynamische Netze (HDN)

 $E = (C, RE, PR, z, M, M_0, G, T_M, V, NA) \rightarrow Netzerweiterungen$

(1) C: Kapazität der diskreten Plätze P_D

(2) PR: Priorität einer diskreten Transition T_D

(3) z : Zeit als globale Variable des Gesamtsystems

(4) M: Markierung zum Zeitpunkt z

(5) M₀: Anfangsmarkierung

$$P_D \rightarrow N^+$$

 $P_K \to R$ (negative Markierung möglich)

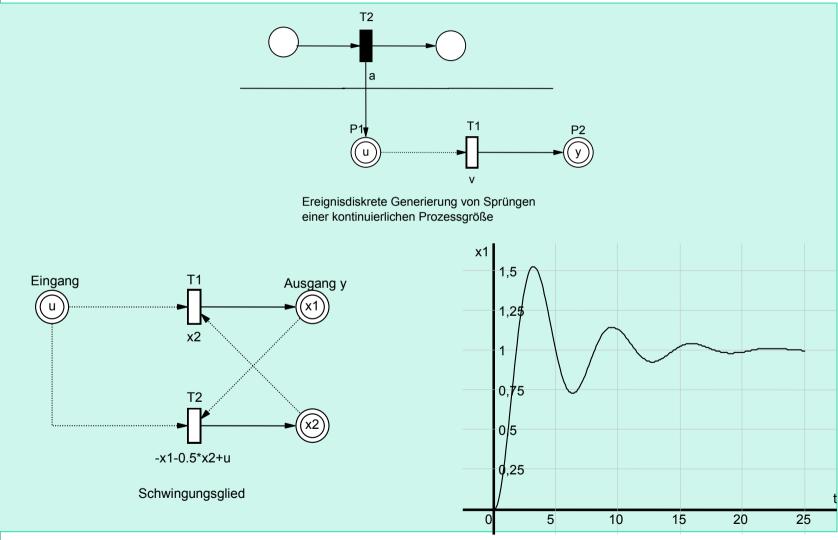
(6) G: Funktion einer gewichteten Kante

(7) T_M : einer diskreten Transition zugeordnete Zeit relativ zur globalen Zeit z

(8) V: einer kontinuierlichen Transition zugeordnete Geschwindigkeitsfunktion f(z, M)

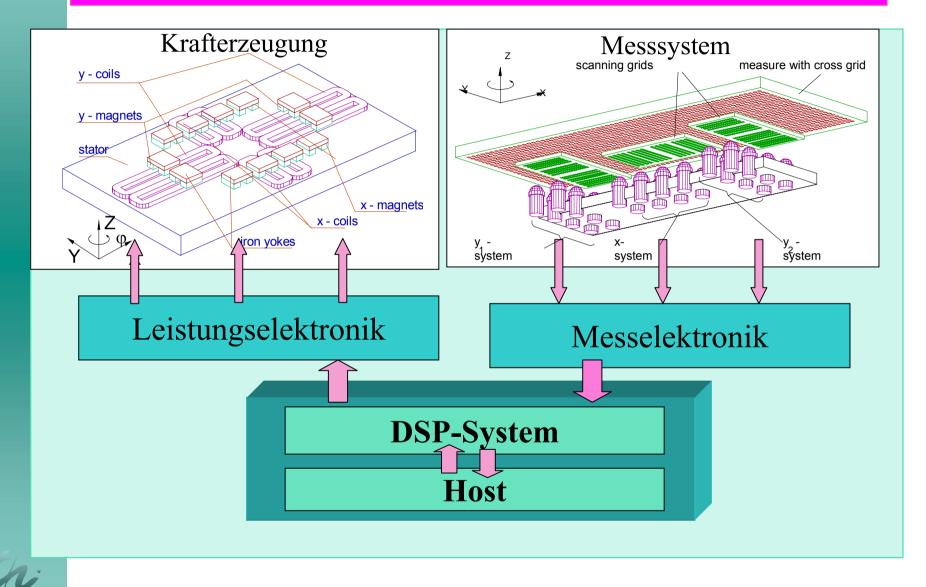
Hybride Dynamische Netze (HDN)

Eifiga	ngskanten	Γ		<u> </u>	Campagaina	r	
a	klassisches ST- Netz mit unbe- schränkter Ka- pazität der Plätze Transition schaltet, wenn gilt: m>=a		nicht erlaubt		Sprung einer kontinuierlichen Zustandsgröße Transition schaltet, wenn gilt: m>=a		kontinuierlicher Fluß Kantengewicht nicht sinnvoll Transition ist stets aktiv Markentransport gemäß v(t)
) a	Steuerung eines ereignisdiskreten Prozesses Transition schaltet, wenn gilt: m>=a (kein Markentransport)		Steuerung eines kontinuierlichen Prozesses Transition ist aktiv, wenn gilt: m>=a (kein Marken- transport)	- a	Erzeugung von Ereignissen Transition schaltet, wenn gilt: m>=a (kein Marken- transport)		Modellierung von eingeprägten Größen Kantengewicht nicht sinnvoll Transition ist stets aktiv (kein Markentrans port)
a	Steuerung eines ereignisdiskre- ten Prozesses Transition schaltet, wenn gilt: m <a (kein Marken- transport)</a 	a	Steuerung eines kontinuierlichen Prozesses Transition ist aktiv, wenn gilt: m <a (kein Marken- transport)</a 	a de la constant de l	Erzeugung von Ereignissen Transition schaltet, wenn gilt: m <a (kein="" marken-="" td="" transport)<=""><td></td><td>nicht erlaubt</td>		nicht erlaubt
Ausga	angskanten						
a	klassisches ST- Netz mit unbeschränkter Kapazität der Plätze Markentransport gemäß a		nicht erlaubt	- a	Sprung einer kontinuierlichen Zustandsgröße Markentransport gemäß a		kontinuierlicher Fluß Kantengewicht nicht sinnvoll Markentransport gemäß v(t)
							nicht erlaubt



Modellierungstool - Visual Object Net ++

- Objektorientiertes Werkzeug zur Modellierung, Visualisierung und Simulation von HDN
- Modellierung hybrider Systeme unter objektorientierten Gesichtspunkten
 - Modellierung von Teilsystemen und Abstraktion in Klassen
 - Hierarchische Beschreibung
 - Modellierung mit Hilfe von in einer Klassenbibliothek abgelegten Objekten

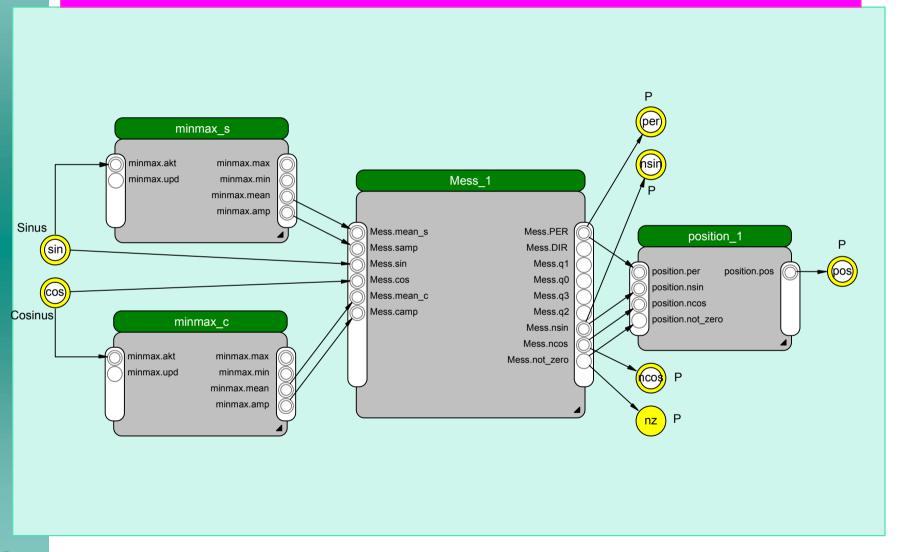


Modellierungstool - Visual Object Net ++

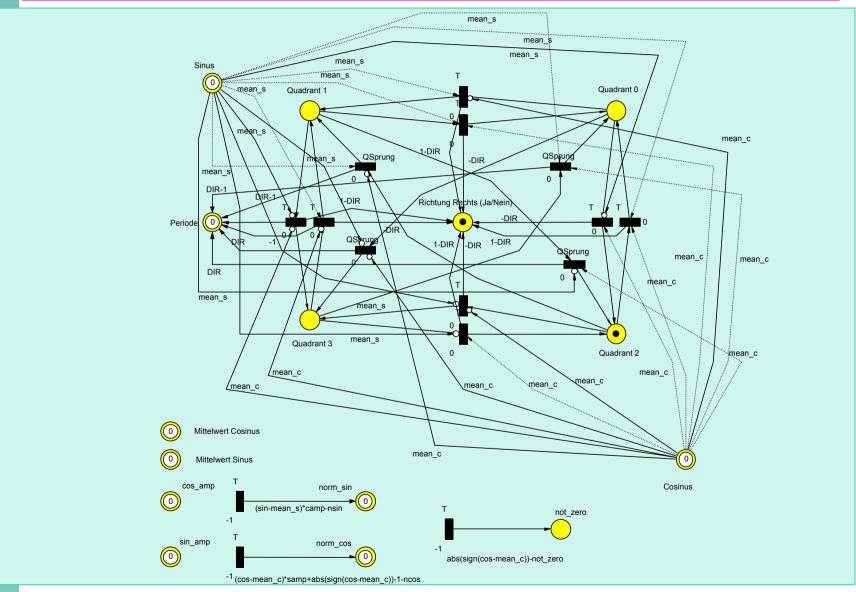
Anwendungsfeld → Mehrkoordinatenantriebe

TU Ilmenau

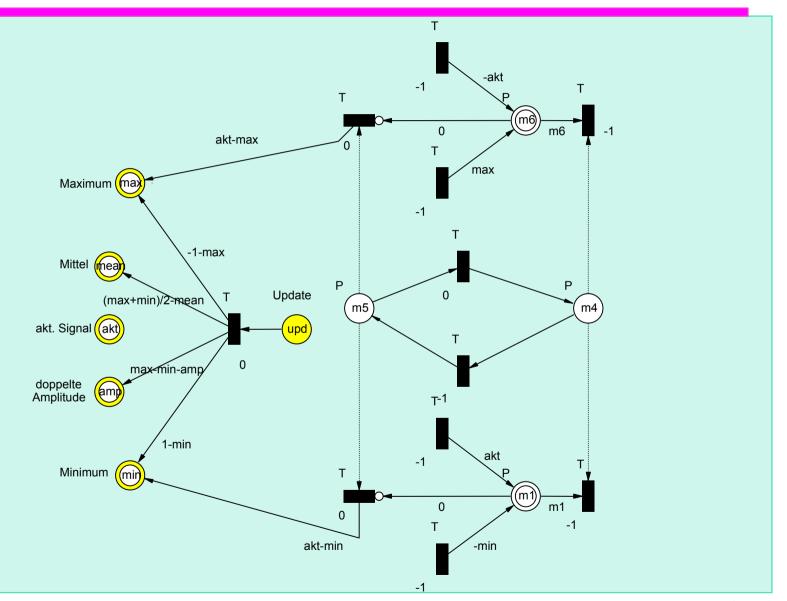
Mehrkoordinatenmesssystem



Mehrkoordinatenmesssystem - Ausschnitt


TU Ilmenau

Mehrkoordinatenmesssystem - Ausschnitt



Komponente - Messung

Komponente - Minmax

Zusammenfassung - Ausblick

- Hybride Petri-Netze ermöglichen eine einheitliche Modellierung von heterogenen Systemen
- Der objektorientierte Ansatz der verwendeten Netzklasse erlaubt die übersichtliche Modellierung auch größerer hybrider Systeme
- zukünftige Aufgaben:
 - Erweiterung und Vervollständigung des Modells
 - Einbindung in den gesamten Entwurfsprozess

