
A Multiprocessor DSP System for a High Throughput Control Application

Bernd Däne (bernd.daene@tu-ilmenau.de)
Falk Berger (falk.berger@tu-ilmenau.de)

Ilmenau Technical University

P.O. Box 100565, 98684 Ilmenau, Germany

http://tin.tu-ilmenau.de/ra/

Abstract

This paper describes the hardware concept and
realization of an experimental multiprocessor
system with Digital Signal Processors
TMS320C6701. For convenience and effi-
ciency piggyback modules have been used.
The structure is organized in master-slave
manner. The slaves are accessed from the
master through their host port interfaces. Spe-
cial address decoding provides broadcasted
write from the master to all slaves besides in-
dividual read and write access. Some experi-
mental results are provided.

1. INTRODUCTION

This contribution describes concept, realization and
experimental results for a multiprocessor system with
up to six DSPs (Digital Signal Processors) from the
TMS320C6000 family. It is a low-volume experimen-
tal project that shall provide a platform for researching
multiprocessor hardware and software.

Additionally it is a first step for developing a control
system that can be used in a high precision measure-
ment machine [1]. Here the system will calculate
complex control algorithms for control loops at high
rate. High throughput and low latency are required.

For communication purposes a High Speed USB in-
terface, controlled by a separate DSP, is provided.
Sensors and actuators are accessible via input/output
ports that are located at a parallel bus.

Since both the research interests and the measurement
system deal with high performance operation high
priority is given to fast and efficient data transport
between the processor nodes.

2. HARDWARE CONCEPT

Processor nodes

The processor nodes are based on off-the-shelf piggy-
back modules [2]. Each of these modules is equipped
with a floating point DSP TMS320C6701, static and
dynamic memory, flash memory, bus interface, serial
interface, core voltage and clock supply, and some
other functions. In this configuration one such module
autonomously can act as a microcomputer, requiring
only one 3,3 V power supply.

For interfacing with other components the modules
provide both the asynchronous EMIF (external mem-
ory interface) bus interface where the DSP acts as a
master and the DSP’s HPI (host port interface), where
it can be accessed as a memory slave.

For all signals that leave the module the latter has bus
switches rather then drivers or direct connection to the
processor pins. The bus switches provide isolation
during cycles that access on-module components and
tolerance against 5V-TTL-levels from outside. In con-
trast to drivers they do not increase the load capabili-
ties for output signals but do not (or not so much) con-
tribute to signal delays.

The use of these modules reduces the development
efforts and has economical advantages for this low-
volume project. Similar modules with (nearly) match-
ing pinouts are available with other members of the
C6000 processor family.

Communication structure

It was decided to use a bus-like communication struc-
ture with one master and four slaves. The master is
responsible for communicating with the sensors and
actuators through input/output ports, for distributing
data to the slaves (most likely at fixed high rate) and
for collecting data from them (control algorithm out-
puts, for instance). The slaves run control algorithms

at full speed. So a closed-loop control system can be
realized that supports multiple control loops with
some interaction between them.

Since such a system uses rate-monotonic sampling
most communication and processing occurs in rate-
monotonic manner with fixed deadlines. In the project
it is to be studied what rates are achievable by such a
structure.

The slaves are accessed via their host port interfaces
only. This removes all communication overhead from
them and enables them to use all of their processing
time for calculating algorithms. Input data will be
written into and read out of predefined locations in the
slaves’ internal memories by the master. The master
itself uses its EMIF interface for accessing the slaves.

Another processor module (‘Comm’) manages exter-
nal communication using a high speed USB connec-
tion. Besides data transfer and formatting it has to
process compression algorithms in order to speed up
outgoing transport of large amounts of data. This
processor is connected to the master by a separate
path. It uses it’s EMIF interface to access the other
processor’s HPI interface as described in [3].

Figure 1 illustrates the hardware structure as described
above. It shows main blocks and busses, but not minor
components and control logic. The system is to be
implemented on a 400 mm by 175 mm printed circuit
board (four layers). Input/output ports and USB hard-
ware are actually not part of the design. The former is
located at another board that is attached with a bus
connector, while the latter is located at another piggy-
back module that is stacked atop the according proc-
essor module.

Master address ranges

The master processor actively accesses numerous
blocks and devices. At first there are ports and mem-
ory blocks at the module itself. These are defined by
the module manufacturer [2]. Next there are addresses
for the memory-mapped input/output ports.

But the interesting part is the addressing of the slave
modules. Due to the principal function of the HPI they
appear to the master similar to memory devices. Each
slave is assigned to a memory range that the master
can use to perform individual read and write cycles
from or to this slave.

From the surrounding project it turned out that most
data that is to be transferred from the master to the
slaves will have to be duplicated to some or all slaves.
This derives from the coupled control loops, where
most of input data has to be processed by some or all
controllers. This property applies to write cycles of
the master only.

For the reason mentioned above a special ‘broadcast’
feature has been implemented for write operations
from the master to the slaves. This function allows the
master to write simultaneously into memory locations
of all slaves. Timing behavior during such cycles is
virtually equal to normal write cycles, saving much
time in contrast to accessing all slaves in sequence.

Additional functionality to access an arbitrary subset
of the slaves is not realized because it does not con-
tribute to time savings since the cycle would not
shorten. This is true when assuming that DSP internal
memory is large enough to contain all data and that

6701
Slave 0

H
P
I

6701
Slave 1

H
P
I

6701
Slave 2

H
P
I

6701
Slave 3

H
P
I

6701
Comm

EMIF

6701
Master

E
M
I
F

HPI

Port I/O

USB 2.0

Fig. 1: Overall hardware structure.

on-chip memory conflicts will not significantly in-
crease.

The broadcast functionality is assigned to a dedicated
address range so the master can choose one or all
slaves by address variation. A special handling of the
control signals during broadcast cycles had to be im-
plemented.

Control logic

Address decoding logic handles the different situa-
tions, generates the appropriate control signals and
activates the data paths needed. In particular the nu-
merous bus drivers must be controlled in activity and
direction. To reduce electrical problems all parts
should be disabled that are not used by the current
cycle.

Figure 2 shows additional control logic (simplified)
that handles the cycles of the master-slave-
communication [4]. The address decoder generates the
appropriate chip enable signals for the slaves as men-
tioned above. The WAIT signals from the slaves’ host
ports must be merged in order to handle situations

when in broadcast mode one of the slaves requires
more time then the others (due to internal access con-
flict).

Electrical Considerations

Since the electrical paths of the master-slave-bus ex-
tend over nearly 300 mm due to the dimensions of the
modules and other requirements it was necessary to
carefully design their configuration. Otherwise the bus
cycles would have to be slowed down in order to
achieve reliable operation.

It was decided to use impedance-controlled stripes
with parallel resistor termination at both ends. An im-
pedance of 68 Ohm has been chosen, controlled by the
path width on the circuit board. The lines are termi-
nated by 100 Ohm to Vcc and 220 Ohm to GND at
each end [4].

Since the modules’ outputs are not able to drive the
currents needed, drivers had to be included near each
module. These drivers are visible in figure 1. The de-
vices were chosen from the BiCMOS logic family

Fig. 2: Control signals (simplified).

...

...

...

ED[15:0]

EA4

6701
EMIF

(Master)

6701
HPI

(Slave 0)

EA3

HD[15:0]

EA2

/BE1

/BE0

/WR

/RD

/CE

/WAIT

HCNTL1

HCNTL0

HHWIL

/HBE1

/HBE0

HR/W, HDS2

/HDS

/HCS

/HRDY

NOR

6701
HPI

(Slave 1)

HD[15:0]

HCNTL1

HCNTL0

HHWIL

/HBE1

/HBE0

HR/W, HDS2

/HDS

/HCS

/HRDY

...
C6701

HPI
(Slave n-1)

HD[15:0]

HCNTL1

HCNTL0

HHWIL

/HBE1

/HBE0

HR/W, HDS2

/HDS

/HCS

/HRDY

/HINT /HINT /HINT

/INT i Interrupt

EA[5:log2(n)+5]

Decode

74LVT, delivering the output current needed and pro-
viding short delays.

Additional functions

Additionally the hardware supports a number of minor
functions. Among them is a global reset signal for all
modules. Interrupt signals from the slave modules and
the input/output ports can be merged in order to fit the
limited interrupt channels of the master module. All
control logic is implemented into two FPGA devices
located at the board.

3. SOFTWARE CONCEPT

Control and supervision of the whole system is con-
centrated in the master node. Since it has to do nu-
merous data transfers from and to the slaves and the
input/output ports it was desirable to rid its processor
core of stalls due to waiting bus cycles [5]. This is
done by using DMA channels for most of these trans-
fers.

A set of basic communication procedures that support
DMA access has already been implemented, support-
ing data transfers with and without acknowledge be-
tween the master and the slaves. Control of the broad-
cast feature is included. It is planned to extend the
software into an application interface that includes
higher protocol levels and is ready for usage in larger
software projects.

Since the first task was to evaluate the communication
system’s performance and reliability special test soft-
ware has been developed. It uses the basic communi-

cation procedures as mentioned above and provides
sustained data transfers for all directions and all
modes. Data integrity is always checked. This soft-
ware allows measurement of communication rates and
long-duration testing of data reliability.

4. EXPERIMENTAL RESULTS

Figures 3 and 4 show the printed circuit board during
evaluation. On the top side (figure 3) the DSP mod-
ules and some control logic can be seen. On the bot-
tom side (figure 4) the long stripes of the master-slave
bus are visible (left part). The connector at the right
side attaches to the board with input/output ports.

The timing of the master’s bus cycles when accessing
the master-slave-bus has been tuned experimentally. It
is controlled by the C6701 processor’s timing regis-
ters [5]. At 167 MHz clock frequency, a 9-9-3 figure
(setup-strobe-hold clock cycles) has been reached. It
turned out that the strobe duration was most critical
because WAIT signals must reliably be recognized.

Measured data rates are listed in table 1. It can be seen
that broadcast mode does not differ from individual
access to the slaves, just as expected. The HPI’s burst
mode provides substantial advantage for large data
blocks. It may be possible to further improve the tim-
ing behavior by applying minor changes to the design.

With the interface from the ‘Comm’ processor to the
master the timing is much better, because no drivers
are involved and the lines are short. This is the stan-
dard situation for EMIF-HPI interfacing [3] and does
not need further explanation.

Fig. 3: Board (top view). Modules from right to left: Comm, Master, Slaves 0 through 3.

5. CONCLUSION AND FURTHER WORK

The developed system is being evaluated and will fur-
ther be used in the project. Meanwhile software de-
velopment and some fine tuning in hardware occur.
Future work will include the extension to other DSP
family members and the additional utilization of the
processors’ multichannel buffered serial ports for im-
proving interprocessor communication performance.

6. ACKNOWLEDGEMENT

This work is supported by Deutsche Forschungsge-
meinschaft (German Research Council) under
SFB 622.

Names and trademarks are properties of their respec-
tive owners.

References

[1] Wolfgang Fengler, Bernd Däne, Vesselka Duridanova:
Design Methodology for an Embedded System for
High-Performance Computing. In: Colnaric, Adamski,
Wegrzyn (Eds.): Real-Time Programming 2003, Pro-
ceedings of WRTP 2003, 27th IFAC/IFIP/IEEE Work-
shop on Real-Time Programming, pp. 99-104, Lagow,
Poland, May 14-17, 2003.

[2] D.Module.C6x01: Technical Data Sheet. Document
Revision 2.1. D.SignT Digital Signalprocessing Tech-
nology GbR, Kerken, Germany, June 2002.

[3] Zoran Nikolic: TMS320C6000 EMIF to
TMS320C6000 Host Port Interface. Application Report
SPRA536B. Texas Instruments Incorporated, Septem-
ber 2003.

[4] Alexander Pacholik: Concept and Realization of a
Multi-DSP-System and its Interfaces. Diploma Thesis,
Ilmenau Technical University, Department of Com-
puter Architectures, Ilmenau, Germany, July 2004.

[5] Naim Dahnoun: Digital Signal Processing Implementa-
tion Using the TM320C6000 DSP Platform. Prentice
Hall PTR Indianapolis, USA, 2000.

Fig. 4: Board (bottom view).

Tab. 1: Measured data rates.

Direction and Mode
Data Rate
(MByte/s)

Read from slave 6,1

Read from slave (burst) 13,3

Write to slave (burst) 14,5

Broadcast write to slaves (burst) 14,5

