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Abstract

A holistic approach for the design of complex
embedded systems is described. Its design flow
combines hardware and software components. All flow
phases are based upon different Petri Net interpretations
which use the same theoretical fundamentals. This
allows to simulate and verify system parts as well as the
whole system. A special simulation method allows to
include transition actions. Verification of safety and
time properties becomes possible. This is important
because embedded systems are often a major part of
safety critical real-time applications. To hide the
difficulties of different high-level Petri Net
interpretations and to use the advantages of modern
software technologies an object-oriented design method
called Concurrent Object Nets is introduced. This
method allows engineers to design and implement
safety-critical embedded systems without knowing the
Petri Net theory.

1. Introduction

An embedded system consists of specific hard- and
software which forms a component of some larger
system and which is expected to work properly without
human intervention [FOD98].

In general it is designed for a single specific
application and carries out well defined functions within
the complete system. Embedded systems can contain
standard microprocessors and microcontrollers as well
as special hard- and software adapted for the particular
application. For high performance applications
embedded systems are often realised distributed with
more than one processor and a communication system.

The correctness and the compliance with real-time
requirements is often very important for embedded
systems, because they control systems in safety and
time critical areas (e.g. vehicles).

The continuing drop in prices and the increase in
efficiency for hardware components like
microprocessors have made accessible new types of
application for embedded systems and, therefore,
stimulated research on this subject. Also, it is
remarkable, that embedded system design requires
methods, which differ basically from the ones already
known.

Embedded system design means to combine
standard hardware circuits with individual application
specific hard- and software components. New methods
and algorithms are necessary to design such complex
embedded systems with reasonable costs and as quick
as possible. Such new methods and algorithms will
allow the designer to predict design and production
costs in a very early phase and to obtain error free
results rapidly.

Although there are differences between several
embedded systems depending on the particular field of
application, there are some characteristics in their
design flows they have in common. Figure 1 shows the
main phases of such design flows.

The specification is the first step of the design flow.
It must be distinguished between functional and non-
functional requirements. Design faults, made in these
early steps of the system development will be hard and
often expensive to adjust in later phases. An important
research topic is the development of formal
specification techniques which allow to describe
functional and safety properties. The well known Petri
Nets can be enhanced to fulfil these requirements,
whereas the original Petri Nets, known from C.A. Petri
[PET62] are not sufficient to satisfy them completely.
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Figure 1: Embedded System Design Flow

For a complete system specification, one single
technique is not adequate, but different Petri Net
interpretations can be used to describe all aspects of a
system. That gives the possibility of a special treatment
of each system view, but all interpretations refer to the
same fundamental theoretical basis. To make the system
description more comfortable for people who are not
familiar with Petri Nets, it might be helpful to hide them
by an additional specification layer.

The definition of an initial system architecture
follows. This phase is marked by partitioning the
system in hard- and software. The following phases are
separated into a hard- and software design flow.
Figure 1 shows a common approach for this separation.

During the integration phase the complete software
and the real destination hardware components are
combined. The main focus in this phase lies on the
check of the error free co-operation of hard- and
software.

Only if hard- and software co-operate, the validation
can ensure, that the system specification has been kept.
Due to the complex structure of embedded systems, the
check by simulation is very important.

2. Object-Oriented System- and Software Design

For the design and verification of distributed embedded
applications a new object-oriented design method
considering specific requirements of engineers has been

developed. This method is called Concurrent Object
Nets (CON) [NDF98],[NFB97]. It provides a graphical
representation for the semantics of classes and their
dynamic behaviour as well as for the interaction of their
objects. UML [UML97] diagrams are used to describe
static inheritance relationships. An internal hidden Petri
Net representation of the objects supplies the designer
with simulation and verification facilities.

Within the CON method, three different meta
classes, which can be distinguished by their internal
behaviour, exist:

• An abstract ON class (AONC) has no specific
behaviour. AONCs like all other ON classes have a
port interface and an optional list of time and
logical constraints. There are four kinds of ports:
synchronous send (SSP) and receive ports (SRP) an
asynchronous send (ASP) and receive ports (ARP).
During the design flow all instances of AONCs will
be substituted by instances with refined behaviour.

• A hierarchical ON class (HONC) encapsulates an
Object Net which consists of several ON instances
connected by a number of message links. These
aggregated instances may also be either of AONCs,
HONCs or EONCs.

• An elementary ON class (EONC) encapsulates a
hierarchical extended state machine (SM) [HAR87]
with time delays and time constraints (min./max.
time for software actions). The SM is the
fundamental building block for the ON design
model. This leads to a conflict-free communication
between different ONs. The only kind of conflict,
which may exist within an ON, is within one SM
and can be found easily. The SM is defined by
states, an initial state, actions and a set of state
changes. In this case, actions are software
functions, which are assigned to a state change. The
state change of the SM is forced either by incoming
messages or by the termination of special states.

The design flow in the Concurrent Object Net
method is based on the principle of refinement through
inheritance. The software designer starts to discuss the
problem with the customer. As a result of this
discussion the designer creates a first Object Net
specification. This specification formalises the non-
formal requirement of the customer. It includes
instances of AONCs. During the refinement (through
inheritance) process the designer overwrites the
instances from the first specification with instances
which are more specific.

The mechanism of refinement through inheritance is
very restrictive in the CON method. Two fundamental



inheritance rules (interface inheritance rule and
constraint inheritance rule) define which refinements
are allowed.

If the designers refinements follow these inheritance
rules the properties of the first specification will be
preserved. An automatic (formalised) check determines
whether the designer has violated the rules.

At the end of the refinement process a specification
with all details will be available. This specification can
be simulated graphically. The last step in the design
flow transforms the fully refined Object Net
specification into a specification which can be
implemented on a distributed platform.

For simulation and implementation every
hierarchical ON will be automatically transformed into
a flat ON including only EON instances coupled by
message links. In the second step these flat ONs will be
transformed into corresponding high-level Petri Nets to

be run in the integrated back-end simulator.

This back-end Petri Net simulator is coupled with
the script language Tcl (Tool Command Language)
[OUS94]. This allows to include the program code of
the actions into the simulation without any compilation.
The modular design of our design tool-set with its back-
end simulator allows also offline or remote simulation
e.g. on a UNIX workstation cluster or other platforms.

3. Object-oriented Design Example

To demonstrate our design method, we will discuss a
small application example. This example is a special
approach to drill holes into circuit boards. To place the
drill at a specific x-y-position, the controller has to
calculate two angles (phi1 and phi2) from the x/y-
coordinates before (see Figure 2).
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Figure 2: The Drilling Example

To calculate these angles, the following formulas
have to be applied:

LX = hypot (coord.x , coord.y)

cos(alpha) = LX / 2*L1

cos(alpha + phi1) = coord.x / LX

phi2 = 2*alpha

These angles will be used to control two motors
(Motor1 and Motor2). In our approach the motor control
and the angle calculation will be done distributed.
Therefor, both motors work independently. As soon as
both motors have reached their final position, the
drilling will be triggered. After drilling is finished, the
drilling cycle for the next hole starts.
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Figure 3: The ON Specification for the Drilling Example

As you can see in Figure 3 the ONS contains two
Object Net Instances (ONI) of the class Motor (Motor1
and Motor2), one ONI of the class Drill (Drilling), one
of the class Calc (coordsCalc) and a last instance of the
class Coords (drillCoords). This last ONI is for
simulation purposes only. The ONI coordsCalc is the
central part of the ONS. Its class Calc (see Figure 4) is a
HONC, which contains five ONIs of five different
EONCs. The class Phi1Buffer, which is shown in
Figure 5, expects at two ARPs two float values for the

final angle calculation. These two values will be
combined. After the reception of a trigger message from
port sendPhi1 the result will be sent through the ASP
phi1. After this send action, the class returns to its idle
state and waits for two new values. These two ports,
phi1 and sendPhi1, are visible in the surrounding
HONC Calc.
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Messages coming from port phi1 will be directed
through a message link to the ONI Motor1. The
message with a new angle position is the trigger for the
motor to enter this new position. Motor2 works
analogous to Motor1 with a different angle. The ONI
drilling waits for two messages, one from each motor,
to start the drilling action. The completion of the
drilling is the signal for the ONI coordsCalc to send

new values to the two motors. During motor movement
and drilling, the ONI coordsCalc fetches new x/y-
coordinates from a special instance, which provides test
coordinates for simulation purposes only. In case of
implementation, this instance will be replaced by the
real drilling control environment. To give an idea about
simple EONCs Figure 5 (EONCs) shows two EONCs of
the example.
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The result of the transformation into the
corresponding HLPN is shown examplarily (see Figure
6). It is only a sub-section of the complete Petri Net. It
shows the ONI fetchCoord and its connected message
links. These links have been transformed for the case

that every ONI was placed on a separate controller
which is communicating with the other ones via time
consuming (delay-transitions) communication networks
(e.g. fieldbuses).
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4. Communication Design

For the design of communication protocols, extended
high-level Petri Nets (HLPN) [NFE95], [JEN92],
[KNO94] are used. These are a compact form of the
original Place-Transition Nets with the speciality of
individual tokens which can carry additional data
values. The advantages of this Petri Net interpretation
are:

• Possibility to integrate the control and
synchronisation with the description of data
manipulation.

• Interactive simulation whereas the results are
represented directly in the net.

• The HLPNs can be transformed back into original
Place-Transition Nets.

• Therefore, a large number of existing formal
analysis methods to verify the model can be used.

The communication protocols which are needed for
embedded systems are mostly fieldbuses (e.g. CAN or
Profibus), which are specified for the layers 1, 2 and 7
of the ISO/OSI reference model.

Figure 7: Method for Specification and Design of Communication Protocols based on HLPN

Figure 7 shows the detailed steps from an HLPN to
the code of a communication protocol. First, the
structure of the system has to be modelled. Then, the
HLPN needs to be verified by simulation and afterwards
to be unfolded into a normal Petri Net. This Petri Net
needs to be verified again, e.g. by reachability analysis.
After that, a worst-case analysis can be performed. As
soon as all analysis checks have returned a positive
result, the code and also the hardware can be generated.

In our ON system design message links between
ONIs which are located on distributed controllers
connected by a fieldbus system use the services of
layers 7 and 2 respectively. The protocol designs
described in this chapter replace these communication
structures. For a full system simulation and verification
the specification of these services have to be integrated.

5. Hardware Design

To design some parts of the embedded system in
hardware, Application Specific Integrated Circuits
(ASIC’s) can be used. The main problem is, to find a
way to design systems in general, that means to design
the system in a way which makes it independent from a
special environment of a special company. The best
known way to realise this is to use VHSIC Hardware
Description Language (VHDL) [IEEE88], [CAR91]. To
make this easier for the designer, Electronic System
Design Automation Tools (ESDA) [ESDA97] can be
used. They are placed in the hierarchy directly above
the design with VHDL (see Figure 8). The main
advantage of ESDA is the graphical user interface for
design, simulation and verification. Also, error search
and redesign can be done in a single environment. This
makes work easier and more clear, because it illustrates
the system in a better way.
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The first step is to design the system with formalised
graphical models. Those can be state diagrams, flow
diagrams, truth tables or similar models. Normally, this
is done with an ESDA tool. The next step is the
transformation of these graphical models into
automatically synthesised VHDL code. In Figure 9
these steps are shown in more detailed. With ESDA it is

possible to design hardware apart from the real system
in a general manner. Formally, the specification step
was separated from the design flow itself. Now it is
situated within this flow and became an important part
of it. The disadvantage of this automatic synthesis of
VHDL code is the only ”good” quality of the code.
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Figure 9: Use of ESDA to Design Simulatable Specifications

Since the ESDA specification consists of several
graphical state oriented models, Petri Nets can be used,
too [FPA95] [FWAM96]. They give more efficiency in
describing parallelism and data flow. It is possible to
use different high-level Petri Net interpretations like

hierarchical, coloured and special extended Petri Nets,
depending on the system, which is to be designed. With
Petri Nets, the designed model can be analysed and
verified. On the other side state machines are a special



class of normal Petri Nets and the use of them is
included.

In our system design method using Object Nets (ON)
the lowest level is given by the elementary ON classes
(EONC’s, see chapter 2). The control structure of the
EONC is defined by a state machine with a port
interface. These ports can be transformed into PN
structures. Places with capacity one are modelling
normal logical signals or triggers, places with higher
capacity model buses or registers.

Within hardware classes actions triggered by the
firing of transitions are modelled by VHDL functions. It

is necessary for automatic logic synthesis that these
VHDL functions are synthesisable. Then, it is possible
to generate the hardware structure of Figure 10 using
the method of Rokyta. There are elements for
computing the switchability of the transitions, solving
the conflicts and switch the transitions. If the hardware
part consumes or produces external signals
asynchronous or synchronous input/output logic blocks
are necessary. The VHDL functions of the transitions
written by the designer are treated similar to the
synchronous I/O logic [ROK97].
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Figure 10: Finite State Machine (FSM) for Realisation of a Petri Net Model

6. Analysis Methods

Embedded systems mostly have higher demands on
real-time and security behaviour. Therefore, the
problems of validation and verification are more
important. The general use of different interpretations of
Petri Nets in the design areas described earlier gives us
the chance to use the variety of methods and tools
existing for this model. We generate an overall model of
our design result as follows:

• The application software was designed with the
Concurrent Object Net method (see Chapter 2). The
elementary Object Net classes are described by
state machines extended by net constructions
modelling the communication (from the application
view). The time behaviour of the actions is given by
a minimum and a maximum time or a stochastic
average time (distributed exponentially) [MAC87].

• The communication software has an underlying
coloured Petri Net model (see Chapter 3). We use it
to substitute the more general communication net

structures on the application layer (message links)
through the real structures realising the services of
the used communication system, in most cases a
fieldbus. The time behaviour is given by an average
time and, if used, a deterministic protocol by a
minimum and maximum time [KNO94].

• Special hardware sections are designed by using
high-level Petri Nets on the ESDA level (see
Chapter 4). Compared with the software running
times and the communication times it is possible to
ignore the time consumption of digital hardware
actions. If there are some counters, analog or mixed
analog-digital sections, it is possible that the time
data of these functions have to be taken into
account, too.

After generation of the net model of the design it is
possible to investigate it by simulation. It can be shown
by this method that sub-states of interest are reachable
and the transitions between them are correct. It is
possible to get statistic values about the time behaviour



(e.g. throughput) by the use of stochastic simulation of
deterministic stochastic nets

Using formal analysis as described in [STA90] and
implemented in the tool INA [STA97] we get
information about reachable markings (sub states) and
the paths between them, liveness (dead and life locks),
conflicts and the safety of the used asynchronous
communication connections. These analysis techniques
have been investigated for a long time. A major

problem is that the reachability graph is used for many
analyses and it can be very large.

In the last time some work has been done on the
field of worst case timing analysis and the results are
implemented in the tool INA, too. The following
example derived from the design example in chapter 2
shows the problem (see Figure 11). To make it less
complicated we use a direct parallel communication
without time consumption.
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Figure 11: Part of the Corresponding Petri Net (See Example, Chapter 3)

After giving a new coordinate (newCoord) there is a
co-operation of four calculation and two motor objects
(calc1, calc2, calc3, calc4, Motor1, Motor2) necessary
before the drilling object can be activated. The worst
case time (tmax) for this process is of interest for the
application. There are the minimum/maximum time
intervals (tx := [txmin, txmax]) of the actions given
(determined from the software sources and the
mechanical models) and there are some possible critical
ways in the net. The tool calculates the longest one by
the given time values. It will not be a sum of maximum
values in all cases.

The following formulas show the calculation of the
shortest time tmin and the worst time tmax:

tbmax = t3max + t6max + t8max

tbmin = t3min + t6min + t8min

tamax = max ( t2max , t3max ) + t4max + t7max

tamin = max ( t2min , t3min ) + t4min + t7min

tmax = t1max +max ( tamax , tbmax ) + t5max

tmin = t1min +max ( tamin , tbmin ) + t5min

7. Summary and Conclusions

Complex embedded systems consist of more than one
processor and a communication system. They are
increasingly often applied to safety and time critical
processes. Their design involves system specification,
hard- and software design and various validation and
verification methods. A combination of object-oriented
methods based on the widely accepted Unified
Modelling Language (UML) extended with special
Object Nets leads to satisfying results in the area of
system and software specification. The Concurrent
Object Nets combine methods normally used by
engineers, like data flow diagrams and state machines



(SM), with object-orientation and the theory of high-
level Petri Nets (HLPN). The use of HLPN and SM
provides the possibility to integrate design methods for
communication protocols as well as for hardware parts.
The application of HLPN throughout the entire design
process allows to utilise analysis methods of these nets.
Extending the HLPNs with time intervals gives access
to worst case analysis, thus, verifying the real-time
properties of the designed systems. The integration of
all the developed methods in a tool system is crucial in
order to benefit from their application. With this
integration it will be a step towards safer and faster
design of embedded systems with adequate expenditure
of engineering costs.
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