
49. Internationales Wissenschaftliches Kolloquium
Technische Universität Ilmenau

27.-30. September 2004

B. Däne

Estimating Operating System Resource Occupation by
Simulation

1. Introduction

Embedded systems frequently are limited in resources such as memory space and processing

power. The limits come from technical (power consumption, space, weight) and economical

factors. In the design process it is desirable to achieve information about resource demand as

early as possible in order to optimize the design. Unfortunately there is no straight way to calcu-

late such values. The results depend on many details, including the behavior of the controlled

process and the real time operating system used. So some fundamental design decisions must be

delayed or suboptimal results must be tolerated.

One solution is a design process that is primarily based on a model of the whole system, includ-

ing control algorithms and behavioral models of the operating system and the controlled proc-

ess. This paper will show how an operating system can be modeled in a general-purpose model-

ing environment and how quantitative data about resource occupation can be derived from

simulation.

In the modeling process the general-purpose multi-domain modeling tool MLDesigner [1] of

MLDesign Technologies Inc. has been used.

2. Modeling Real Time Operating Systems

The behavioral model of the real time operating system consists of a framework for modeling

the individual tasks of the system, as shown in [2], and blocks that model kernel components.

All these parts belong to MLDesigner’s “DE” (discrete event) domain. But the tool also provides

interfacing to model components that belong to other domains. So this model can be included

into larger models that cover both the embedded system and the controlled process.

The individual tasks are primarily modeled by their timing behavior. For this purpose they are

structured into atomic blocks with known time consumption. Other elements are control struc-

tures and kernel invocations. For more detailed description see [2] and [3].

3. Model Structure for Kernel Components

The model contains a number of blocks that model kernel components of the operating systems.

Examples are schedulers, memory management, device management and message systems.

While the task models have to be changed for each application, the kernel components remain

unchanged for a given operating system with similar configuration parameters.

All kernel modules have the same principal structure.

They contain a number of blocks with each dedicated

to a certain function in this module. There are two

views for each function: The “external” view, e.g. the

interface to application tasks, and the “internal” view,

e.g. the interface to other kernel components. Most

functions are modeled by two blocks representing

these different views to the same function.

The different functions of a kernel module are super-

vised by switching blocks. The invocation of functions

is modeled by events that are attributed with a refer-

ence to the function called, parameters for the function

call and a reference to the calling task or service. The

switching blocks direct the events to the block that

belongs to the function invoked and collect the com-

pletion events for returning them to the caller. There

are distinct switching blocks for “external” and “inter-

nal” invocation.

Kernel functions in the model include task management for preemptive tasks and for rate-

monotonic tasks, as well as device management and memory management. Fig. 1 as an example

shows the top level structure of a kernel module for memory management. There are two func-

tions only: allocation of a memory block (“nalloc”) and freeing a previously allocated block

(“nfree”). As described above the “external” and “internal” views are modeled by distinct

Fig. 1: Kernel module for mem-
ory management

blocks. Their links are hidden by using global data objects and global events available in the

modeling tool.

Fig. 2 shows the internal structure of the block “nfree”. It is invoked by receiving events con-

taining index pointers of the memory blocks. Some primitives handle the data structures that

store the state of the memory management system. If a neighbor is already free, the free memory

blocks will be merged. The data structures will be updated: an array (“karray”) holding informa-

tion about actually allocated memory blocks, and a tree structure that points to free memory

blocks.

The model allows the simulation of various memory allocation strategies in order to evaluate

typical effects such as memory fragmentation.

4. Extracting Results from Simulation

All model components are equipped with attributes representing their resource occupation. Us-

age of processing time is modeled by atomic blocks with known time consumption. Effects of

kernel functions to the scheduler’s behavior are modeled as part of the “internal” views of these

functions. Other resource information is managed by the kernel modules dedicated to these

functions. For instance the kernel module for memory management keeps track of the usage of

Fig. 2: Module “nfree”

system memory and gets relevant information from other

kernel modules via the “internal” interface.

During simulation all information is collected and interac-

tively displayed by textual and graphical dialog elements of

the modeling tool. As an example fig. 3 shows a snapshot

of the log window for memory occupation during simula-

tion. It lists block indices and sizes as well as properties,

access counts and queue status. Similar displays exist for

the list of free memory blocks (showing actual fragmenta-

tion) and for the other kernel functions such as task man-

agement and device management.

Other evaluation is available graphically. As an example fig. 4 shows a task switch diagram

(zoomed part). It lists active task’s identificator (“TaskID”) versus model time. Task activity is

shown by dots and bars. TaskID 0 denotes the Idle Task. The operating system’s tick period was

7.2 µs in model time. The ticks are shown by the lowermost row of dots. MLDesigner simula-

tion took about 30 s simulation time per millisecond model time (on a PC with an 800 MHz

Pentium III processor).

Fig. 3: Example log window

0.1534 index|size|lni-rni|counts|queue..
0.1534 0: -1: 1..1: 0:
0.1534 1: 100: 2..-1: 0:
0.1534 2: 18: -1..3: 0:
0.1534 3: 19: -1..4: 0:
0.1534 4: 21: -1..5: 0:
0.1534 5: 23: -1..6: 0:
0.1534 6: 32: 7..8: 0:
0.1534 7: 24: -1..10: 1: 109;
0.1534 8: 40: 9..11: 1: 133;
0.1534 9: 35: -1..12: 0:
0.1534 10: 27: -1..-1: 1: 283;
0.1534 11: 52: 13..-1: 1: 346;
0.1534 12: 36: -1..-1: 1: 310;
0.1534 13: 48: -1..-1: 1: 173;

Fig. 4: Example task switch diagram

5. Conclusion

The paper shows how the behavior of operating systems can be included into models that are

used when designing embedded systems. It has been shown how information about resource

occupation can be derived, enabling optimization of the system early in the design process. Next

work will be refinement of the modeling method, investigation of methods for implementing

software directly from the model [4] and integration of all methods into more complex design

processes.

6. Acknowledgements

This work is supported by the German Research Foundation (DFG) under SFB 622.

MLDesigner © 2004 MLDesign Technologies, Inc. All rights reserved.

http://www.mldesigner.com/

References
[1] V. Zerbe, U. Freund, and H. Salzwedel, Mission Level Design of Control Systems, Proc. SCI/ISAS’99 Multiconference on Systemics,

Cybernetics, Informatics, Orlando, USA, 1999, vol. 7, 237-243.

[2] B. Däne, W. Fengler, and F. Berger, Modeling and Simulation of Operating System Behavior, Proc. MSO 2003, IASTED International
Conference on Modeling, Simulation and Optimization, Banff, Canada, 2003, 78-81.

[3] K. Rimbach, Model Based Analysis and Evaluation of Real Time Operating Systems (Ilmenau, Germany: Diploma Thesis 2002-12-
02/054/IN97/2231, Ilmenau Technical University, 2002).

[4] B. Däne and W. Fengler, Implementing Mixed Discrete-Continuous Models into Realtime Environments, Proc. MIC 2004, IASTED
International Conference on Modelling, Identification, and Control, Grindelwald, Switzerland, 2004.

Author
Dr. Bernd Däne
TU Ilmenau, P.O. Box 100565
98684 Ilmenau, Germany
Phone: +49-3677-69-1433
Fax: +49-3677-69-1614
E-mail: bernd.daene@tu-ilmenau.de

