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1. Introduction 

Embedded systems frequently are limited in resources such as memory space and processing 

power. The limits come from technical (power consumption, space, weight) and economical 

factors. In the design process it is desirable to achieve information about resource demand as 

early as possible in order to optimize the design. Unfortunately there is no straight way to calcu-

late such values. The results depend on many details, including the behavior of the controlled 

process and the real time operating system used. So some fundamental design decisions must be 

delayed or suboptimal results must be tolerated. 

One solution is a design process that is primarily based on a model of the whole system, includ-

ing control algorithms and behavioral models of the operating system and the controlled proc-

ess. This paper will show how an operating system can be modeled in a general-purpose model-

ing environment and how quantitative data about resource occupation can be derived from 

simulation. 

In the modeling process the general-purpose multi-domain modeling tool MLDesigner [1] of 

MLDesign Technologies Inc. has been used.  

2. Modeling Real Time Operating Systems 

The behavioral model of the real time operating system consists of a framework for modeling 

the individual tasks of the system, as shown in [2], and blocks that model kernel components. 

All these parts belong to MLDesigner’s “DE” (discrete event) domain. But the tool also provides 

interfacing to model components that belong to other domains. So this model can be included 

into larger models that cover both the embedded system and the controlled process. 



The individual tasks are primarily modeled by their timing behavior. For this purpose they are 

structured into atomic blocks with known time consumption. Other elements are control struc-

tures and kernel invocations. For more detailed description see [2] and [3]. 

3. Model Structure for Kernel Components 

The model contains a number of blocks that model kernel components of the operating systems. 

Examples are schedulers, memory management, device management and message systems. 

While the task models have to be changed for each application, the kernel components remain 

unchanged for a given operating system with similar configuration parameters. 

All kernel modules have the same principal structure. 

They contain a number of blocks with each dedicated 

to a certain function in this module. There are two 

views for each function: The “external” view, e.g. the 

interface to application tasks, and the “internal” view, 

e.g. the interface to other kernel components. Most 

functions are modeled by two blocks representing 

these different views to the same function. 

The different functions of a kernel module are super-

vised by switching blocks. The invocation of functions 

is modeled by events that are attributed with a refer-

ence to the function called, parameters for the function 

call and a reference to the calling task or service. The 

switching blocks direct the events to the block that 

belongs to the function invoked and collect the com-

pletion events for returning them to the caller. There 

are distinct switching blocks for “external” and “inter-

nal” invocation. 

Kernel functions in the model include task management for preemptive tasks and for rate-

monotonic tasks, as well as device management and memory management. Fig. 1 as an example 

shows the top level structure of a kernel module for memory management. There are two func-

tions only: allocation of a memory block (“nalloc”) and freeing a previously allocated block 

(“nfree”). As described above the “external” and “internal” views are modeled by distinct 

Fig. 1: Kernel module for mem-
ory management 



blocks. Their links are hidden by using global data objects and global events available in the 

modeling tool. 

Fig. 2 shows the internal structure of the block “nfree”. It is invoked by receiving events con-

taining index pointers of the memory blocks. Some primitives handle the data structures that 

store the state of the memory management system. If a neighbor is already free, the free memory 

blocks will be merged. The data structures will be updated: an array (“karray”) holding informa-

tion about actually allocated memory blocks, and a tree structure that points to free memory 

blocks. 

The model allows the simulation of various memory allocation strategies in order to evaluate 

typical effects such as memory fragmentation. 

4. Extracting Results from Simulation 

All model components are equipped with attributes representing their resource occupation. Us-

age of processing time is modeled by atomic blocks with known time consumption. Effects of 

kernel functions to the scheduler’s behavior are modeled as part of the “internal” views of these 

functions. Other resource information is managed by the kernel modules dedicated to these 

functions. For instance the kernel module for memory management keeps track of the usage of 

Fig. 2: Module “nfree” 



system memory and gets relevant information from other 

kernel modules via the “internal” interface. 

During simulation all information is collected and interac-

tively displayed by textual and graphical dialog elements of 

the modeling tool. As an example fig. 3 shows a snapshot 

of the log window for memory occupation during simula-

tion. It lists block indices and sizes as well as properties, 

access counts and queue status. Similar displays exist for 

the list of free memory blocks (showing actual fragmenta-

tion) and for the other kernel functions such as task man-

agement and device management. 

Other evaluation is available graphically. As an example fig. 4 shows a task switch diagram 

(zoomed part). It lists active task’s identificator (“TaskID”) versus model time. Task activity is 

shown by dots and bars. TaskID 0 denotes the Idle Task. The operating system’s tick period was 

7.2 µs in model time. The ticks are shown by the lowermost row of dots. MLDesigner simula-

tion took about 30 s simulation time per millisecond model time (on a PC with an 800 MHz 

Pentium III processor). 

Fig. 3: Example log window 

0.1534 index|size|lni-rni|counts|queue.. 
0.1534 0: -1: 1..1: 0:  
0.1534 1: 100: 2..-1: 0:  
0.1534 2: 18: -1..3: 0:  
0.1534 3: 19: -1..4: 0:  
0.1534 4: 21: -1..5: 0:  
0.1534 5: 23: -1..6: 0:  
0.1534 6: 32: 7..8: 0:  
0.1534 7: 24: -1..10: 1: 109;  
0.1534 8: 40: 9..11: 1: 133;  
0.1534 9: 35: -1..12: 0:  
0.1534 10: 27: -1..-1: 1: 283;  
0.1534 11: 52: 13..-1: 1: 346;  
0.1534 12: 36: -1..-1: 1: 310;  
0.1534 13: 48: -1..-1: 1: 173;   

Fig. 4: Example task switch diagram 



5. Conclusion 

The paper shows how the behavior of operating systems can be included into models that are 

used when designing embedded systems. It has been shown how information about resource 

occupation can be derived, enabling optimization of the system early in the design process. Next 

work will be refinement of the modeling method, investigation of methods for implementing 

software directly from the model [4] and integration of all methods into more complex design 

processes. 
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